Whiteboard

Current Courses

You can toggle for Graduate or Undergraduate or search by course number. 

15645
Database Systems
12
This course is on the design and implementation of database management systems. Topics include data models (relational, document, key/value), storage models (n-ary, decomposition), query languages (SQL, stored procedures), storage architectures (heaps, log-structured), indexing (order preserving trees, hash tables), transaction processing (ACID, concurrency control), recovery (logging, checkpoints), query processing (joins, sorting, aggregation, optimization), and parallel architectures (multi-core, distributed). Case studies on open-source and commercial database systems will be used to illustrate these techniques and trade-offs. The course is appropriate for students with strong systems programming skills.

Click to read more...

15650
Algorithms and Advanced Data Structures
12
The objective of this course is to study general computational problems, with a focus on the principles used to design those algorithms. Efficient data structures will be discussed to support these algorithmic concepts. Topics include: Run time analysis, divide-and-conquer algorithms, dynamic programming algorithms, network flow algorithms, linear and integer programming, large-scale search algorithms and heuristics, efficient data storage and query, and NP-completeness. Although this course will have several programming assignments, it is primarily not a programming course. Instead, it will focus on the design and analysis of algorithms for general classes of problems. This course is not open to CS graduate students who should consider taking 15-651 instead.

Click to read more...

15651
Algorithm Design and Analysis
12
This course is intended for SCS graduate students. This course is about the design and analysis of algorithms. We study specific algorithms for a variety of problems, as well as general design and analysis techniques. Specific topics include searching, sorting, algorithms for graph problems, efficient data structures, lower bounds and NP-completeness. A variety of other topics may be covered at the discretion of the instructor. These include parallel algorithms, randomized algorithms, geometric algorithms, low level techniques for efficient programming, cryptography, and cryptographic protocols.

Click to read more...

15652
Foundations of Programming Languages
12
This course discusses in depth many of the concepts underlying the design, definition, implementation, and use of modern programming languages. Formal approaches to defining the syntax and semantics are used to describe the fundamental concepts underlying programming languages. A variety of programming paradigms are covered such as imperative, functional, logic, and concurrent programming. In addition to the formal studies, experience with programming in the languages is used to illustrate how different design goals can lead to radically different languages and models of computation.

Click to read more...

15653
Logic and Mechanized Reasoning
12
Symbolic logic is fundamental to computer science, providing a foundation for the theory of programming languages, database theory, AI, knowledge representation, automated reasoning, interactive theorem proving, and formal verification. Formal methods based on logic complement statistical methods and machine learning by providing rules of inference and means of representation with precise semantics. These methods are central to hardware and software verification, and have also been used to solve open problems in mathematics. This course will introduce students to logic on three levels: theory, implementation, and application. It will focus specifically on applications to automated reasoning and interactive theorem proving. We will present the underlying mathematical theory, and students will develop the mathematical skills that are needed to design and reason about logical systems in a rigorous way. We will also show students how to represent logical objects in a functional programming language, Lean, and how to implement fundamental logical algorithms. We will show students how to use contemporary automated reasoning tools, including SAT solvers, SMT solvers, and first-order theorem provers to solve challenging problems. Finally, we will show students how to use Lean as an interactive theorem prover.

Click to read more...

15657
Constructive Logic
9
This multidisciplinary junior-level course is designed to provide a thorough introduction to modern constructive logic, its roots in philosophy, its numerous applications in computer science, and its mathematical properties. Some of the topics to be covered are intuitionistic logic, inductive definitions, functional programming, type theory, realizability, connections between classical and constructive logic, decidable classes. This course counts as a Fundamentals course in the Computer Science major.

Click to read more...

15659
Probability and Computing
9
Probability theory has become indispensable in computer science. In areas such as artificial intelligence and computer science theory, probabilistic methods and ideas based on randomization are central. In other areas such as networks and systems, probability is becoming an increasingly useful framework for handling uncertainty and modeling the patterns of data that occur in complex systems. This course gives an introduction to probability as it is used in computer science theory and practice, drawing on applications and current research developments as motivation and context. Topics include combinatorial probability and random graphs, heavy tail distributions, concentration inequalities, various randomized algorithms, sampling random variables and computer simulation, and Markov chains and their many applications, from Web search engines to models of network protocols. The course will assume familiarity with 3-D calculus and linear algebra.

Click to read more...

15661
Interaction and Expression using the Pausch Bridge Lighting
4
Working in cross-disciplinary teams, students will explore light as art, interactive design and programming using a Pharos lighting control system. Students will explore the use of light and interaction using the actual controls within the Randy Pausch Memorial Bridge. Student teams will develop final projects that will be exhibited on the actual Randy Pausch Memorial Bridge.

Click to read more...

15662
Computer Graphics
12
This course provides a comprehensive introduction to computer graphics. It focuses on fundamental concepts and techniques, and their cross-cutting relationship to multiple problem domains in graphics (rendering, animation, geometry, imaging). Topics include: sampling, aliasing, interpolation, rasterization, geometric transformations, parameterization, visibility, compositing, filtering, convolution, curves & surfaces, geometric data structures, subdivision, meshing, spatial hierarchies, ray tracing, radiometry, reflectance, light fields, geometric optics, Monte Carlo rendering, importance sampling, camera models, high-performance ray tracing, differential equations, time integration, numerical differentiation, physically-based animation, optimization, numerical linear algebra, inverse kinematics, Fourier methods, data fitting, example-based synthesis. Students will learn through lectures, exercises, and through hands-on programming experience as they build a 3D modeling, rasterization, path-tracing, and animation utility, Scotty3D, in C++.

Click to read more...

15668
Physics-Based Rendering
12
This course is an introduction to physics-based rendering at the advanced undergraduate and introductory graduate level. During the course, we will cover fundamentals of light transport, including topics such as the rendering and radiative transfer equation, light transport operators, path integral formulations, and approximations such as diffusion and single scattering. Additionally, we will discuss state-of-the-art models for illumination, surface and volumetric scattering, and sensors. Finally, we will use these theoretical foundations to develop Monte Carlo algorithms and sampling techniques for efficiently simulating physically-accurate images. Towards the end of the course, we will look at advanced topics such as rendering wave optics, neural rendering, and differentiable rendering.

Click to read more...

15672
Real-Time Graphics
12
Real-time computer graphics is about building systems that leverage modern CPUs and GPUs to produce detailed, interactive, immersive, and high-frame-rate imagery. Students will build a state-of-the-art renderer using C++ and the Vulkan API. Topics explored will include efficient data handling strategies; culling and scene traversal; multi-threaded rendering; post-processing, depth of field, screen-space reflections; volumetric rendering; sample distribution, spatial and temporal sharing, and anti-aliasing; stereo view synthesis; physical simulation and collision detection; dynamic lights and shadows; global illumination, accelerated raytracing; dynamic resolution, "AI" upsampling; compute shaders; parallax occlusion mapping; tessellation, displacement; skinning, transform feedback; debugging, profiling, and accelerating graphics algorithms.

Click to read more...

15686
Neural Computation
12
Computational neuroscience is an interdisciplinary science that seeks to understand how the brain computes to achieve natural intelligence. It seeks to understand the computational principles and mechanisms of intelligent behaviors and mental abilities -- such as perception, language, motor control, and learning -- by building artificial systems and computational models with the same capabilities. This course explores how neurons encode and process information, adapt and learn, communicate, cooperate, compete and compute at the individual level as well as at the levels of networks and systems. It will introduce basic concepts in computational modeling, information theory, signal processing, system analysis, statistical and probabilistic inference. Concrete examples will be drawn from the visual system and the motor systems, and studied from computational, psychological and biological perspectives. Students will learn to perform computational experiments using Matlab and quantitative studies of neurons and neuronal networks.

Click to read more...

15689
Independent Study in the Computer Sciences
varies
This course is for Computer Science master's students carrying out research supervised by a faculty member. Students will be automatically wait-listed pending program approval of an independent-study prospectus (contact your academic advisor for details).

Click to read more...

15690
MSCS Career Planning
3
This class is for students enrolled in the Applied Study variant of the MSCS program. The class will support students in clarifying their objectives for their applied-study experience in consultation with their advisor and Career Center staff. Throughout the semester students will seek, develop, and select among applied-study experiences.

Click to read more...

15694
Cognitive Robotics
12
This course will explore the future of robot toys by analyzing and programming Anki Cozmo, a new robot with built-in artificial intelligence algorithms. Como is distinguished from earlier consumer robots by its reliance on vision as the primary sensing mode and its sophisticated use of A.I. Its capabilities include face and object recognition, map building, path planning, and object pushing and stacking. Although marketed as a pre-programmed children's toy, Cozmo's open source Python SDK allows anyone to develop new software for it, which means it can also be used for robotics education and research. The course will cover robot software architecture, human-robot interaction, perception, and planning algorithms for navigation and manipulation. Prior robotics experience is not required, just strong programming skills.

Click to read more...

15697
Graduate Reading and Research
varies
This course number is for registering for reading and research while working on research and your dissertation.

Click to read more...

15698
MSCS Research Thesis
varies
This course is for students in the "MSCS" course-based Computer Science master's program who are participating in the thesis option. Students will be automatically wait-listed pending program approval of a thesis proposal (contact your academic advisor for details).

Click to read more...

15719
Advanced Cloud Computing
12

Computing in the cloud has emerged as a leading paradigm for cost-effective, scalable, well-managed computing. Users pay for services provided in a broadly shared, power efficient datacenter, enabling dynamic computing needs to be met without paying for more than is needed. Actual machines may be virtualized into machine-like services, or more abstract programming platforms, or application-specific services, with the cloud computing infrastructure managing sharing, scheduling, reliability, availability, elasticity, privacy, provisioning and geographic replication This course will survey the aspects of cloud computing by reading about 30 papers and articles, executing cloud computing tasks on a state of the art cloud computing service, and implementing a change or feature in a state of the art cloud computing framework. There will be no final exam, but there will be two in class exams. Grades will be about 50 project work and about 50 examination results.

Click to read more...

Doctoral Breadth: Software Systems - (-)

15721
Advanced Database Systems
12
This course is a comprehensive study of the internals of modern database management systems. It will cover the core concepts and fundamentals of the components that are used in large-scale analytical systems (OLAP). The class will stress both efficiency and correctness of the implementation of these ideas.

Click to read more...

15744
Computer Networks
12

15-744 is a doctoral course in computer networking research. The goals are: To understand the state of the art in network protocols, network architecture, and networked systems. To engage with systems research at a scholarly level through written and oral argument. To investigate novel ideas and make new scholarly arguments through a semester-long research project in computer networking.

Click to read more...

Doctoral Breadth: Software Systems - (*)

15751
CS Theory Toolkit
12

This course will take a random walk through various mathematical topics that come in handy for theoretical computer science. It is intended mainly for students earlier in their graduate studies (or very strong undergraduates) who want to do theory research. The idea for the course comes from other courses by Arora (2002, 2007), Håstad (2004/05), Kelner (2007, 2009), and Tulsiani (2013). Students should have a solid undergraduate background in math (e.g., elementary combinatorics, graph theory, discrete probability, basic algebra/calculus) and theoretical computer science (running time analysis, big-O/Omega/Theta, P and NP, basic fundamental algorithms).

Click to read more...

Doctoral Breadth: Algorithms and Complexity - (*)

15772
Real-Time Computer Graphics
12
Real-time computer graphics is about building systems that leverage modern CPUs and GPUs to produce detailed, interactive, immersive, and high-frame-rate imagery. Students will build a state-of-the-art renderer using C++ and the Vulkan API. Topics explored will include efficient data handling strategies; culling and scene traversal; multi-threaded rendering; post-processing, depth of field, screen-space reflections; volumetric rendering; sample distribution, spatial and temporal sharing, and anti-aliasing; stereo view synthesis; physical simulation and collision detection; dynamic lights and shadows; global illumination, accelerated raytracing; dynamic resolution, "AI" upsampling; compute shaders; parallax occlusion mapping; tessellation, displacement; skinning, transform feedback; and debugging, profiling, and accelerating graphics algorithms.

Click to read more...

15780
Graduate Artificial Intelligence
12

This course provides a broad perspective on AI, covering (i) classical approaches of search and planning useful for robotics, (ii) integer programming and continuous optimization that form the bedrock for many AI algorithms, (iii) modern machine learning techniques including deep learning that power many recent AI applications, (iv) game theory and multi-agent systems, and (v) issues of bias and unfairness in AI. In addition to understanding the theoretical foundations, we will also study modern algorithms in the research literature.

Click to read more...

Doctoral Breadth: Artificial Intelligence - (*)

15791
Advanced Topics in Foundations of Programming Languages
12
An advanced follow-on to 15-312 developing further ideas and results in the theory of programming languages.

Click to read more...

15793
Secure Computer Systems
12
This course is broadly focused on full-stack system security and will cover the foundations of building secure systems and cryptography. During the course we will cover hardware, system software, and cryptographic primitives for building secure systems, both within the datacenter environment and in the decentralized setting. The course will focus on the cross-cutting security requirements of systems and how to bolster their security guarantees using a combination of systems and cryptographic techniques. The lectures will cover fundamental security concepts (e.g., threat models, trusted computing base), and do a deep dive into state-of-the-art attacks and defenses (e.g., speculative execution attacks). The course will span a set of hardware security topics including trusted execution environments, side-channels, hardware attacks (e.g., Meltdown, Spectre, Rowhammer), software systems such as blockchains, anonymous messaging, and secure machine learning.

Click to read more...

15812
Programming Language Semantics
12

This lecture course introduces the foundational concepts and techniques of programming language semantics. The aim is to demonstrate the utility of a scientific approach, based on mathematics and logic, with applications to program analysis, language design, and compiler correctness. We introduce the concepts and techniques associated with the most well established and generally applicable frameworks for semantic description: the denotational, operational, and axiomatic styles of semantic description. We use semantics to analyze program behavior, guide the development of correct programs, prove correctness of a compiler, validate logics for program correctness, and derive general laws of program equivalence. We will discuss a variety of imperative and functional languages, sequential and parallel, as time permits.

Click to read more...

Doctoral Breadth: Programming Languages - (*)

15827
Foundations of Blockchains and Distributed Consensus
12
In this course, you will learn the mathematical foundations of distributed consensus as well as how to construct consensus protocols and prove them secure. We will motivate distributed consensus with a modern narrative, and yet we will cover the classical theoretical foundations of consensus.

Click to read more...

15850
Advanced Algorithms
12
An intensive graduate course on the design and analysis of algorithms.

Click to read more...

15851
Algorithms for Big Data
12

With the growing number of massive datasets in applications such as machine learning and numerical linear algebra, classical algorithms for processing such datasets are often no longer feasible. 

In this course we will cover algorithmic techniques, models, and lower bounds for handling such data. A common theme is the use of randomized methods, such as sketching and sampling, to provide dimensionality reduction. In the context of optimization problems, this leads to faster algorithms, and we will see examples of this in the form of least squares regression and low rank approximation of matrices and tensors, as well as robust variants of these problems. In the context of distributed algorithms, dimensionality reduction leads to communication-efficient protocols, while in the context of data stream algorithms, it leads to memory-efficient algorithms. We will study some of the above problems in such models, such as low rank approximation, but also consider a variety of classical streaming problems such as counting distinct elements, finding frequent items, and estimating norms. Finally we will study lower bound methods in these models showing that many of the algorithms we covered are optimal or near-optimal. Such methods are often based on communication complexity and information-theoretic arguments.

Click to read more...

Doctoral Breadth: Algorithms and Complexity - (*)

15852
Parallel and Concurrent Algorithms
12
TBD

Click to read more...

15858
Discrete Differential Geometry
12

This course focuses on three-dimensional geometry processing, while simultaneously providing a first course in traditional differential geometry. Our main goal is to show how fundamental geometric concepts (like curvature) can be understood from complementary computational and mathematical points of view. This dual perspective enriches understanding on both sides, and leads to the development of practical algorithms for working with real-world geometric data. Along the way we will revisit important ideas from calculus and linear algebra, putting a strong emphasis on intuitive, visual understanding that complements the more traditional formal, algebraic treatment. The course provides essential mathematical background as well as a large array of real-world examples and applications. It also provides a short survey of recent developments in digital geometry processing and discrete differential geometry. Topics include: curves and surfaces, curvature, connections and parallel transport, exterior algebra, exterior calculus, Stokes' theorem, simplicial homology, de Rham cohomology, Helmholtz-Hodge decomposition, conformal mapping, finite element methods, and numerical linear algebra.Applications include: approximation of curvature, curve and surface smoothing, surface parameterization, vector field design, and computation of geodesic distance.

Click to read more...

Doctoral Breadth: Algorithms and Complexity - (*)

15867
Algorithmic Textiles Design
12
Textile artifacts are -- quite literally -- all around us; from clothing to carpets to car seats. These items are often produced by sophisticated, computer-controlled fabrication machinery. In this course we will discuss everywhere code touches textiles fabrication, including design tools, simulators, and machine control languages. Students will work on a series of multi-week, open-ended projects, where they use code to create patterns for modern sewing/embroidery, weaving, and knitting machines; and then fabricate these patterns in the textiles lab. Students in the 800-level version of the course will be required to create a final project which develops a new algorithm, device, or technique in the realm of textiles fabrication.

Click to read more...

15868
Physics-based Rendering
12
This course is an introduction to physics-based rendering at the advanced undergraduate and introductory graduate level. During the course, we will cover fundamentals of light transport, including topics such as the rendering and radiative transfer equations, light transport operators, path integral formulations, and approximations such as diffusion and single scattering. Additionally, we will discuss state-of-the-art models for illumination, surface and volumetric scattering, and sensors. Finally, we will use these theoretical foundations to develop Monte Carlo algorithms and sampling techniques for efficiently simulating physically-accurate images. Towards the end of the course, we will look at advanced topics such as rendering wave optics, neural rendering, and differentiable rendering. The course has a strong programming component, in the form of assignments through which students will develop their own working implementation of a physics-based renderer, including support for a variety of rendering algorithms, materials, illumination sources, and sensors. The course also emphasizes theoretical aspects of physics-based rendering, through weekly take-home quizzes. Lastly, the course includes a final project, during which students will select and implement some advanced rendering technique, and use their implementation to produce an image that is both technically and artistically compelling. The course will conclude with a rendering competition, where students submit their rendered images to win prizes.

Click to read more...

15893
Special topics: Cryptography meets algorithms
12
In this course, we will cover various advanced topics at the intersection of cryptography and algorithms, especially how algorithmic techniques are used in the construction of modern cryptographic schemes.

Click to read more...

15990
Computer Science Colloquium

Currently, there is no description information available.

15996
DEI Introductory Course for CS Doctoral Students
6
The goal of this course is to prepare PhD students to engage in the CS community, even as our community evolves to put more emphasis on Justice, Equity, Diversity & Inclusion (JEDI). This evolution is reflected in the increasing expectations of students to engage meaningfully with JEDI concepts on department committees, in student groups, and on job applications. https://www.cs.cmu.edu/~15996/

Click to read more...

15997
Graduate Reading and Research
varies
This course number is for registering for reading and research while working on research and your dissertation.

Click to read more...

15998
Practicum in Computer Science
varies
The course number should be used for registering units for internships.

Click to read more...