
Submodular Optimization Under Uncertainty

Roie Levin

CMU-CS-22-140

August 16, 2022

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Anupam Gupta, Chair

R. Ravi
David Woodruff
Chandra Chekuri

Joseph (Seffi) Naor

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2022 Roie Levin

This research was sponsored by the National Science Foundation award under grant numbers CCF-1536002, CCF-
1540541, CCF-1617790, CCF-1907820, CCF1955785, and CCF-2006953, as well as by US-Israel BSF grant 2018352
and by ISF grant 2233/19 (2027511).

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Online Algorithms, Optimization Under Uncertainty, Submodular Optimization,
Approximation Algorithms.

ואיל.! איתי, אבא, לאמא,

iv

Abstract

Submodular functions, which are a natural discrete analog of convex/concave func-
tions, strike a sweet spot between generality and structure: they model an immense
variety of applications in computer science and beyond, but, at the same time, are
sufficiently well behaved that they can be optimized very effectively in theory and in
practice. Optimization tasks involving submodular functions have classically been
studied in settings of complete information, i.e. where the entire input is known
upfront. However, such perfect, full-information access to the input is unrealistic in
many applications, and indeed designing algorithms under uncertainty has become an
important trend in modern computer science.

In this thesis, we study algorithms for submodular optimization in scenarios with
incomplete information. We study three different kinds of uncertain environments:

(a) Online settings where problem constraints are revealed piecemeal and the al-
gorithm must commit to irrevocable decisions as it maintains feasibility. The
challenge is to make decisions that are robust to the final realization of the
problem, even with limited information.

(b) Dynamic settings where constraints can not only be added but also removed
over time. The goal is to design algorithms that maintain feasible, near optimal
solutions at every stage that are stable, in the sense that they change as little as
possible between time steps.

(c) Streaming settings where the input is too large to hold in memory all at once.
The algorithm must adequately solve problems with only limited memory after
one (or few) sequential passes over the data.

Prior to our work, no algorithms were known for several important instances of
submodular optimization in uncertain environments; we improve known algorithms
for others. In a few cases we apply insights from these submodular optimization
algorithms to problems that are not on their surface related to submodularity. We
hope that the techniques we develop find uses elsewhere.

vi

Acknowledgments

The world has been a frightening place of late. I am beyond grateful I had the world
of math to take refuge in, and I am well aware that I would not have been able to do
so without a vast and unwavering support network.

I owe my PhD to the incredible mentorship of my advisor Anupam. Thank you for
taking a chance on me and taking me on as a student when you had no evidence I
could hack it as a researcher. I have grown skeptical of plenty of things in graduate
school but never of your clarity and creativity in research. I feel blessed to have
experienced even a few exhilarating moments of mathematical discovery with you
and hope we can continue collaborating in the future.

Thank you to my other brilliant collaborators: Christian Coester, Parikshit Gopalan,
Greg Kehne, Seffi Naor, Anish Sevekari, Ohad Talmon, David Wajc, Udi Wieder, and
David Woodruff. Special thanks to Parikshit, Udi and Seffi for hosting me during
wonderful summer visits. Thank you to my mentors from my past who helped me on
the road to the PhD: Oren Etzioni, Mark Hopkins, Anna Lysyanskaya, Mr. (Tarly)
Manak. Special thanks to Deb, who is hands down the best administrator in the world
and a nontrivial fraction of the reason CMU is a great institution.

Thank you to all my homies from all the chapters of my life, whom I love so dearly:
Corbin, Lawrence, Veronica, Hannah, Leo, Brandon, Adison, Adam, Sydney, Evan,
Michael, Sonia, Hunter, Ana, Jeff, George, Shashwat, Andrew, Julia, Justin, Alvaro,
Been, Nick, Vidur, Brendan, Jerome, Katy. Thanks to my grad school buddies:
Ainesh, Raj, Pedro, Kevin, Alex, Ellis, Anson, David, Naama, Marina, Angela, Nic,
Fait, Bailey, Colin, Ellen, Kerrek, Nathan, Goran, Laxman, Vijay, Guru, Nika, Sahil.
I owe my mental health in grad school to Ascend Pittsburgh and the local bouldering
community. Extra thanks to my surgeon Dr. Benjamin Ma for fixing my two shoulders
three times. Greg, I would be remiss if I didn’t give you your own sentence, end of
sentence. Aria, I would not have made it through the PhD without you. Finally, Julia
– here’s to the future. When things are good, they will be good.

Thank you to my extended family, especially my savtas and sabas, Lena and Yehuda,
Yehudit and Arie, who held on to life during times darker than any fiction so that
I could experience this world. Finally, Ima, Aba, Itai and Eyal, I cannot think of
anything to write that would do justice to what I owe you, so I will not try.

viii

Contents

1 Introduction 1
1.1 Overview . 3

1.1.1 Online Submodular Cover . 3
1.1.2 Random Order Set Cover . 4
1.1.3 Block-Aware Caching . 5
1.1.4 Fully-Dynamic Submodular Cover . 6
1.1.5 Streaming Submodular Matching . 6

2 Background and Preliminaries 9
2.1 Basic Notation and Facts . 9
2.2 Submodular Set Functions . 10
2.3 Mutual Coverage. 12
2.4 SUBMODULARCOVER . 12
2.5 SETCOVER and ONLINESETCOVER . 13
2.6 Online and Dynamic Models for SUBMODULARCOVER 14

I Online Algorithms 15

3 Online Submodular Cover 17
3.1 Introduction . 17

3.1.1 Results and Techniques . 18
3.1.2 Related Work . 19

3.2 An O (logm log (T · f(N)/fmin)) competitive algorithm 20
3.2.1 An LP for SUBMODULARCOVER . 20
3.2.2 Rounding Fractional Solutions . 21
3.2.3 The Analysis . 22

3.3 An O (logm log (T · fmax/fmin)) competitive algorithm 23
3.3.1 A Stronger Formulation . 23
3.3.2 The Improved Analysis . 25

3.4 Polynomial Runtime . 27
3.4.1 Finding Violated Constraints . 28
3.4.2 Implementing the Algorithm Efficiently 29

3.5 Conclusion . 31
3.6 Deferred Proofs . 31

3.6.1 Necessity of Time-Monotonicity . 31

ix

3.6.2 Mutual Coverage is not Submodular . 31

4 Random Order Set Cover 33
4.1 Introduction . 33

4.1.1 Results . 33
4.1.2 Techniques and Overview . 34
4.1.3 Related Work . 35

4.2 Warmup: An Exponential Time Algorithm for Unit Costs 35
4.3 A Polynomial-Time Algorithm for General Costs 36
4.4 Covering Integer Programs . 41
4.5 Non- Metric Facility Location . 46
4.6 SETCOVER with a Sample . 50
4.7 Lower Bounds . 52

4.7.1 Lower Bounds for ROSETCOVER . 52
4.7.2 Performance of [BN09b] in Random Order 53
4.7.3 Lower Bounds for Extensions . 55

4.8 Conclusion . 57
4.9 Deferred Proofs . 57
4.10 Pseudocode . 61

4.10.1 The Exponential-Time SETCOVER Algorithm 61
4.10.2 The SETCOVER Algorithm for Unit Costs 61

4.11 Discussion of Claim in [GGL+13] . 62
4.12 Connections to Other Algorithms . 62

5 Block-Aware Caching 65
5.1 Introduction . 65

5.1.1 Results and Techniques . 67
5.2 Model and Preliminaries . 69

5.2.1 Problem Definition . 69
5.3 Eviction Cost . 69

5.3.1 SUBMODULARCOVER LP Formulation 69
5.3.2 A k-Competitive Deterministic Online Algorithm 72
5.3.3 An O(log k)-Competitive Monotone-Incremental Algorithm 74
5.3.4 An O(log ∆k)-Competitive Online Randomized Rounding Scheme . . . 76

5.4 Fetching Cost . 78
5.4.1 Bicriteria Online Rounding Algorithm 78
5.4.2 Lower Bounds for Randomized Algorithms 79

5.5 Conclusion . 80
5.6 Deferred Proofs . 80
5.7 The Natural LP has Ω(β) Integrality Gap . 83

II Dynamic Algorithms 85

6 Fully-Dynamic Submodular Cover 87
6.1 Introduction . 87

6.1.1 Our Results . 88

x

6.1.2 Techniques and Overview . 89
6.1.3 Related Work . 90

6.2 Unit Cost SUBMODULARCOVER . 91
6.2.1 The Algorithm . 91
6.2.2 Bounding the Cost . 92
6.2.3 Bounding the Recourse . 93

6.3 General Cost SUBMODULARCOVER . 94
6.3.1 The Algorithm . 94
6.3.2 Bounding the Cost . 95
6.3.3 Bounding the Recourse . 95

6.4 Improved bounds for 3-increasing functions . 98
6.4.1 Higher Order Monotonicity of Boolean Functions 98
6.4.2 The Algorithm . 98
6.4.3 Bounding the Cost . 99
6.4.4 Bounding the Recourse . 102

6.5 Algorithm for r-bounded instances . 106
6.6 Combiner Algorithm . 108
6.7 Further Applications . 109

6.7.1 Online Metric Minimum Spanning Tree 109
6.7.2 Fully-Dynamic Metric Minimum Steiner Tree 110

6.8 Conclusion . 111
6.9 Bounds using the Shannon entropy potential . 112

III Streaming Algorithms 115

7 Streaming Submodular Matching 117
7.1 Introduction . 117

7.1.1 Results . 118
7.1.2 Techniques and Overview . 119

7.2 Preliminaries . 120
7.2.1 The Primal-Dual Method in Our Setting 121
7.2.2 Non-Monotone MSM: the Randomized Primal-Dual Method 122

7.3 Our Basic Algorithm . 122
7.4 Monotone MSbM . 123
7.5 Non-Monotone MSM . 126
7.6 Linear Objectives . 128
7.7 Lower Bound for MSM . 129
7.8 Conclusion . 132
7.9 Explaining Prior Work using LP Duality . 133

7.9.1 The Framework of [CK15], Applied to the Algorithm of [McG05] 133
7.9.2 The Algorithm of [FKK18] . 136

7.10 Tight instance for Algorithm 14 . 137
7.11 Space Bound of Algorithm 14 . 139
7.12 Deferred Proofs of Section 7.7 . 140

xi

8 Conclusion and Open Questions 143

Bibliography 145

xii

Chapter 1

Introduction

Consider the following combinatorial optimization problem. We are given a graph with edge
capacities representing a local area network, along with a set of client vertices each with some
positive flow demand. We wish to purchase the smallest number of servers to place in the network
such that each client can feasibly route its demand to some server, all while respecting the edge
capacities of the graph. What is more, this is not a static scenario. Instead the clients come and go
over time. How should one approach solving such an involved problem?

As a first step, it is helpful to distill the core features of the problem. We have a ground set N of
decisions we can make (here N is the set of candidate server locations), and a notion of coverage
f for every subset of these locations (f(S) is the total client demand that can be feasibly satisfied
when S is chosen as the set of server locations). The goal is to pick a set S minimizing a linear
cost function c such that coverage offered by S is best possible (i.e. all demand is satisfied). Note
that maximum coverage is always achieved when S = N , in other words when a server is opened
at every vertex in the network. Hence our goal is:

min
S⊆N

c(S)

s.t. f(S) = f(N)
.

This abstract min-cost subset-selection problem is intractable in general. Thankfully, in the
case of the server problem, this function f satisfies the additional properties of nonnegativity,
monotonicity and submodularity (proof due to [AGG+09], who refer to this problem as SIMUL-
TANEOUSSOURCELOCATION). We will give a formal definition of submodularity in Chapter 2,
but for now we may think of a function f as submodular if it exhibits decreasing marginal returns
type behavior; in other words, adding an element to a set A gives larger marginal benefit than
adding the same element to a superset of A. It should be intuitive that the function f in question
has such a property, since a server should only become less helpful marginally the more servers
one has already purchased.

With these assumptions, the optimization problem is known as SUBMODULARCOVER, which
itself lies within a larger field of submodular optimization. Conveniently, once we have written
our problem in this form, we can use known algorithms for this general version [Wol82]. As it
turns out, reducing the server problem to SUBMODULARCOVER is the right approach, in the sense
that the approximation guarantees for SUBMODULARCOVER are best possible in polynomial time
unless P = NP, even for this special case [AGG+09].

1

This example highlights the expressive power of submodular functions, and indeed, these are
ubiquitous in computer science and beyond. These functions, which are the natural discrete
analog of convex/concave functions1, strike a sweet spot between structure and generality. They
are sufficiently well behaved that there are good algorithms for optimizing these functions in
many settings. On the other hand, since many natural quantities have decreasing marginal
returns, they still model an immense variety of applications. Beyond the function from the server
example, functions commonly modeled as submodular are human utility functions for discrete
goods in auctions [Von08, LLN06, CCPV11], the coverage of a collection of sensors [WCZW15,
RP15, ZPW+17, MW16] or network devices [AGG+09, LPS13, KN17, LRS18, CWJ18], the
influence of a set of nodes in social networks [GBLV13, LG16, TWPD17, IIOW10], feature
selection/document summarization objectives in machine learning [MKSK13, LB11], diversity
maximization criteria [AGHI09, ADF17], and more. An algorithm for submodular optimization
is automatically an algorithm for any application that can be framed as submodular optimization;
as a result, the field is a plentiful source of high impact algorithmic questions.

Yet this is not the end of our story, since the client set and their demands change with time. One
way to model this is as an online problem where we only learn the full network traffic patterns
gradually. Every time we learn a new client’s demand, we must immediately and irrevocably
decide which server(s) to open to satisfy the demand, and we want to minimize the total amount
spent on servers over time. In the language of SUBMODULARCOVER, suppose the constraint f is
only revealed piecemeal (we detail what we mean by “reveal piecemeal” formally in Chapter 2);
the goal is to maintain feasibility at every step while, even with limited information, still making
decisions that are robust to the final realization of the problem. Here we can study worst-case
scenarios where we imagine an omniscient adversary chooses the request sequence, or we may
make some assumptions about the input sequence. For example, in the stochastic paradigm, one
assumes the problem input is drawn from a known or unknown distribution.

Another modeling option is to frame this as a dynamic problem. Whereas in the online setting
we assume we discover an unknown but fixed constraint f over time, in the dynamic version
we assume f actually changes over time. In the server example this means clients may not only
arrive but also depart. We no longer require that decisions be irrevocable (one can show that no
algorithm can be competitive if this were the case); instead our goal is to maintain a feasible and
near optimal solution for the current function f , while also minimizing the amount by which our
solution changes between steps. Avoiding changing the solution can be a huge boon in practice:
in the server problem for example, setting up and tearing down servers is expensive and labor
intensive in practice [LRS18].

In the big-data regime where the input to the problem is too large to store in memory all at once,
algorithms must deal with another type of uncertainty, namely uncertainty about what is outside
of main memory. Here a natural goal is to design streaming algorithms that can adequately
solve problems with only limited space, after only one sequential pass (or few passes) over the
data. Many submodular optimization problems are natural big-data questions, for example those
inspired by ranking search results tasks.

In this thesis, we study problems relating to these themes and design algorithms for submodular

1The decreasing marginal returns description of submodular functions is most akin to the nonpositive second
derivative characterization of concave functions. However, submodular functions have interesting similarities to both
convex and concave functions. See Section 2.2 for more detail.

2

optimization in scenarios of incomplete information. Algorithms under uncertainty has become
an important trend in modern computer science, since for many applications in practice it is
unrealistic to expect complete and perfect information about the problem at hand. Moreover, since
we give algorithms for general submodular optimization under uncertainty, we automatically port
any downstream application of these submodular optimization tasks to the uncertain settings.

Prior to our work, no algorithms were known for several important instances of submodular
optimization in uncertain environments; we improve known algorithms for others. In some cases
we apply insights from these submodular optimization algorithms to solve problems that are not
on their surface related to submodularity. We develop a variety of techniques along the way, and
we hope these find uses elsewhere.

1.1 Overview

1.1.1 Online Submodular Cover

We begin in Chapter 3 by showing how to solve SUBMODULARCOVER problems, in the setting
where submodular constraints are initially unknown and only revealed online over time. At every
stage the algorithm must add to its solution in order to maintain feasibility; the difficulty arises
because we require that the decisions of the algorithm be irrevocable, even though the algorithm
only has incomplete information about the future.

SUBMODULARCOVER has been used in many applications to resource allocation and place-
ment problems, by showing that the coverage function is monotone and submodular, and
then applying algorithms for SUBMODULARCOVER as a black box. We port these applica-
tions to the online setting where coverage requirements change with time. E.g., in selecting
influential nodes to disseminate information in social networks [GBLV13, LG16, TWPD17,
IIOW10], exploration for robotics planning problems [KMGG07, JCMP17, BMKB13], placing
sensors [WCZW15, RP15, ZPW+17, MW16], and other physical resource allocation objectives
[YCDW15, LCL+16, TRPJ16]. There has been much recent interest in SUBMODULARCOVER

from the networking community, as SUBMODULARCOVER models network function placement
tasks [AGG+09, LPS13, KN17, LRS18, CWJ18]. E.g., [LRS18] want to place middleboxes in a
network incrementally, and point out that avoiding closing extant boxes is a huge boon in practice.
We extend this application to the case where the coverage function f changes.

We follow the natural strategy of maintaining a solution to a linear programming (LP) relaxation
of the problem, and then performing randomized rounding online. Unfortunately, the only known
LP relaxation of SUBMODULARCOVER is exponential-sized and it is not known how to solve it
efficiently, nor how to analyze randomized rounding given a fractional solution. We show that we
can overcome these concerns and make the technique work.

The rounding is the natural one, where we sample from the fractional solution multiple times
(in an online fashion); in contrast to the SETCOVER-style analysis which argues item-by-item,
here we have to argue about the coverage as a whole. In particular, we exploit the relationship
between the multilinear extension and the linearizations of submodular functions to reinterpret
the constraints in the LP as statements about expected coverage under randomized rounding. We
will demonstrate the power of this rounding analysis by reusing it in the context of a seemingly

3

different problem in Chapter 5.

To make the above algorithms run in polynomial time, we must overcome the annoying fact
that even even the separation problem for the known SUBMODULARCOVER LP is APX-hard;
hence, it is not known how to solve the LP even in the offline setting. To remedy this, we use a
“round-or-separate” approach: we use the rounding algorithm itself as an approximate separation
oracle. Indeed, we give an approximate separation oracle that given an arbitrary solution promises
to either round it to a feasible integer solution with a similar objective value, or else to output a
constraint violated by the solution. This approach to blur the line between rounding and separation
may prove useful for other problems in online algorithms, where we are faced with an exponential
number of new constraints at each step. Furthermore, we give a new exponential-clock based
sampling procedure that finds constraints violated by a large margin with high probability. We use
a potential function argument to conclude that we only need a polynomial number of calls to the
separation oracle in the worst case.

We end this chapter with an algorithm that performs better for the case where the submodular
functions input to the algorithm are “smooth” in the sense that elements of the ground set have
bounded marginal values. The intuition behind this refined analysis is that we charge each element
selected by the algorithm to the elements of the optimal solution that “cover the same part of the
space”. To capture the overlap between two elements, we study the Mutual Coverage, which is
a natural generalization of mutual information from information theory, and inherits properties
from that literature, such as the chain-rule. It turns out that mutual coverage is the right abstract
quantity to focus on for our analyses. We also have to strengthen the SUBMODULARCOVER LP
slightly, and use a modified rounding-with-alterations scheme to get the tighter result.

This chapter is based on the paper [GL20b] with Anupam Gupta.

1.1.2 Random Order Set Cover

In Chapter 4, we study an important special case of ONLINESUBMODULARCOVER in more
depth: the ONLINESETCOVER problem. We ask the question: can one circumvent lower bounds
known for this problem when one assumes that constraints arrive in random order? This question
fits into the active current of modern algorithms research known as beyond worst-case analysis.
Traditionally, the study of algorithms has focused on fully adversarial models in which we assume
as little as possible about the input. These often fail to capture useful structure about instances
seen in practice, and thus often give overly pessimistic bounds. Beyond worst-case analysis asks
what reasonable assumptions one needs to make about the input in order to improve upon the
worst case bounds.

We show that the answer to the question above is yes: we give a polynomial time algorithm
for ONLINESETCOVER when constraints are revealed in random order that matches the best
possible approximation bound achievable offline in polynomial time (unless P = NP). We then
show extensions to pure covering IPs, to NONMETRICFACILITYLOCATION, and to a variant of
ONLINESETCOVER where the algorithm is given advance access to samples from the input. We
also give lower bounds for related problems, including ONLINESUBMODULARCOVER.

The core contribution of this chapter is demonstrating that one can exploit randomness in the
arrival order to learn about the underlying set system. What is more, this learning can be done fast
enough (in terms of both sample and computational complexity) to build a competitive solution,

4

even while committing to covering incoming elements immediately upon arrival. This seems like
an idea with applications to other sequential decision-making problems, particularly in the RO
setting.

Our algorithm is a new multiplicative-weights-based round-and-solve approach we call LearnOr-
Cover. We maintain a coarse fractional solution that is neither feasible nor monotone increasing,
but can nevertheless be rounded online to achieve the claimed guarantee. For each arriving
uncovered element, we first sample from this coarse solution, then update it via a multiplicative
weights rule. For the analysis, we introduce a potential function which simultaneously measures
the convergence of this distribution to the optimal fractional solution, and progress towards
covering the universe. Crucially, this progress is measured in expectation over the random order,
thereby circumventing lower bounds for the adversarial-order setting. This gives a new offline
algorithm for SETCOVER that performs a single pass through the elements. The algorithm has
interesting connections to other methods in online algorithms, namely projection based algorithms
and stochastic gradient descent.

This chapter is based on the paper [GKL21] with Anupam Gupta and Gregory Kehne. Sections 4.5
and 4.6 are new in this thesis.

1.1.3 Block-Aware Caching

In Chapter 5 we give an application of ONLINESUBMODULARCOVER to a variant of CACHING,
which is one of the quintessential problems in online algorithms. Motivated by the design of
real system storage hierarchies, we study the BLOCKAWARECACHING problem, a generalization
of classic CACHING in which pages are partitioned into blocks of a fixed size, and fetching (or
evicting) pages from the same block incurs the same cost as fetching (or evicting) just one page
from the block. The goal is to serve a sequence of requests to pages while minimizing the total
cost of fetching to (or evicting from) cache. This problem is already NP-hard offline.

We show a suite of results. For the cost model in which the cost of evictions dominates the cost
of fetches, we give non-trivial algorithms, including a polylogarithmic competitive randomized
algorithm which nearly matches the known lower bound from standard CACHING. We also show
strong lower bounds in the reverse cost model in which the fetch cost dominates the write cost.
Hence our results establish a strong separation between the tractability of the fetching and eviction
cost models, which is interesting since fetching/evictions costs are the same up to an additive term
for the classic caching problem.

Though this problem seems to have little to do with submodularity on the surface, our insight is to
relax the block-aware caching problem to a SUBMODULARCOVER linear program: we express
feasibility as the constraint that a particular sequence of monotone, submodular functions is
maximized. Our formulation may be viewed as a generalization of the strengthened LP relaxation
due to [BBN12b] for GENERALIZEDCACHING (a special case of BLOCKAWARECACHING),
which used the so-called knapsack cover inequalities.

This establishes that BLOCKAWARECACHING is an instance of ONLINESUBMODULARCOVER.
However, we require additional analysis on top of the one in Chapter 3 to get finer competitiveness
bounds for this special case. Whereas in Chapter 3 we could make do with a off-the-shelf use of
online covering LP solvers, here we need to open the black box. We adapt the continuous online
primal-dual framework, i.e. we simultaneously maintain a feasible primal and dual solution that

5

we carefully evolve according to continuous dynamics, and we show that the costs of the these are
related.

This chapter is based on the paper [CLNT22] with Christian Coester, Seffi Naor and Ohad Talmon.

1.1.4 Fully-Dynamic Submodular Cover

In Chapter 6, we show how to solve the same class of SUBMODULARCOVER problems in a more
general online setting than in Chapter 3 where constraints are not only added over time, but they
can also be removed. Here we relax the restriction that decisions be completely irrevocable (one
can show that no competitive algorithm can exist without this relaxation), but instead require that
the solution change as little as possible between time steps. We show that only this small relaxation
suffices to solve this harder problem, and furthermore to match the best possible offline bounds
for SUBMODULARCOVER. It can be shown that it is not possible to match the offline bounds
in polynomial time if no recourse is allowed [Kor04]. Our work simultaneously simplifies and
unifies previous results for the special case of SETCOVER, as well as generalizes to a significantly
larger class of covering problems. As before, it ports any of the many problems which can be
framed as SUBMODULARCOVER to the fully-dynamic setting.

Our algorithm is local search. We maintain a candidate solution which is subset of the ground
set, and update this solution dynamically via local operations. To bound the competitive ratio,
we show that upon termination of the local search, this solution is identical to the output of an
approximate greedy algorithm that is known to produce good solutions when run offline. To
bound the number of updates to the solution, we use a potential function inspired by a generalized
family of entropy functions known as Tsallis Entropy. We show that with every local search
update we perform, this entropy must decrease by at least a minimum amount, and since the
entropy is bounded above and below, this process must terminate in a predictable amount of time.
To get finer results for special cases, we also extensively reuse the idea of Mutual Coverage from
Chapter 3.

Our algorithm can be thought of as a general template for adapting greedy-like offline algorithms
to the dynamic setting. To demonstrate its further potential for applications, we use it to derive
dynamic algorithms for the metric MINIMUMSTEINERTREE problem.

This chapter is based on the paper [GL20a] with Anupam Gupta.

1.1.5 Streaming Submodular Matching

Finally, in Chapter 7 we change gears slightly from submodular covering, and instead turn to
the related task of submodular maximization subject to combinatorial constraints. In particular,
we study maximum submodular matching/b-matching (MSM): we imagine the the ground set
elements are the edges of a graph, and a solution is feasible if and only if it is a legal matching/b-
matching. We wish to find the feasible solution maximizing a given submodular function, and we
consider the big-data regime where the input to the problem is too large to store in main memory.
Instead, the edges of the input graph are revealed in a stream, and the algorithm must output a
near optimal solution while only using a limited amount of space. We present improved upper
and lower bounds for this problem.

6

Our algorithm uses the (randomized) primal-dual method, which originated in the study of
maximum weight matching. We maintain a feasible dual solution over the course of the stream,
which we used to remember a small subset of the total edge set. At the end of the stream, we
further refine this set of edges to obtain a true legal matching. We argue that the quality of the
optimal solution is approximately preserved, even during this aggressive two-stage pruning.

Intuitively, we may think of our dual solution as a set of vertex potentials which are a coarse proxy
for the quality of the best edge incident to every vertex. These in turn govern whether or not we
should remember future incoming edges (since we need not remember edges of worse quality).
Crucially, this set of vertex potentials is small enough to be maintained in a stream with low space.
Our LP relaxation is guided by the theory of continuous extensions of submodular functions
which we will introduce shortly in Chapter 2. To our knowledge, this is the first use of primal-dual
based analysis for streaming submodular optimization. We also show how to reinterpret previous
algorithms for MSM in our framework.

This chapter is based on the paper [LW21] with David Wajc.

7

8

Chapter 2

Background and Preliminaries

2.1 Basic Notation and Facts

In this thesis, we deal with NP-hard optimization problems, that is optimization problems whose
optimum solution cannot be computed in time that is polynomial in the input length, unless
the famous P 6= NP conjecture is false. To cope with intractability, we study polynomial time
approximation algorithms, that is algorithms guaranteed to output a solution whose cost is within
a bounded multiplicative factor of the optimum solution’s cost. Formally, an algorithm A for a
minimization problem Π is an α-asymptotic approximation algorithm if there is a constant C such
that for any instance I ∈ Π, the inequality

A(I) ≤ α · OPT(I) + C (2.1.1)

holds, where A(I) is the cost of the solution algorithm A produces with input I, and OPT(I)
is the cost of the optimal solution to I. If (2.1.1) holds with C = 0, we say that A is an
α-approximation algorithm for Π. Similarly, for maximization problems, we say that A is an
α-asymptotic approximation algorithm if

A(I) ≥ 1

α
· OPT(I)− C, (2.1.2)

and an α-approximation algorithm if C = 0.

In the context of online algorithms, we say that an algorithm A for a minimization problem is
α-competitive if it respects inequality (2.1.1) (or (2.1.2) for maximization problems). We say
an α-competitive online algorithm with C = 0 is α-strictly competitive. We sometimes say an
α-competitive (or strictly competitive) algorithm A attains the competitive ratio α. In contrast
to approximation algorithms which are usually required to run in polynomial time, we make
no requirements about the computational efficiency of competitive online algorithms, since it
is often interesting to design such algorithms even if exponential computation time is allowed.
Nevertheless, all online algorithms in this thesis can me implemented in polynomial time.

For problems with arbitrarily long input sequences and unbounded costs such as CACHING

(Chapter 5), we will study asymptotic approximation algorithms or non-strictly competitive online
algorithms; this makes sense since the constant C becomes insignificant in the limit. However,
for problems with bounded costs such as SETCOVER or SUBMODULARCOVER (Chapters 3,

9

4, 6 and 7), we restrict our attention to true approximation algorithms and strictly competitive
algorithms. For convenience, we will henceforth abuse notation slightly and stop explicitly
distinguishing between asymptotic/non-asymptotic and strict/non-strict competitive algorithms.

All logarithms in this thesis are taken to be base e. In the following definitions, let x, y ∈ Rn+
be vectors. The standard dot product between x and y is denoted 〈x, y〉 =

∑n
i=1 xiyi. We use a

weighted generalization of KL divergence. Given a weight function c, define

KLc (x || y) :=
n∑
i=1

ci

[
xi log

(
xi
yi

)
− xi + yi

]
. (2.1.3)

We will sometimes use the convention that 1 : k denotes that range of indices from 1 to k. We
will require the simple and well known inequalities:

Fact 2.1.1. Given positive numbers a1, . . . , ak and b1, . . . , bk:

min
i

ai
bi
≤
∑

i ai∑
i bi
≤ max

i

ai
bi
. (2.1.4)

2.2 Submodular Set Functions

A set function f : 2N → R+ is submodular if for every A ⊆ B ⊆ N and x ∈ N\B it respects
the inequality

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

It is monotone if f(A) ≤ f(B) for all A ⊆ B ⊆ N .

In this thesis, we assume access to a value oracle for f that computes f(T) given T ⊆ N . The
contraction of f : 2N → R+ onto N \ T is defined as

fT (S) = f(S | T) := f(S ∪ T)− f(T).

If f is submodular then fT is also submodular for any T ⊆ N .

Example 2.2.1. Let N be a set of random variables, and let H : 2N → R+ be the joint entropy
function. Then H is nonnegative, monotone and submodular.

Example 2.2.2. Let G = (V,E) be a graph, and let CG : 2V → R+ be the cut function of G, i.e.
for any U ⊆ V , define CG(U) to be the number of edges in E with exactly one endpoint in U .
Then CG is nonnegative and submodular, but not monotone.

We now make explicit one connection between submodular functions and concavity. Following
the notation of [FH05], we define the derivative of a set function f as:

df

dx
(S) = f(S ∪ {x})− f(S\{x}).

We notate the m-th order derivative of f with respect to the subset A = {i1, . . . im} as df/dA,
and this quantity has the following concise expression:

df

dA
(S) =

∑
B⊆A

(−1)|B|f((S ∪ A)\B).

10

Definition 2.2.3 (m-increasing [FH05]). We say that a set function is m-increasing if all its m-th
order derivatives are nonnegative, and m-decreasing if they are nonpositive. We denote by D+

m

and D−m the classes of m-increasing and m-decreasing functions respectively.

Note that D+
1 is the class of monotone set functions, and D−2 is the class of submodular set

functions. When f is the joint entropy set function, the m-th derivative above is also known as the
interaction information, which generalizes the usual mutual information for two sets of variables,
to m sets of variables.

We use the following notation for the maximum and minimum marginals of f , which are commonly
used parameters quantifying the “smoothness” of the submodular function:

fmax := max {f(j | S) | j ∈ N , S ⊆ N} , (2.2.1)
fmin := min {f(j | S) | j ∈ N , S ⊆ N , f(j | S) 6= 0} . (2.2.2)

Submodular functions are only defined over vertices of the hypercube, ~x ∈ {0, 1}N . For many
applications it is often convenient to extend these to all fractional vectors ~x ∈ [0, 1]N . Formally,
a continuous extension of a submodular function f is any function f̂ : [0, 1]N → R+ such
that f̂(x) = f(x) for any x ∈ {0, 1}N . There are several canonical continuous extensions of
submodular functions which we make use of in this thesis. See e.g. Section 3.5 of [Von07] for a
comprehensive survey and history of such extensions.

The multilinear extension of f is defined as:

F (x) := E
S∼x

[f(S)] =
∑
S⊆N

∏
i∈S

xi
∏
j 6∈S

(1− xj)f(S) (2.2.3)

where S ∼ x means we add each element j ∈ N independently to S with probability xj .

The concave closure extension of f is:

f+(~x) := max

{∑
T⊆E

αT · f(T)

∣∣∣∣∣ ∑
T⊆E

αT = 1, αT ≥ 0 ∀T ⊆ E,
∑
T3e

αT = xe ∀e ∈ E

}
.

In words, the concave closure is the maximum expected f -value of a random subset T ⊆ N ,
where the maximum is taken over all distributions matching the marginal probabilities given by ~x.

Next, for S ⊆ N , define f#S : [0, 1]|N | → R+ as:

f#S(x) := f(S) +
∑

j∈N fS(j)xj. (2.2.4)

The covering extension (or the Wolsey extension) of f (defined but not named in [Von07]) is:

f ∗(x) := min
S⊆N

f#S(x). (2.2.5)

We will give more intuition for the covering extension in Chapter 3.

We mention one final continuous extension for completeness, although it does not make an
appearance in this thesis. The Lovász extension is:

fL(~x) := E
λ∼U [0,1]

[f({i : xi ≥ λ})].

11

The Lovász extension can be shown to be equivalent to the so-called convex closure extension
(note that this equivalence does not hold if f is not submodular):

f−(~x) := min

{∑
T⊆E

αT · f(T)

∣∣∣∣∣ ∑
T⊆E

αT = 1, αT ≥ 0 ∀T ⊆ E,
∑
T3e

αT = xe ∀e ∈ E

}
.

The function fL is convex if and only if f is submodular. A seminal result of Grötchel, Lovász
and Schrijver [GLS88] is that the unconstrained submodular minimization problem minS⊆N f(S)
can be solved in polynomial time given value oracle access to f ; this algorithm is based on the
ellipsoid method applied to the Lovász extension of f . On the other hand, by Example 2.2.2
maximizing a submodular function generalizes the APX-hard MAXCUT problem. In this sense,
submodular functions are more akin to convex functions than concave functions.

We can naturally extend the definition of any of these extensions to contractions of functions.

2.3 Mutual Coverage.

For some of our results, we define the notion of mutual coverage. Independently, [IKBA21]
defined and studied the same quantity under the slightly different name submodular mutual
information.

Definition 2.3.1 (Mutual Coverage). The mutual coverage between two subsets A,B ⊆ N
(and their conditional mutual coverage conditioned on C ⊆ N) with respect to a set function
f : 2N → R+ are defined as:

I(A;B) := f(A) + f(B)− f(A ∪B) (2.3.1)
I(A;B | C) := fC(A) + fC(B)− fC(A ∪B) (2.3.2)

This generalizes mutual information from information theory: if N is a set of random variables,
and for S ⊆ N , the quantity f(S) is the joint entropy of the random variables in the set S, then I
is the mutual information.

We sometimes write I(A)(B) := I(A;B) and I(A|C)(B) := I(A;B | C) if we want to view
mutual coverage as a function of B for fixed A and C. We may think of I(A|C)(B) intuitively as
the amount of coverage B takes away from the coverage of A given that C was already chosen (or
vice-versa, since the definition is symmetric in A and B). The following identity is easy to check:

Fact 2.3.2 (Chain Rule). Mutual coverage respects the identity:

I(A;B1 ∪B2 | C) = I(A;B1 | C) + I(A;B2 | C ∪B1).

This neatly generalizes the chain rule for mutual information. The expression I(A|C)(B) is
monotone in B by the submodularity of f , but not submodular in general (see Section 3.6.2).

2.4 SUBMODULARCOVER

A major focus of our work is the SUBMODULARCOVER problem described intuitively in the
introduction (Chapter 1). Formally, given a monotone, submodular function f over ground set N ,

12

and a linear cost function c : N → R
+ on the ground set, the goal is to output a minimum cost

subset S ⊆ N such that f(S) ≥ f(N). We let m = |N | denote the size of the ground set, and
cmax and cmin denote the largest and smallest costs of elements respectively.

Wolsey [Wol82] (see also [NWF78, FNW78]) gave the following LP relaxation for SUBMODU-
LARCOVER:

min
∑
v∈N

c(v) · xv

subject to

∀S ⊆ N :
∑
v 6∈S

f(v | S) · xv ≥ f(N)− f(S)

∀v ∈ N : xv ≥ 0

(2.4.1)

The constraints of this LP may be viewed as knapsack cover inequalities for a linearized version
of the function f . Wolsey proved that the integer solutions of this LP are precisely the solutions to
SUBMODULARCOVER:

Claim 2.4.1 (Proposition 2 of [Wol82]). A set S has f(S) = f(N) if and only if χS , the
characteristic vector of S, is a feasible integer solution to (2.4.1).

Furthermore, Wolsey [Wol82] showed that the natural greedy algorithm gives a 1 + ln(fmax/fmin)
approximation for SUBMODULARCOVER; this guarantee is tight unless P = NP even for the
special case of SETCOVER [DS14] (see Section 2.5 below). One can also solve SUBMODULAR-
COVER via repeated sequential use of submodular maximization subject to a cardinality/knapsack
constraint (e.g. [Svi04] or the survey [BF18]). Fujito [Fuj99] gave a dual greedy algorithm that
generalizes the F−approximation for SETCOVER [Hoc82] (the parameter F is known as the
frequency, or the maximum number of sets any one element appears in).

2.5 SETCOVER and ONLINESETCOVER

An important special case of SUBMODULARCOVER that study in depth in this work is the famous
SETCOVER problem. In SETCOVER, we are given a set system (U,S) (where U is a ground set
of size n and S is a collection of subsets with |S| = m), along with a cost function c : S → R+.
The goal is to select a minimum cost subcollection S ′ ⊆ S such that the union of the sets in S ′
is U . Many algorithms have been discovered for this problem that achieve an approximation
ratio of lnn (see e.g. [Chv79, Joh74, Lov75, WS11]), and this is best possible unless P = NP
[Fei98, DS14].

In the ONLINESETCOVER variant, we impose the additional restriction that the algorithm does
not know U initially, nor the contents of each S ∈ S (at the outset, the algorithm only sees m
empty sets). Instead, an adversary reveals the elements of U one-by-one in an arbitrary order.
On the arrival of every element, it is revealed which sets of S ∈ S contain the element, and the
algorithm must immediately pick one such set S ∈ S to cover it. The goal is to minimize the total
cost of the sets chosen by the algorithm. In their seminal work, [AAA+09] show that despite the

13

lack of foresight, it is possible to achieve a competitive ratio of O(logm log n) for this version1.
The result is based on solving the LP relaxation via the online primal-dual framework, followed
by randomized rounding. This bound has since been shown to be tight unless NP ⊆ BPP [Kor04],
and has also been generalized significantly (e.g. [AAA+06, BN09b, GN14]).

2.6 Online and Dynamic Models for SUBMODULARCOVER

In several chapters we study online and dynamic variants of SUBMODULARCOVER. In these
problems, at every point in time t, the algorithm is given a different nonnegative, monotone,
submodular function f (t), and must maintain a feasible and near-minimum cost solution to
SUBMODULARCOVER for the current function f (t).

We introduce the bag-of-functions model for this setting. Here, we assume that the function f (t)

takes the form
f (t)(S) =

∑
g∈G(t)

g(S)

for some set G(t) of nonnegative, monotone, submodular functions. We refer to G(t) as the active
set functions at time t. For ease of notation we assume that for all g ∈

⋃
tG

(t), the parameter
g(N) is the same.

1Throughout this thesis, we consider the unknown-instance model for ONLINESETCOVER (see Chapter 1 of
[Kor04]). The result of [AAA+09] was presented for the known-instance model, but extends to the unknown setting
as well. This was made explicit in subsequent work [BN09b].

14

Part I

Online Algorithms

15

Chapter 3

Online Submodular Cover

3.1 Introduction

We consider the problem of maintaining a minimum cost submodular cover online. As detailed in
Chapter 1, for many applications it does not suffice to solve a single static instance of SUBMODU-
LARCOVER. Instead, the function f—the notion of coverage—changes over time, so we need
to update our cover S. Recall our running example of the SIMULTANEOUSSOURCELOCATION

problem [AGG+09]. Given a network equipped with flow demand at every vertex, we want to
designate the minimum number of vertices as servers, such that every vertex can simultaneously
route its demand from some server without violating edge capacities. [AGG+09] show that if f(S)
is the maximum demand satisfied by selecting S as the set of servers, then f is submodular and the
problem can cleanly be solved using the SUBMODULARCOVER framework. In the likely scenario
that communication demand evolves over time, revoking prior decisions may be expensive or
prohibitive, hence we want that our solution be monotone—i.e., we only add servers to S and not
remove any.

We ask the natural question: is it possible to maintain a competitive solution to an online SUB-
MODULARCOVER instance as f changes over time? We show that under minimal monotonicity
assumptions on the changes in f , the answer is yes. Formally, the ONLINESUBMODULARCOVER

problem is the following:

We are given a “time-monotone”1 sequence of monotone submodular functions
f (1), f (2), · · · , over a common universe N that arrive online, as well as a fixed cost
function c. Upon seeing f (t) at time t, our algorithm must output a set St such that
f (t)(St) = f (t)(N). Moreover, past decisions cannot be revoked, so we require
St−1 ⊆ St.

One example of this time-monotone setting is the bag-of-functions model (recall the definition
of this model in Section 2.6), with the restriction that at every time t, a single function g(t) is
inserted into the active set. It may be convenient for the reader to keep this example in mind since
it captures most features of the general problem. In particular, ONLINESUBMODULARCOVER in

1This “time-monotonicity” means that any submodular cover for f (t) is also a cover for f (t−1); formally, for
all t and S, we have f (t)(S) = f (t)(N) =⇒ f (t−1)(S) = f (t−1)(N). In other words, the functions cannot be
completely unrelated to each other. This is a minimal requirement; we show in Section 3.6.1 that dropping it makes
the problem intractable. On the other hand, we do not explicitly require that f (t)(S) ≥ f (t−1)(S).

17

the bag-of-functions model generalizes ONLINESETCOVER; if we identify N = S with the sets
in the set system, then g(t) is the indicator of whether the tth item has been covered by the chosen
sets, and and f (t) is the coverage function induced by the set system restricted to the first t items.

Our main theorem is:

Theorem 3.1.1. There exists an efficient randomized algorithm for the ONLINESUBMODULAR-
COVER problem which guarantees that for each T , the expected cost of solution ST is within
O(logm · log(T · fmax/fmin)) of the optimal SUBMODULARCOVER solution for f (T).

Here we use the notation fmax := maxt f
(t)
max and fmin := mint f

(t)
min (recall that f (t)

max and f (t)
min from

Section 2.2 are smoothness parameters of the function sequence f (1), f (2), . . .). When restricting
to the case of ONLINESETCOVER, fmax ≤ n and fmin = 1 and hence this competitiveness
guarantee recovers the O(logm log n) of [AAA+09] (see Section 2.5). As a consequence, if we
restrict ourselves to efficient algorithms, our result is the best possible up to constant factors unless
NP ⊆ BPP.

Our algorithm also is interesting in the offline setting: indeed, if we are given a single submodular
function f (i.e., T = 1), we can avoid the O(logm) loss that comes from solving an LP relax-
ation online. So we get an O(log(fmax/fmin))-approximate solution via randomized rounding a
fractional LP solution. This is the first LP-rounding algorithm known for SUBMODULARCOVER,
and it matches the (optimal) performance of the greedy algorithm (analyzed by dual-fitting). LP
rounding approaches are powerful and versatile, since we can add side constraints to the LP
and maintain them (approximately) during rounding, so we hope that our techniques will find
applications even in the offline setting.

3.1.1 Results and Techniques

There are a few challenges to proving Theorem 1.1. A natural approach is to mimic the strategy
of [AAA+09] for the ONLINESETCOVER problem. I.e., we can try to maintain a solution to an
LP relaxation of the problem, and then perform randomized rounding online. Unfortunately, the
only known LP relaxation of SUBMODULARCOVER from [Wol82] is exponential-sized and it is
not known how to solve it efficiently, nor how to analyze randomized rounding given a fractional
solution. We show that we can overcome these concerns and make the technique work.

We start in Section 3.2 with an O(logm log(T · f(N)/fmin)) competitive ratio algorithm for
online SUBMODULARCOVER with no efficient runtime guarantees. Here we use the notation
f(N) := maxt f

(t)(N). This allows us to illustrate the overall approach of solving the SUB-
MODULARCOVER covering linear program online, in conjunction with a randomized-rounding
algorithm for it. The rounding is the natural one, where we sample from the fractional solution
multiple times (in an online fashion); as opposed to the SETCOVER-style analysis which argues
item-by-item, here we have to argue about the coverage as a whole. In particular, we exploit the
relationship between the multilinear extension and the linearizations of submodular functions
(Lemma 3.2.3) to reinterpret the constraints in the LP as statements about expected coverage
under randomized rounding.

In Section 3.3, we improve the O(logm log(T · f(N)/fmin))-competitiveness to a finer compet-
itiveness bound of O(logm log(T · fmax/fmin)), which is much tighter for the case where the
functions f are “smoother” and each element has smaller marginal value compared to f(N). The

18

intuition behind this refined analysis is that we charge each element selected by the algorithm to
the elements of OPT that “cover the same part of the space”.2 To capture the overlap between two
elements, we study the mutual coverage If (A;B) := f(A) + f(B)− f(A∪B), which is natural
generalization of mutual information from information theory, and inherits properties from that
literature, such as the chain-rule. It turns out that mutual coverage is the right abstract quantity to
focus on for our analyses. We also have to strengthen the SUBMODULARCOVER LP slightly, and
use a modified rounding-with-alterations scheme to get the tighter result. When run offline, our
rounding algorithm recovers the O(log fmax/fmin) approximation ratio of Wolsey’s algorithm.

In Section 3.4, we make the above algorithms run in polynomial time. The difficulty is two-fold:
firstly, we do not know how to solve the SUBMODULARCOVER LP even in the offline setting,
since the separation problem itself is APX-hard. Secondly, even if we could separate in the offline
setting, naı̈vely solving the exponential-sized LP online requires us to give exponentially-many
constraints one at a time to the online primal-dual LP-solving framework. To remedy this, we use
a “round-or-separate” approach: we use the rounding algorithm itself as an approximate separation
oracle. Indeed, we give an approximate separation oracle that given an arbitrary solution promises
to either round it to a feasible integer solution with a similar objective value, or else to output a
constraint violated by the solution. This approach to blur the line between rounding and separation
may prove useful for other problems in online algorithms, where we are faced with an exponential
number of new constraints at each step. Furthermore, we give a new exponential-clock based
sampling procedure that finds constraints violated by a large margin with high probability. Our
analysis extends a technique of [Von07] that approximates independent random sampling by
a continuous process. We use a potential function argument to conclude that we only need a
polynomial number of calls to the separation oracle in the worst case.

3.1.2 Related Work

There are previous definitions of online submodular cover, but similarity to our work is mainly
in the name. In one variant inspired by regret-minimization in online learning [SG08, GB11], a
submodular function f (t) arrives at each time step t, and we must output a permutation of the
universe elements that minimizes the (average or maximum) cover time. The approach compares
the algorithm’s objective value to the single best fixed cover in hindsight. Hence, there is no notion
of time-monotonicity, and of element selection being irrevocable. Another distantly related line
of work ([GK11, DHK16, HK18, GHKL16, AAK19, EKM21, GGN21]) explores a stochastic
variant of SUBMODULARCOVER, where there is a fixed submodular function f , but each element
of the universe is active only with a certain probability. The goal is to output an ordering of the
elements minimizing the expected cover time.

[GTW14] maintain a matroid base (or spanning set) under changing costs. Given a fixed matroid
M, each matroid element is given holding and and acquisition costs at each time t, after which
we must output a matroid base (spanning set). We want to minimize the sum of acquisition
plus holding costs over time. In the spanning set case, when holding costs are zero, acquisition
costs are fixed and the matroid is additionally changing over time, this is the very special case of

2The analogue in the case of SETCOVER is an improvement from O(log universe-size) to O(log max-set-size).
However, there is a clear notion in SETCOVER of items that are covered by the same two sets (and the analysis
proceeds item-by-item), whereas in SUBMODULARCOVER it is not at all obvious what it means for the coverage of
two elements to overlap.

19

our ONLINESUBMODULARCOVER problem where the submodular functions are matroid rank
functions. Recall that matroid rank functions are a very restricted class of submodular functions:
for instance, we can efficiently find a min-weight matroid base, while no efficient algorithms exist
for finding a minimum weight submodular cover unless P = NP. [BCN14a] study the online
matroid caching problem, where one must maintain an independent set in a matroid subject to the
constraints that the set must contain certain elements at specified points in time.

3.2 An O (logm log (T · f (N)/fmin)) competitive algorithm

In this section, we show how to get our algorithm for ONLINESUBMODULARCOVER: we use the
approach of solving covering LPs online to maintain a competitive fractional solution xt at every
time t, with the special property that x1, x2, . . . , xT are monotonically increasing, i.e., xt ≥ xt−1.
To get an integer solution online, we use randomized rounding with the method of alterations:
we round the increments in variables at each step, and make corrections in the case of failures
by greedily selecting elements until our solution is feasible. Our algorithm always outputs a
feasible solution; the challenge is to bound its expected cost: the crucial technical component is a
relationship between the SUBMODULARCOVER LP and the multilinear relaxation, which allows
us to show that a logarithmic number of rounds suffice.

3.2.1 An LP for SUBMODULARCOVER

We use Wolsey’s LP formulation (2.4.1), but first we rewrite it using our continuous extension
notation as:

min
∑
j

c(j)xj

subject to

f ∗(x) ≥ f(N)

∀j ∈ N : xj ≥ 0

(P)

Recall that f ∗ is the covering extension of f defined in Section 2.2.

Let (P (t)) refer to the program (P) for f (t). We would like to argue that we can maintain one large
LP for ONLINESUBMODULARCOVER. At time t, we feed in the constraints of (P (t)), and update
the solution accordingly. We use the following online LP solver from [BN09b, Theorem 4.2]:

Theorem 3.2.1. For the setting where the rows of a covering LP min{cᵀx | Ax ≥ b} with
A ∈ Rm×n+ , b ∈ Rm+ , c ∈ Rn+ arrive online, there is an algorithm that achieves a competitive
ratio of O(logm). Furthermore, the sequence of solutions produced x1, . . . , xT is monotonically
increasing.

Each of the linear programs (P (t)) is indeed a covering LP with box constraints that is a feasible
relaxation for the function f (t). However it is not a priori clear that the constraints for the linear
program (P (t′)) for some t′ < t are also valid for the linear program (P (t)). We prove a lemma

20

which circumvents this issue. While we do not guarantee that for all t′ < t the constraints of
(P (t′)) will be valid for the LP (P (t)) itself, we show that they are valid for the integer solutions
of (P (t)). This suffices to ensure that the union of all constraints seen so far is a relaxation for
ONLINESUBMODULARCOVER.

Lemma 3.2.2. Any feasible integer solution to (P (t+1)) is a feasible integer solution to (P (t)).

Proof. Suppose x is a feasible integer solution to (P (t+1)). Then by Claim 5.3.2, x is the
characteristic vector of a set S such that f (t+1)(S) = f (t+1)(N). By the time-monotonicity
of the sequence f (0), f (1), . . . , f (T), it holds that f (t)(S) = f (t)(N) as well. Now again using
Claim 5.3.2, x is feasible to (P (t)).

3.2.2 Rounding Fractional Solutions

The last remaining step in our plan is to understand the behavior of randomized rounding for (P).
Since the multilinear extension G is defined as the value of g on a set obtained by randomized
rounding, we can use the following relationship between G and g∗ [Von07, Lemma 3.8]:

Lemma 3.2.3. For any monotone, nonnegative set function g, it holds thatG(x) ≥ (1−e−1)g∗(x).

Observe that Lemma 3.2.3 does not require that g be submodular, only that it be monotone and
nonnegative. (There exist functions for which the bound is tight. If g is also submodular, we also
get the bound G(x) ≤ g∗(x) [Von07, Lemma 3.7].) The next lemma helps us analyze random
rounding:

Lemma 3.2.4 (Rounding Lemma). Let g be a monotone, nonnegative set function such that
g(∅) = 0, and let k be a positive integer. Let R1, . . . Rk be a sequence of random sets and denote
R1:` :=

⋃
i∈[`] Ri. Suppose the following condition holds for all ` ∈ [k] and all R ⊆ N :

E
R`

[g(R` | R1:`−1) | R1:`−1 = R] ≥ (1− γ)g(N | R). (3.2.1)

Then:

E
R1:k

[g(N | R1:k)] ≤ γk · g(N). (3.2.2)

Proof. By definition:

E
R1:`

[g(N | R1:`)] = E
R1:`−1

[g(N)− g(R1:`−1)− E
R`

[g(R1:`)− g(R1:`−1)]]

≤ E
R1:`−1

[g(N | R1:`−1)− (1− γ)(g(N | R1:`−1))] (3.2.3)

= γ · E
R1:`−1

[g(N)− g(R1:`−1)].

Note that (3.2.3) holds by assumption (3.2.1). Claim (3.2.2) holds by induction on ` and the fact
that g(∅) = 0.

Lemma 3.2.5. Let x ∈ [0, 1]n be a feasible solution to (P). Let R be a set obtained by performing
k rounds of randomized rounding according to x. Then: ER[fR(N)] ≤ e−kf(N).

21

Proof. Since x is feasible to (P), for all S ⊆ N , we have f ∗S(x) ≥ fS(N). By Lemma 3.2.3
applied to fS , it holds that FS(x) ≥ (1− e−1)f ∗S(x). Together these imply:

FS(x) ≥ (1− e−1)fS(N). (3.2.4)

Thus x, f and R together satisfy the conditions of the Rounding Lemma with γ = e−1, and the
claim follows directly.

3.2.3 The Analysis

To summarize, our first algorithm for ONLINESUBMODULARCOVER is the following: maintain
a fractional solution x, and two sets R,G ⊆ N initially empty. At time t, feed the batch of
constraints of (P (t)) to [BN09b] and update x accordingly. Set k := log(t2 · f (t)(N)/f

(t)
min), and

for every j ∈ N , add j to R with probability ∆j , where ∆j is calculated such that the total
probability that j gets added to R over the course of the algorithm is 1−(1−xj)k. In a subsequent
greedy phase, iteratively select the cheapest element j ∈ N with non-zero marginal value and add
it to the set G until no such elements remain. Return R ∪G.

Given our tools from the previous section, we can now analyze the expected cost.

Theorem 3.2.6. There exists a randomized algorithm for the ONLINESUBMODULARCOVER

problem which guarantees that for each T , the expected cost of solution ST is within O(logm ·
log(T · f(N)/fmin)) of the optimal SUBMODULARCOVER solution for f (T).

Proof. By construction, the algorithm always produces a feasible solution to the submodular
cover problem. Thus it suffices to relate the cost of the output to the cost of the optimal solution,
c(OPT).

To bound the cost of the sampling phase, remark that at time t, by construction we can view
R as the result of k rounds of independent random rounding. The expected cost after one
round of rounding is precisely c(x). By linearity of expectation, the total expected cost of R is
log
(
t2 · f (t)(N)/f

(t)
min

)
· c(x).

Next we bound the cost of the greedy phase. At time t, the solution x is feasible to (P (t)). By
Lemma 3.2.5 with parameter k = log

(
t2 · f (t)(N)/f

(t)
min

)
:

E
R

[f
(t)
R (N)] ≤ t−2

(
f

(t)
min

f (t)(N)

)
f (t)(N) = t−2f

(t)
min.

This gives a bound on the expected cost of alterations at time t. Let Gt denote the elements added
in the greedy phase at time t:

E
R

[c(Gt)] ≤ c(OPT) · E
R

[|Gt|] (3.2.5)

≤ t−2c(OPT). (3.2.6)

(3.2.5) comes from the fact that each element must be cheaper than c(OPT), the second step (3.2.6)
from the fact that for every element h ∈ G, both f (t)

R (h) ≥ f
(t)
min and ER[f

(t)
R (N)] ≤ t−2f

(t)
min. By

linearity of expectation, the expected cost of cumulative alterations over all time steps t ∈ [T] is

22

O(c(OPT)). In conclusion, the final solution has expected cost at most log (T · f(N)/fmin) c(x)+
O(c(OPT)). By Theorem 2.1, c(x) = O(logm) · c(OPT), hence the algorithm outputs a solution
with competitive ratio O(logm log (T · f(N)/fmin)) · c(OPT).

In the next section, we show how to replace the f(N) term in the competitiveness by an fmax

term, which is often much smaller. In order to do the finer analysis, we will also show how to use
the ideas of mutual coverage. We then make these algorithms efficient in the subsequent section.

3.3 An O (logm log (T · fmax/fmin)) competitive algorithm

In this section, we show how to recover the finer O (logm log (T · fmax/fmin)) approximation.
The main algorithmic change is to perform log

(
T · f (t)

max/f
(t)
min

)
rounds of rounding instead of

log
(
T · f (t)(N)/f

(t)
min

)
, and then compensate with more greedy alterations. The intuition behind

the analysis is a fractional charging scheme. Using mutual coverage as a notion of contribution,
we argue that:

(i) every greedily chosen element is cheaper than the elements in OPT to which it contributes.

(ii) every greedily chosen element contributes at least a minimum amount overall.

(iii) for every element in OPT, the total contribution it receives from greedily chosen elements
is bounded above.

We show that these statements together imply a good bound on the expected cost of alterations.
However, this proof strategy requires that the mutual coverage between pairs of elements decrease
sufficiently after randomized rounding. In Section 3.6.2, we show that the constraints of the LP
(P) do not necessarily guarantee that this is the case; hence we introduce additional constraints
that enforce the desired property.

3.3.1 A Stronger Formulation

Recall our definition of Mutual Coverage, If (A;B) = f(A) + f(B) − f(A ∪ B). For clarity,
from now on we drop the subscript f when the submodular function in question is clear from
context. We begin by strengthening LP (P) with additional constraints as follows:

min
∑
j

c(j)xj

subject to

∀v ∈ N ,∀S ⊆ N :
∑
j∈N

I(v|S)(j)xj ≥ I(v|S)(N) (∗)

∀j ∈ N : 1 ≥ xj ≥ 0

(Q)

To see that the new constraints imply the constraints of (P), consider any set S. Order the elements
of N arbitrarily v1, v2 . . . vn and define Si := S ∪ {v1, . . . vi−1} with S1 := S. If we sum the (∗)

23

constraints corresponding to all pairs (vi, Si), we obtain:∑
i∈[n]

∑
j∈N

I(vi; j | Si) · xj ≥
∑
i∈[n]

I(vi;N | Si)

⇒
∑
j∈N

I(N ; j | S) · xj ≥ I(N ;N | S) (3.3.1)

⇒
∑
j∈N

fS(j) · xj ≥ fS(N).

where we used the Chain Rule for mutual coverage for step (3.3.1).

In order to treat our problem as an online covering LP and use [BN09b] like we did before, we
again need to make sure the new constraints do not eliminate any integer solutions.

Lemma 3.3.1. (Q) is a relaxation of SUBMODULARCOVER.

Proof. Consider a feasible solution T to SUBMODULARCOVER and its corresponding character-
istic vector χT . Then for any S ⊆ N and v ∈ N\S:∑

j∈N

I(v, j | S)(χT)j =
∑
j∈T

fS(j) + fS(v)− fS(v, j) ≥ fS(v) = I(v,N | S).

The inequality follows from the fact that fS(A) + fS(B) − fS(A ∪ B) ≥ fS(A ∩ B) and
f(∅) = 0.

The following lemma is an analog of Lemma 3.2.5 for (Q), and will enable us to perform rounding.

Lemma 3.3.2. Let x ∈ [0, 1]n be a feasible solution to (Q). Let R be a set obtained by performing
k rounds of randomized rounding according to x. Then:

E
R∼x

[I(v;N | R)] ≤ e−kI(v;N). (3.3.2)

Proof. We apply Lemma 3.2.3 to the function I(v|S). Even though I(v|S) is not necessarily
submodular, it is monotone and nonnegative (because f is submodular). Thus:

E
R∼x

[I(v;R | S)]

= E
R∼x

[I(v|S)(R)]

≥ (1− e−1) min
T

(
I(v|S)(T) +

∑
j∈N

I(v|S∪T)(j) · xj
)

(3.3.3)

≥ (1− e−1) min
T

(
I(v|S)(T) + I(v|S∪T)(N)

)
(3.3.4)

= (1− e−1) I(v;N | S). (3.3.5)

Above, Step 3.3.3 uses Lemma 3.2.3. Step 3.3.4 follows from the (∗) constraints since x is feasible
to (Q), and step (3.3.5) comes from expanding the definition of mutual coverage. This means that
x, I(v|S), and R satisfy the conditions of the Rounding Lemma with γ = e−1, so (3.3.2) follows
directly.

The proof above demonstrates the purpose of the new (∗) constraints: they ensure that, just like
fR(N), the expected remaining mutual coverage decreases geometrically with the number of
rounds.

24

3.3.2 The Improved Analysis

Our second algorithm for ONLINESUBMODULARCOVER resembles the first; it is the analysis that
differs. Indeed, at time t, feed the batch of constraints of (Q(t)) (defined as (Q) for the function
f (t)) to [BN09b] and update the fractional solution x accordingly. In the rounding phase, perform
k = log(t2 · f (t)

max/f
(t)
min) rounds of randomized rounding using the appropriate probability vector

∆ ∈ [0, 1]n and add the new elements to the set R. In a subsequent greedy phase, iteratively add
the cheapest element j ∈ N with non-zero marginal value to set G, until none remain. Return
R ∪G.

It is clear that the algorithm is correct, so it remains to bound the expected cost. The main idea is
to keep track of the amount of coverage that the tth greedy element in the augmentation procedure
contributes to the coverage achieved by the sth element of the optimal solution; the (conditional)
mutual coverage between the two is the quantity of interest here.

Theorem 3.3.3. There exists a randomized algorithm for the ONLINESUBMODULARCOVER

problem which guarantees that for each T , the expected cost of solution ST is within O(logm ·
log(T · fmax/fmin)) of the optimal SUBMODULARCOVER solution for f (T).

Proof. The algorithm always outputs a feasible solution, and it suffices to relate the cost of R∪G
to the cost of the optimal solution. As before, at every time t ∈ [T], the probability that j is in R
is 1− (1− xj)k and we may view R as the result of k rounds of randomized rounding. Thus the
expected cost of R is log(t2 · f (t)

max/f
(t)
min) · c(x). In the remainder, we analyze the greedy phase.

At time t, the fractional solution x is feasible toQ(t). By Lemma 3.3.2 with k = log(t2·f (t)
max/f

(t)
min):

E
R

[I(v;N | R)] ≤ t−2

(
f

(t)
min

f
(t)
max

)
I(v;N) (3.3.6)

= t−2

(
f

(t)
min

f
(t)
max

)
f (t)(v). (3.3.7)

Let G1, . . . , Gp denote the elements added by the greedy phase in increasing order of cost,
and let G1:t = {G1, . . . , Gt} be the prefix of the first t elements. Also order the elements
of OPT arbitrarily O1, . . . , Oq and similarly let O1:s = {O1, . . . , Os}. For convenience, let
G1:0 = O1:0 = ∅.
We say an element Gt contributes to Os if conditioned on having selected G1:t−1, and O1:s−1,
selecting Gt changes the marginal value of Os. Let C(t, s) be the contribution of Gt to Os, or the
amount by which this marginal value changes. Formally:

C(t, s) := I(Gt;Os | G1:t−1 ∪O1:s−1 ∪R).

We will need the three claims we alluded to in the opening of the section to proceed.

Claim 3.3.4. If Gt contributes to Os, i.e. C(t, s) > 0, then c(Gt) ≤ c(Os).

Claim 3.3.5. For any index t ∈ [p] we have:
∑

sC(t, s) ≥ f
(t)
min.

Claim 3.3.6. For any index s ∈ [q] we have: ER[
∑

tC(t, s)] ≤ t−2f
(t)
min.

25

f(O1 | R) . . . f(Os | O1:s−1 ∪ R) . . . f(Oq | O1:q−1 ∪ R)

(a) Before the greedy algorithm

f(O1 | G1 ∪ R) . . . f(Os | G1 ∪ O1:s−1 ∪ R) . . . f(Oq | G1 ∪ O1:q−1 ∪ R)

(b) After G1 is selected

f(O1 | G1:2 ∪ R) . . . f(Os | G1:2 ∪ O1:s−1 ∪ R) . . . f(Oq | G1:2 ∪ O1:q−1 ∪ R)

(c) After G2 is selected

Figure 3.1: Illustration of the charging scheme. The white areas initially represent the marginal values of each
element of OPT conditioned on the elements that come before it in the ordering. The red areas represent the
contribution of G1 to the elements of OPT, or the amount by which the marginal value of each element in OPT
changes after conditioning on G1. Likewise, the purple areas represent the contribution of G2 to the elements of OPT.

Before we prove these claims, let us show how they imply the statement of the theorem.

E

[∑
t

c(Gt)

]
= E

[∑
t

(∑
s

C(t, s)∑
s′ C(t, s′)

)
c(Gt)

]

≤ E

[∑
s

(∑
t

C(t, s)∑
s′ C(t, s′)

)
c(Os)

]
(3.3.8)

≤
∑
s

E[
∑

tC(t, s)]

f
(t)
min

· c(Os) (3.3.9)

≤ t−2c(OPT). (3.3.10)

Above (3.3.8) is due to Claim 3.3.4, (3.3.9) due to Claim 3.3.5 and (3.3.10) due to Claim 3.3.6.
Thus the expected cost of cumulative alterations over all time steps t ∈ [T] is O(c(OPT)). To
wrap up, Theorem 2.1 implies that c(x) = O(logm) · c(OPT), hence:

E[c(R ∪G)] ≤ log

(
T · f

(t)
max

f
(t)
min

)
· c(x) +O(c(OPT))

≤ O

(
logm log

(
T · f

(t)
max

f
(t)
min

))
· c(OPT).

It remains to prove the three claims.

Proof of Claim 3.3.4. The greedy algorithm repeatedly selects the cheapest element that has
nonzero marginal value. If for some element Os it is the case that c(Os) < c(Gt), then by the
time Gt is picked, Os must already have been selected, which means C(t, s) = 0.

26

Proof of Claim 3.3.5. This is immediate from the definitions:∑
s∈[q]

C(t, s) =
∑
s∈[q]

I(Gt;Os | G1:t−1 ∪O1:s−1 ∪R)

= I(Gt;N | G1:t−1 ∪R) (3.3.11)

= f
(t)
G1:t−1∪R(Gt)

≥ f
(t)
min, (3.3.12)

where step (3.3.11) used the Chain Rule, and the final step (3.3.12) used the definition of f (t)
min.

Proof of Claim 3.3.6. Again by definition:∑
t

C(t, s) =
∑
t∈[p]

I(Gt;Os | G1:t−1 ∪O1:s−1 ∪R)

= I(N ;Os | O1:s−1 ∪R)

≤ I(N ;Os | R),

where the inequality follows from the submodularity of f and I(N ;Os | O1:s−1 ∪R) = f(Os |
O1:s−1 ∪R). Taking expectation over R:

E
R

[∑
t

C(t, s)

]
≤ E

R
[I(Os;N | R)]

≤ t−2

(
f

(t)
min

f
(t)
max

)
f(Os)

≤ t−2f
(t)
min.

The second inequality follows from (3.3.7), and the third from the definition of f (t)
max.

Given the claims, the proof of Theorem 3.1 is complete.

It remains to show that the algorithm of this section and the previous one can be made efficient;
this we do in the following section.

3.4 Polynomial Runtime

The algorithms in the two previous sections naı̈vely run in exponential time, and here are some of
the barriers to making them efficient. For one, the algorithm of [BN09b] runs in time linear in
the number of constraints added, and naively both (P (t)) and (Q(t)) add an exponential number
of constraints at every step. The standard method for solving LPs with many constraints is to
construct an efficient separation oracle that, given a point as input, either confirms that it is a
feasible solution or outputs a violated constraint. Given such an oracle, we could check if our
current solution is feasible, if so output the solution, if not feed the violated constraint to [BN09b]
and repeat.

However, a polynomial-time separation oracle is unlikely to exist since evaluating f ∗ is APX-
hard [Von07, Section 3.7.2]. Moreover, even assuming access to a separation oracle, we would

27

additionally need to argue that we can make do with a polynomial number of calls to the oracle.
However, the algorithm of [BN09b] makes no a priori guarantees about how many constraints it
will need to fix before it produces a feasible solution (in contrast to the ellipsoid algorithm).

Our solution is to avoid solving the fractional LP directly. Since we merely want to find a feasible
integer solution with bounded expected cost, we combine rounding and separation. We show that
every LP solution either guarantees random rounding will make progress, or violates an efficiently
computable constraint by a large margin. Finally, we show that fixing the large-margin violations
requires a large change to the LP solution; by a potential function argument this can only be done
a polynomial number of times before the solution is necessarily feasible.

3.4.1 Finding Violated Constraints

Lemma 3.2.3 implies that for monotone, nonnegative functions g, the multilinear extension G
(which is precisely the expected coverage of a set obtained by randomized rounding according to
x) cannot be smaller than (1− e−1)g∗. This means that if G(x) is much smaller than g(N), then
so is g∗(x), and there must exist C such that g#C(x) < g(N). Call such a set C violated, since
we will soon use this as a mechanism for finding violated constraints of (Q). Lemma 3.2.3 does
not immediately imply a constructive algorithm for finding a set C witnessing the violation. We
show that the following procedure, inspired by the proof of Lemma 3.2.3 (Lemma 3.8 of [Von07]),
allows us find such a C.

The input is a fractional LP solution x. For every element i ∈ N , sample an exponential random
variable hi with parameter xi, and order all the elements i1, . . . in in increasing order of their
corresponding expontential hi. Of all prefixes of this ordering, consider the prefix Q = i1, . . . iz
that minimizes g#Q(x). If g#Q(x) < g(N), then say that Q is a violated set. Repeat these steps
3/ε · log(1/δ) times or until a violated set is found. If none is found, return “no constraint found”.

Lemma 3.4.1. There is an algorithm such that given a nonnegative, monotone function g : 2N →
R+ with g(∅) = 0, and x ∈ [0, 1]n with the guarantee that G(x) < (e(1 + ε))−1g(N), with
probability 1− δ the algorithm yields a subset C ⊆ N such that:

g#C(x) <
(

1− ε

2

)
· g(N).

Furthermore, the procedure runs in time poly
(

1
ε

log 1
δ

)
.

Proof. Consider the set C(t) := {i ∈ N : hi < t}. Since P (j ∈ C(1)) = 1 − e−xj ≤ xj , we
have by monotonicity of g that G(x) = ES∼x[g(S)] ≥ E[g(C(1)]. Now for any C:

E[gC(t)(C(t+ dt)) | C(t) = C]

=
∑
T⊆N

P (C(t+ dt) = T | C(t) = C) · g(T)

=
∑

T⊆N\C

gC(T) ·
∏
j∈T

(xj dt) ·
∏
j 6∈T

(1− xj dt)

=
∑
j∈N

gC(j)xjdt+O(dt2)

= (g#C(x)− g(C))dt+O(dt2).

28

Dividing by dt and taking an expectation over C:

1

dt
E[g(C(t+ dt))− g(C(t))]

≥ E[g#C(t)(x)]− E[g(C(t))] +O(dt).

Now define φ(t) = E[g(C(t))]. Taking the limit of the last expression as dt → 0 we get that
dφ
dt

= E[g#C(t)(x)]− φ(t). Using et as an integrating factor, for any t ≥ 0:

etφ(t) =

∫ t

0

d(ezφ(z))

dz
dz =

∫ t

0

ez E
[
g#C(t)(x)

]
dz.

By the mean value theorem, for some value t∗ ∈ [0, t] it holds that

etφ(t) = tet
∗ E
[
g#C(t∗)(x)

]
≥ tE

[
g#C(t∗)(x)

]
.

Now setting t = 1 and using the fact that G(x) ≥ φ(1), we have E[g#C(t∗)(x)] ≤ e · G(x). By
construction, Q = C(t′) for some t′ = argmint g

#C(t)(x). The inequality g#Q(x) ≤ g#C(t∗)(x)
holds regardless of the realizations of h1, . . . , hn, hence:

E[g#Q(x)] ≤ E[g#C(t∗)(x)] ≤ e ·G(x).

By a Markov bound, with probability at least 1− (1 + ε/2)−1 ≥ ε/3:

g#Q(x) ≤
(

1 +
ε

2

)
e ·G(x)

<

(
1 + ε

2

)
e

(1 + ε)e
· g(N)

≤
(

1− ε

2

)
· g(N).

Since we repeat this procedure k = (3/ε) log 1/δ times, the probability that after k attempts no
violated constraint is found is: (1− ε/3)k ≤ exp (3/ε · ε/3 log δ) = δ.

3.4.2 Implementing the Algorithm Efficiently

We modify the proof of Theorem 3.1 to exploit the approximate separation oracle. This time
we do not ever solve (Q) explicitly. Instead, start with a fractional solution x = 0 and just
start rounding. Before every round, for every v ∈ N , search for violated constraints using the
procedure from the last section, with g = I(v|R) and δ = 6 · cmin/(π

2knt2 · c(N)). If one is
found, feed it to [BN09b], update x accordingly and restart the current round. In total, perform
k := (log 1/γ)−1 log(t2·f (t)

max/f
(t)
min) rounds of rounding with respect to the appropriate ∆ ∈ [0, 1]n

(where γ := 1− (e(1 + ε))−1) and add the result to set R. To finish, again greedily add to set G
the cheapest element j ∈ N with non-zero marginal value, until none remain. Return R ∪G.

Crucially, we argue that we do not need to fix too many constraints over the course of the algorithm.

Lemma 3.4.2. The algorithm above finds a violated constraint at most O(n/ε) times.

29

Proof. Consider a round in which the algorithm finds a violated constraint indexed by the set C.
By Lemma 3.4.1:

I(v|R)(C) +
∑
j∈N

I(v|R∪C)(j) · xj <
(

1− ε

2

)
· I(v|R)(N).

In order to fix this constraint in this round, [BN09b] must increase x by a vector ∆x such that:∑
j∈N

I(v|R∪C)(j)

I(v|R)(N)
· (∆x)j >

ε

2
.

Since I(v|R∪C)(j)/I(v|R)(N) ≤ 1, it follows that:

∑
j∈N

(∆x)j ≥
∑
j∈N

I(v|R∪C)(j)

I(v|R)(N)
(∆x)j >

ε

2
.

Since x ≤ 1, the total sum
∑

j xj is bounded by n, and thus we can update x at most 2n/ε
times.

We can finally conclude with our main theorem.

Theorem 3.1.1. There exists an efficient randomized algorithm for the ONLINESUBMODULAR-
COVER problem which guarantees that for each T , the expected cost of solution ST is within
O(logm · log(T · fmax/fmin)) of the optimal SUBMODULARCOVER solution for f (T).

Proof. The algorithm always produces a feasible solution and we need to bound its cost. Since
we perform (log 1/γ)−1 log(t2 · f (t)

max/f
(t)
min) rounds of rounding, and (log 1/γ)−1 ≤ e(1 + ε), the

expected cost of R is at most e(1 + ε) · log(t2 · f (t)
max/f

(t)
min) · c(x). Next we bound the cost of the

greedy phase.

Let R1:` denote the state of R at the end of round ` ∈ [k] and let R` denote the set of elements
sampled in round `. By the contrapositive of Lemma 3.4.1, for every v ∈ N and every ` ∈ [k],
with probability 1− 6 · cmin/(π

2knt2 · c(N)) it holds that:

E
R`∼x

[I(v;R` | R1:`−1)] ≥ 1

e(1 + ε)
I(v;N | R1:`−1). (3.4.1)

Let E be the event that (3.4.1) holds for every round of rounding over all time steps t ∈ [T],
and all elements v ∈ N . By a union bound and the fact that

∑
t−2 ≤ π2/6, event E holds with

probability at least 1 − cmin/(c(N)). Conditioned on this being the case, the triple x, I(v) and
R1:k together satisfies the conditions of the Rounding Lemma with γ = 1− (e(1− ε))−1. Hence:

E
R

[I(v;N | R)] ≤ t−2

(
f

(t)
min

f
(t)
max

)
I(v;N)

= t−2

(
f

(t)
min

f
(t)
max

)
f (t)(v).

With this, Claims 3.3.4 to 3.3.6 all hold and we again have E[
∑

t c(Gt)] ≤ t−2c(OPT) as in
(3.3.10).

30

We conclude that if E holds, then by linearity of expectation, the expected cost of cumulative
alterations over all time steps t ∈ [T] is O(c(OPT)). If E does not hold, we incur a cost of at most
c(N). Hence the total expected cost of cumulative alterations is:

E[c(G)] = E[c(G) | E] · P (E) + E[c(G) | E] · P
(
E
)

≤ cmin

c(N)
· c(N) +O(c(OPT))

= O(c(OPT)).

Finally, Theorem 2.1 implies that c(x) = O(log n) · c(OPT). Setting ε = 1, we conclude:

E[c(R ∪G)] ≤ e(1 + ε) log

(
T 2 · fmax

fmin

)
c(x) +O(c(OPT))

≤ O

(
log

(
T · fmax

fmin

))
c(OPT).

This completes the proof of correctness. The polynomial runtime follows from Lemma 3.4.2.

3.5 Conclusion

In this chapter, we gave a general algorithm for ONLINESUBMODULARCOVER. Our result
generalizes the work of [AAA+09] to arbitrary submodular covering problems, thereby porting
any black box use of SUBMODULARCOVER to the online setting. Our bounds are best possible in
polynomial time unless NP ⊆ BPP . In Chapter 5 we will heavily reuse ideas from this chapter
to study the seemingly unrelated problem of BLOCKAWARECACHING.

3.6 Deferred Proofs

3.6.1 Necessity of Time-Monotonicity

We note briefly that if we drop the time-monotonicity condition, then no algorithm can achieve a
bounded competitive ratio. Consider the sequence f (0), f (1), f (2) such that f (0) ≡ f (2) ≡ 0, and
f (1)(S) = 111(j ∈ S) for an abitrary choice of j ∈ N . In this case the optimal solution at time 2 is
the empty set, whereas any online algorithm must output a set containing j.

3.6.2 Mutual Coverage is not Submodular

We give one example which shows that mutual coverage is in general not submodular as a
function of one of its arguments. Furthermore, the example demonstrates that the condition
FS(x) ≥ αfS(N) for all subsets S ⊆ N does not guarantee that [I(y|S)(R)]R ∼ x ≥ α·I(y|S)(N).
This justifies our use of the stronger LP (Q) instead of (P) in section Section 3.3.

31

Consider the following function on {a, b, y}:

f(∅) = 0, f(b) = 1, f(b+ y) = 2,
f(a+ b+ y) = 10, f(y) = 1, f(a+ b) = 10,

f(a) = 9, f(a+ y) = 10.

The function f is submodular, but I(y)(a)− I(y)(∅) < I(y)(b+ a)− I(y)(b), since:

I(y)(a)− I(y)(∅)
= f(a)− f(y + a)− f(∅) + f(y)

= 0

I(y)(b+ a)− I(y)(b)

= f(b+ a)− f(a+ b+ y)− f(b) + f(b+ y)

= 1.

Now consider the vector x = [xa, xb, xy] = [3/4, 1/2, 0]. One can check that FS(x) ≥ 1/2 ·fS(N)
for all S ⊆ N but:

[I(y)(R)]R ∼ x

=
3

8
I(y)(a+ b) +

3

8
I(y)(a) +

1

8
I(y)(b) +

3

8
I(y)(∅)

=
3

8
<

1

2
I(y)(N).

32

Chapter 4

Random Order Set Cover

4.1 Introduction

In this chapter, we answer the question:

What is the best competitive ratio possible for ONLINESETCOVER when the adver-
sary is constrained to reveal the elements in uniformly random order (RO)?

We call this version ROSETCOVER. Note that the element set U is still adversarially chosen and
unknown, and only the arrival order is random.

4.1.1 Results

We show that with only this one additional assumption on the element arrival order, there is an
efficient algorithm for ROSETCOVER with expected competitive ratio matching the best-possible
offline approximation guarantee (at least in the regime where m = poly(n)).

Theorem 4.1.1. LEARNORCOVER is a polynomial-time randomized algorithm for ROSET-
COVER achieving expected competitive ratio O(log(mn)).

When run offline, our approach gives a new asymptotically optimal algorithm for SETCOVER for
m = poly(n), which may be of independent interest. Indeed, given an estimate for the optimal
value of the set cover, our algorithm makes a single pass over the elements (considered in random
order), updating a fractional solution using a multiplicative-weights framework, and sampling
sets as it goes. This simplicity, and the fact that it uses only Õ(m) bits of memory, may make the
algorithm useful for some low-space streaming applications. (Note that previous formulations
of STREAMINGSETCOVER [SG09, DIMV14, HIMV16, ER16] only consider cases where sets
arrive in a stream.)

We show next that a suitable generalization of the same algorithm achieves the same competitive
ratio for the RO Covering Integer Program problem (ROCIP) (see Section 4.4 for a formal
description).

Theorem 4.1.2. LEARNORCOVERCIP is a polynomial-time randomized algorithm for ROCIP
achieving competitive ratio O(log(mn)).

33

We complement our main theorem with some lower bounds. For instance, we show that the
algorithms of [AAA+09, BN09b] have a performance of Θ(logm log n) even in RO, so a new
algorithm is indeed needed. Moreover, we observe an Ω(log n) lower bound on fractional
algorithms for ROSETCOVER. This means we cannot pursue a two-phase strategy of maintaining
a good monotone fractional solution and then randomly rounding it (as was done in prior works)
without losing Ω(log2 n). Interestingly, our algorithm does maintain a (non-monotone) fractional
solution while rounding it online, but does so in a way that avoids extra losses. We hope that our
approach will be useful in other works for online problems in RO settings. (We also give other
lower bounds for batched versions of the problem, and for the more general SUBMODULARCOVER

problem.)

4.1.2 Techniques and Overview

The core contribution of this work is demonstrating that one can exploit randomness in the
arrival order to learn about the underlying set system. What is more, this learning can be done
fast enough (in terms of both sample and computational complexity) to build an O(logmn)-
competitive solution, even while committing to covering incoming elements immediately upon
arrival. This seems like an idea with applications to other sequential decision-making problems,
particularly in the RO setting.

We start in Section 4.2 with an exponential time algorithm for the unit-cost setting. This algorithm
maintains a portfolio of all exponentially-many collections of cost c(OPT) that are feasible for
the elements observed so far. When an uncovered element arrives, the algorithm takes a random
collection from the portfolio, and picks a random set from it covering the element. It then prunes
the portfolio to drop collections that did not cover the incoming element. We show that either
the expected marginal coverage of the chosen set is large, or the expected number of solutions
removed from the portfolio is large. I.e., we either make progress covering, or learning. We show
that within c(OPT) log(mn) rounds, the portfolio only contains the true optimal feasible solutions,
or all unseen elements are covered. (One insight that comes from our result is that a good measure
of set quality is the number of times an unseen and uncovered element appears in it.)

We then give a polynomial-time algorithm in Section 4.3: while it is quite different from the
exponential scheme above, it is also based on this insight, and the intuition that our algorithm
should make progress via learning or covering. Specifically, we maintain a distribution {xS}S∈S
on sets: for each arriving uncovered element, we first sample from this distribution x, then update
x via a multiplicative weights rule. If the element remains uncovered, we buy the cheapest set
covering it. For the analysis, we introduce a potential function which simultaneously measures
the convergence of this distribution to the optimal fractional solution, and the progress towards
covering the universe. Crucially, this progress is measured in expectation over the random order,
thereby circumventing lower bounds for the adversarial-order setting [Kor04].

In Section 4.4 we extend our method to the more general ROCIP problem: the intuitions and
general proof outlines are similar, but we need to extend the algorithm to handle elements being
partially covered. In Section 4.5 we extend it further to give an algorithm for random order
online NONMETRICFACILITYLOCATION, again matching the best possible offline bounds. In
Section 4.6, we show that our LEARNORCOVER algorithm can be adapted to solve another variant
of ONLINESETCOVER in which an α fraction of the input is sampled before the online sequence

34

begins.

Finally, we present lower bounds in Section 4.7. Our information-theoretic lower bounds for
ROSETCOVER follow from elementary combinatorial arguments. We also show a lower bound
for a batched version of ROSETCOVER, following the hardness proof of [Kor04]; we use it in
turn to derive lower bounds for ROSUBMODULARCOVER.

4.1.3 Related Work

There has been much recent interest in algorithms for random order online problems. Starting
from the secretary problem, the RO model has been extended to include metric facility location
[Mey01], network design [MMP01], and solving packing LPs [AWY14, MR14, KRTV18, GM16,
AD15, AKL21], load-balancing [Mol17] and scheduling [AJ21a, AJ21b]. See [GS20] for a recent
survey.

Our work is closely related to [GGL+13], who give an O(logmn)-competitive algorithm a related
stochastic model, where the elements are chosen i.i.d. from a known distribution over the elements.
[DEH+18] generalize the result of [GGL+13] to the prophet version, in which elements are drawn
from known but distinct distributions. Our work is a substantial strengthening, since the RO model
captures the unknown i.i.d. setting as a special case. Moreover, the learning is an important and
interesting part of our technical contribution. On the flip side, the algorithm of [GGL+13] satisfies
universality (see their work for a definition), which our algorithm does not. We point out that
[GGL+13] claim (in a note, without proof) that it is not possible to circumvent the Ω(logm log n)
lower bound of [Kor04] even in RO; our results show this claim is incorrect. We discuss this in
Section 4.11.

Regret bounds for online learning are also proven via the KL divergence (see, e.g., [AHK12]).
However, no reductions are known from our problem to the classic MW setting, and it is unclear
how random order would play a role in the analysis: this is necessary to bypass the adversarial
order lower bounds.

Finally, [Kor04] gives an algorithm with competitive ratio k log(m/k)— and hence total cost
k2 log(m/k)—for unweighted ONLINESETCOVER where k = |OPT|. The algorithm is the same
as our exponential time algorithm in Section 4.2 for the special case of k = 1; however, we
outperform it for non-constant k, and generalize it to get polynomial-time algorithms as well.

4.2 Warmup: An Exponential Time Algorithm for Unit Costs

We begin with an exponential-time algorithm which we call SIMPLELEARNORCOVER to demon-
strate some core ideas of our result. In what follows we assume that we know a number
k ∈ [c(OPT), 2 · c(OPT)]. This assumption is easily removed by a standard guess and dou-
ble procedure, at the cost of an additional factor of 2.

The algorithm is as follows. Maintain a list T ⊆
(S
k

)
of candidate k-tuples of sets. When an

uncovered element v arrives, choose a k-tuple T = (T1, . . . , Tk) uniformly at random from T,
and buy a uniformly random T from T . Also buy an arbitrary set containing v. Finally, discard
from T any k-tuples that do not cover v. See Section 4.10 for pseudocode.

35

Theorem 4.2.1. SIMPLELEARNORCOVER is a randomized algorithm for unit-cost ROSET-
COVER with expected cost O(k · log(mn)).

Proof of Theorem 4.2.1. Consider any time step t in which a random element arrives that is
uncovered on arrival. Let U t be the set of elements that remain uncovered at the end of time step
t. Before the algorithm takes action, there are two cases:

Case 1: At least half the tuples in T cover at least |U t−1|/2 of the |U t−1| as-of-yet-uncovered
elements. In this case we say the algorithm performs a Cover Step in round t.

Case 2: At least half the tuples in T cover strictly less than |U t−1|/2 of the uncovered elements;
we say the algorithm performs a Learning Step in round t.

Define N(c) to be the number of uncovered elements remaining after c Cover Steps. Define
M(`) to be the value of |T| after ` Learning Steps. We will show that after 10k(logm + log n)
rounds, either the number of elements remaining is less than N(10k log n) or the number of
tuples remaining is less than M(10k logm). In particular, we argue that both E[N(10k log n)]
and E[M(10k logm)] are less than 1.

Claim 4.2.2. E[N(c+ 1) | N(c) = N] ≤
(
1− 1

4k

)
N .

Proof. If round t is a Cover Step, then at least half of the T ∈ T cover at least half of U t−1,
so E[|(

⋃
T) ∩ U t−1|] ≥ |Ut−1|

4
. Since T is drawn uniformly at random from the k sets in the

uniformly random T , we have E[|T ∩ U t−1|] ≥ |Ut−1|
4k

.

Claim 4.2.3. E[M(`+ 1) |M(`) = M] ≤ 3
4
M .

Proof. Upon the arrival of v in a Learning Step, at least half the tuples have probability at least 1/2

of being removed from T, so the expected number of tuples removed from T is at least M/4.

To conclude, by induction

E[N(10k log n)] ≤ n
(
1− 1

4k

)10k logn ≤ 1 and E[M(10k logm)] ≤ mk
(

3
4

)10k logm ≤ 1.

Note that if there are N remaining uncovered elements and M remaining tuples to choose from,
the algorithm will pay at most min(k ·M,N) before all elements are covered. Thus the total
expected cost of the algorithm is bounded by

10k(logm+ log n) + E[min(k ·M(10k logm),N(10k log n))] = O(k logmn).

Apart from the obvious challenge of modifying SIMPLELEARNORCOVER to run in polynomial
time, it is unclear how to generalize it to handle non-unit costs. Still, the intuition from this
algorithm will be useful for the next sections.

4.3 A Polynomial-Time Algorithm for General Costs

We build on our intuition from Section 4.2 that we can either make progress in covering or
in learning about the optimal solution. To get an efficient algorithm, we directly maintain
a probability distribution over sets, which we update via a multiplicative weights rule. We
use a potential function that simultaneously measures progress towards learning the optimal
solution, and towards covering the unseen elements. Before we present the formal details and the
pseudocode, here are the main pieces of the algorithm.

36

1. We maintain a fractional vector x which is a (not necessarily feasible) guess for the LP
solution of cost β to the SETCOVER instance.

2. Every round t in which an uncovered element vt arrives, we

(a) sample every set S with probability proportional to its current LP value xS ,

(b) increase the value xS of all sets S 3 vt multiplicatively and renormalize,

(c) buy a cheapest set to cover vt if it remains uncovered.

Formally, by a guess-and-double approach, we assume we know a bound β such that LPOPT ≤
β ≤ 2 · LPOPT; here LPOPT is the cost of the optimal LP solution to the final unknown instance.
Define

κv := min{cS | S 3 v} (4.3.1)

as the cost of the cheapest set covering v.

Algorithm 1 LEARNORCOVER

1: Let m′ ← |{S : c(S) ≤ β}|.
2: Initialize x0

S ←
β

cS ·m′
· 1{c(S) ≤ β}, and C0 ← ∅.

3: for t = 1, 2 . . . , n do
4: vt ← tth element in the random order, and letRt ← ∅.
5: if vt not already covered then
6: for each set S, with probability min(κvt · xt−1

S /β, 1) addRt ← Rt ∪ {S}.
7: Update Ct ← Ct−1 ∪Rt.
8: if

∑
S3vt x

t−1
S < 1 then

9: For every set S, update xtS ← xt−1
S · exp {1{S 3 vt} · κvt/cS}.

10: Let Zt = 〈c, xt〉/β and normalize xt ← xt/Zt.
11: else
12: xt ← xt−1.
13: Let Svt be the cheapest set containing vt. Add Ct ← Ct ∪ {Svt}.

The algorithm is somewhat simpler for unit costs: the xS values are multiplied by either 1 or e,
and moreover we can sample a single set forRt (see Section 4.10 for pseudocode). Because of
the non-uniform set costs, we have to carefully calibrate both the learning and sampling rates.
Our algorithm dynamically scales the learning and sampling rates in round t depending on κvt ,
the cost of the cheapest set covering vt. Intuitively, this ensures that all three of (a) the change in
potential, (b) the cost of the sampling, and (c) the cost of the backup set, are at the same scale.
Before we begin, observe that Line 10 ensures the following invariant:

Invariant 1. For all time steps t, it holds that 〈c, xt〉 = β.

Theorem 4.3.1. LEARNORCOVER is a polynomial-time randomized algorithm for ROSET-
COVER with expected cost O(β · log(mn)).

Let us start by defining notation. Let x∗ to be the optimal LP solution to the final, unknown set
cover instance. Next let X t

v :=
∑

S3v x
t
S , the fractional coverage provided to v by xt. Let U t be

the elements remaining uncovered at the end of round t (where U0 = U is the entire ground set of

37

the set system). Define the quantity

ρt :=
∑
u∈Ut

κu. (4.3.2)

With this, we are ready to define our potential function which is the central player in our analysis.
Recalling that β is our guess for the value of LPOPT, and the definition of KL divergence (2.1.3),
define

Φ(t) := C1 · KLc
(
x∗ || xt

)
+ C2 · β · log

(
ρt

β

)
(4.3.3)

where C1 and C2 are constants to be specified later.

Lemma 4.3.2 (Initial Potential). The initial potential is bounded as Φ(0) = O(β · log(mn)).

We write the proof in general language in order to reuse it for covering IPs in the following section.
Recall that sets correspond to columns in the canonical formulation of SETCOVER as an integer
program.

Proof. We require the following fact which we prove in Section 4.9.

Fact 4.3.3. Every pure covering LP of the form minx≥0{〈c, x〉 : Ax ≥ 1} for c ≥ 0 and
aij ∈ [0, 1] with optimal value less than β has an optimal solution x∗ which is supported only on
columns j such that cj ≤ β.

We assume WLOG that x∗ is such a solution, and we first bound the KL term of Φ(0). Since
support(x∗) ⊆ support(x0) by Fact 4.3.3, we have

KLc
(
x∗ || x0

)
=
∑
j

cj · x∗j log

(
x∗j
cj ·m′

β

)
+
∑
j

cj(x
0
j − x∗j) ≤ β(log(m) + 1),

where we used that 〈c, x∗〉 ≤ β and that m′ < m is the number of columns with cost less than β.

For the second term, β log(ρ0/β) = β log(
∑

i∈U0 κi/β) ≤ β log(|U0|) = β log n, since for all i,
the cheapest cover for i costs less than β, and therefore κu/β ≤ 1. The claim follows so long as
C1 and C2 are constants.

The rest of the proof relates the expected decrease of potential Φ to the algorithm’s cost in each
round. Define the event Υt := {vt ∈ U t−1} that the element vt is uncovered on arrival. Note
Line 5 ensures that if event Υt does not hold, the algorithm takes no action and the potential does
not change. So we focus on the case that event Υt does occur. We first analyze the change in KL
divergence. Recall that X t

v :=
∑

S3v x
t
S .

Lemma 4.3.4 (Change in KL). For rounds t in which Υt holds, the expected change in the
weighted KL divergence is

E
vt,Rt

[
KLc

(
x∗ || xt

)
− KLc

(
x∗ || xt−1

)
| xt−1, U t−1,Υt

]
≤ E

v∼Ut−1
[(e− 1) · κv min(X t−1

v , 1)− κv].

We emphasize that the expected change in relative entropy in the statement above depends only
on the randomness of the arriving uncovered element vt, not on the randomly chosen setsRt.

38

Proof. We break the proof into cases. If X t−1
v ≥ 1, in Line 12 we set the vector xt = xt−1, so the

change in KL divergence is 0. This means that

E
vt,Rt

[
KLc

(
x∗ || xt

)
− KLc

(
x∗ || xt−1

)
| xt−1, U t−1,Υt, X t−1

vt ≥ 1
]

≤ E
v∼Ut

[(e− 1) · κv min
(
X t−1
v , 1

)
− κv | X t−1

v ≥ 1] (4.3.4)

trivially. Henceforth we focus on the case X t−1
vt < 1.

Recall that the expected change in relative entropy depends only on the arriving uncovered element
vt. Expanding definitions,

E
vt,Rt

[
KLc

(
x∗ || xt

)
− KLc

(
x∗ || xt−1

)
| xt−1, U t−1,Υt, X t−1

vt < 1
]

= E
v∼Ut−1

[∑
S

cS · x∗S · log
xt−1
S

xtS

∣∣∣∣∣ X t−1
v < 1

]

= E
v∼Ut−1

[
〈c, x∗〉 · logZt −

∑
S3v

cS · x∗S · log eκv/cS

∣∣∣∣∣ X t−1
v < 1

]

≤ E
v∼Ut−1

[
β · log

(∑
S3v

cS
β
· xt−1

S · eκv/cS +
∑
S 63v

cS
β
· xt−1

S

)
−
∑
S3v

κv · x∗S

∣∣∣∣∣ X t−1
v < 1

]
,

(4.3.5)

where in the last step (4.3.5) we expanded the definition of Zt, and used 〈c, x∗〉 ≤ β. Since x∗ is
a feasible set cover, which means that

∑
S3v x

∗
S ≥ 1, we can further bound (4.3.5) by

≤ E
v∼Ut−1

[
β · log

(∑
S3v

cS
β
· xt−1

S · eκv/cS +
∑
S 63v

cS
β
· xt−1

S

)
− κv

∣∣∣∣∣ X t−1
v < 1

]

≤ E
v∼Ut−1

[
β · log

(∑
S

cS
β
· xt−1

S + (e− 1) ·
∑
S3v

κv
β
· xt−1

S

)
− κv

∣∣∣∣∣ X t−1
v < 1

]
(4.3.6)

where we use the approximation ey ≤ 1 + (e− 1) · y for y ∈ [0, 1] (note that κv is the cheapest
set covering v, so for any S 3 v we have κv/cS ≤ 1). Finally, using Invariant 1, along with the
approximation log(1 + y) ≤ y, we bound (4.3.6) by

≤ E
v∼Ut−1

[
(e− 1) · κv ·X t−1

v − κv
∣∣ X t−1

v < 1
]

≤ E
v∼Ut−1

[(e− 1) · κv min(X t−1
v , 1)− κv | X t−1

v < 1]. (4.3.7)

The lemma statement follows by combining (4.3.4) and (4.3.7) using the law of total expectation.

Next we bound the expected change in log ρt provided by the samplingRt ∼ κvtx
t−1/β upon the

arrival of uncovered vt (where each S ∈ Rt independently with probability κvtxt−1
S /β). Recall

that U t denotes the elements uncovered at the end of round t; therefore element u is contained in
U t−1 \ U t if and only if it is marginally covered byRt in this round.

39

Lemma 4.3.5 (Change in log ρt). For rounds when v is uncovered on arrival, the expected change
in log ρt is

E
vt,Rt

[
log ρt − log ρt−1 | xt−1, U t−1,Υt

]
≤ −1− e−1

β
· E
u∼Ut−1

[
κu ·min(X t−1

u , 1)
]
.

Proof. Recall the definition of ρt from (4.3.2). Conditioned on vt = v for any fixed element v,
the expected change in log ρt depends only onRt. RecallRt is formed by sampling each set S
with probability κvxt−1

S /β.

E
Rt

[
log ρt − log ρt−1 | xt−1, U t−1,Υt, vt = v

]
= E
Rt

[
log

(
1− ρt−1 − ρt

ρt−1

) ∣∣∣∣ U t−1, vt = v

]
≤ − 1

ρt−1
· E
Rt

[
ρt−1 − ρt

∣∣ U t−1, vt = v
]

(4.3.8)

Above, (4.3.8) follows from the approximation log(1− y) ≤ −y. Expanding the definition of ρt

from (4.3.2), (4.3.8) is bounded by

= − 1

ρt−1
· E
Rt

[∑
u∈Ut−1

κu · 1{u ∈ U t−1 \ U t}

∣∣∣∣∣ U t−1, vt = v

]

= − 1

ρt−1

∑
u∈Ut−1

κu · P
Rt

(
u 6∈ U t | u ∈ U t−1, vt = v

)
≤ −1− e−1

β
· κv ·

1

ρt−1

∑
u∈Ut−1

κu ·min(X t−1
u , 1) (4.3.9)

= −1− e−1

β
· κv ·

|U t−1|
ρt−1

· E
u∼Ut−1

[
κu ·min(X t−1

u , 1)
]
. (4.3.10)

Step (4.3.9) is due to the fact that each set S ∈ Rt is sampled independently with probability
min(κvx

t−1
S /β, 1), so the probability any given element u ∈ U t−1 is covered is

1−
∏
S3u

(
1−min

(
κvx

t−1
S

β
, 1

))
≥ 1− exp

{
−min

(
κv
β
X t−1
u , 1

)}
(∗∗)
≥ (1− e−1) ·min

(
κv
β
X t−1
u , 1

)
Above, (∗∗) follows from convexity of the exponential. Step (4.3.10) follows since κv/β ≤
1. Taking the expectation of (4.3.10) over vt ∼ U t−1, and using the fact that Ev∼Ut−1 [κv] =
ρt−1/|U t−1|, the expected change in log ρt becomes

E
vt,Rt

[
log ρt − log ρt−1 | xt−1, U t−1,Υt

]
≤ −1− e−1

β
· E
u∼Ut−1

[
κu ·min(X t−1

u , 1)
]
,

as desired.

40

Proof of Theorem 4.3.1. In every round t for which Υt holds, the expected cost of the sampled
setsRt is κvt · 〈c, xt−1〉/β = κvt (by Invariant 1). The algorithm pays an additional κvt in Line 13,
and hence the total expected cost per round is at most 2 · κvt .
Combining Lemmas 4.3.4 and 4.3.5, and setting the constants C1 = 2 and C2 = 2e, we have

E
vt,Rt

[
Φ(t)− Φ(t− 1)

∣∣ v1, . . . , vt−1,R1, . . . ,Rt−1,Υt
]

= E
vt,Rt

[
C1 (KLc (x∗ || xt)− KLc (x∗ || xt−1))

+ C2 · β · (log ρt − log ρt−1)

∣∣∣∣ v1, . . . , vt−1,R1, . . . ,Rt−1,Υt

]
≤ − E

vt,Rt

[
2 · κvt

∣∣ v1, . . . , vt−1,R1, . . . ,Rt−1,Υt
]
,

which cancels the expected change in the algorithm’s cost. Since neither the potential Φ nor the
cost paid by the algorithm change during rounds in which Υt does not hold, we have the inequality

E
vt,Rt

[
Φ(t)− Φ(t− 1) + c(ALG(t))− c(ALG(t− 1))

∣∣ v1, . . . , vt−1,R1, . . . ,Rt−1
]
≤ 0.

Let t∗ be the last time step for which Φ(t∗) ≥ 0. By applying Lemma 4.9.1 and the bound on the
starting potential from Lemma 4.3.2, we have that E[c(ALG(t∗))] ≤ O(β · log(mn)).

It remains to bound the expected cost paid by the algorithm after time t∗. Since KL divergence is a
nonnegative quantity, Φ is negative only when ρt ≤ β. The algorithm pays O(κvt) in expectation
during rounds t where vt ∈ U t−1 and 0 during rounds where vt 6∈ U t−1, and hence the expected
cost paid by the algorithm after time t∗ is at most

∑
u∈Ut∗ κu = ρt

∗
= O(β).

4.4 Covering Integer Programs

We show how to generalize our algorithm from Section 4.3 to solve pure covering IPs when
the constraints are revealed in random order, which significantly generalizes ROSETCOVER.
Formally, the random order covering IP problem (ROCIP) is to solve

minz 〈c, z〉
s.t. Az ≥ 1

z ∈ Zm+ ,
(4.4.1)

when the rows of A are revealed in random order. Furthermore the solution z can only be
incremented monotonically and must always be feasible for the subset of constraints revealed so
far. (Note that we do not consider box constraints, namely upper-bound constraints of the form
zj ≤ dj .) We may assume without loss of generality that the entries of A are aij ∈ [0, 1].

We describe an algorithm which guarantees that every row is covered to extent 1− γ, meaning
it outputs a solution z with Az ≥ 1− γ (this relaxation is convenient in the proof for technical
reasons). With foresight, we set γ = (e− 1)−1. It is straightforward to wrap this algorithm in one
that buys d(1− γ)−1e = 3 copies of every column and truly satisfy the constraints, which only
incurs an additional factor of 3 in the cost.

Once again, by a guess-and-double approach, we assume we know a bound β such that LPOPT ≤
β ≤ 2 · LPOPT; here LPOPT is the cost of the optimal solution to the LP relaxation of (4.4.1). Let

41

zt be the integer solution held by the algorithm at the end of round t. Define ∆t
i := max(0, 1−

〈ai, zt〉) to be the extent to which i remains uncovered at the end of round t. This time we redefine
κti := ∆t−1

i ·mink ck/aik, which becomes the minimum fractional cost of covering the current
deficit for i. Finally, for a vector y, denote the fractional remainder by ỹ := y − byc.
The algorithm once again maintains a fractional vector x which is a guess for the (potentially
infeasible) LP solution of cost β to (4.4.1). This time, when the ith row arrives at time t and
∆t−1
i > γ (meaning this row is not already covered to extent 1− γ), we (a) buy a random number

of copies of every column j with probability proportional to its LP value xj , (b) increase the
value xj multiplicatively and renormalize, and finally (c) buy a minimum cost cover for row i if
necessary.

Algorithm 2 LEARNORCOVERCIP

1: m′ ← |{j : cj ≤ β}|.
2: Initialize x0

j ←
β

cj ·m′ · 1{cj ≤ β}, and z0 ← ~0.
3: for t = 1, 2 . . . , n do
4: i← tth constraint in the random order.
5: if ∆t−1

i > γ then
6: Let y := κti · xt−1/β. for each column j, add ztj ← zt−1

j + byjc+ Ber(ỹj).
7: if 〈ai, xt−1〉 < ∆t−1

i then
8: For every j, update xtj ← xt−1

j · exp
{
κti ·

aij
cj

}
.

9: Let Zt = 〈c, xt〉/β and normalize xt ← xt/Zt.
10: else
11: xt ← xt−1

12: Let k∗ = argmink
ck
aik

. Add ztk∗ ← ztk∗ +
⌈

∆t−1
i

aik∗

⌉
.

Note that once again, Line 9 ensures Invariant 1 holds. The main theorem of this section is:

Theorem 4.4.1. LEARNORCOVERCIP is a polynomial-time randomized algorithm for ROCIP
which outputs a solution z with expected cost O(β · log(mn)) such that 3z is feasible.

Theorem 4.1.2 follows as a corollary, since given any intermediate solution zt, we can buy the
scaled solution 3zt.

We generalize the proof of Theorem 4.3.1. Redefine x∗ to be the optimal LP solution to the final,
unknown instance (4.4.1), and U t := {i | ∆t

i > γ} be the elements which are not covered to
extent 1− γ at the end of round t. With these new versions of U t and κt, the definitions of both ρt

and the potential Φ remain the same as in (4.3.2) and (4.3.3) (except we pick the constants C1 and
C2 differently).

Once again, we start with a bound on the initial potential.

Lemma 4.4.2 (Initial Potential). The initial potential is bounded as Φ(0) = O(β · log(mn)).

The proof is identical verbatim to that of Lemma 4.3.2.

It remains to relate the expected decrease in Φ to the algorithm’s cost in every round. For
convenience, let X t

i := 〈ai, xt〉 be the amount that xt fractionally covers i. Define Υt to be the
event that for constraint it arriving in round t we have ∆t−1

i > γ. The check at Line 5 ensures that

42

if Υt does not hold, then neither the cost paid by the algorithm nor the potential will change. We
focus on the case that Υt occurs, and once again start with the KL divergence.

Lemma 4.4.3 (Change in KL). For rounds in which Υt holds, the expected change in weighted
KL divergence is

E
it,Rt

[
KLc

(
x∗ || xt

)
− KLc

(
x∗ || xt−1

)
| xt−1, U t−1,Υt

]
≤ E

i∼Ut−1
[(e− 1) · κti min(X t−1

i ,∆t−1
i)− κti].

Proof. We break the proof into cases. By the check on Line 7, if X t−1
it ≥ ∆t−1

it , then the vector xt

is not updated in round t, so the change in KL divergence is 0. This means that

E
it,Rt

[
KLc

(
x∗ || xt

)
− KLc

(
x∗ || xt−1

)
| xt−1, U t−1,Υt, X t−1

it ≥ ∆t−1
it

]
≤ E

i∼Ut−1
[(e− 1) · κti min(X t−1

i ,∆t−1
i)− κti | X t−1

i ≥ ∆t−1
i] (4.4.2)

holds trivially, since in this case min(X t−1
i ,∆t−1

i) = ∆t−1
i > γ = (e − 1)−1 and κti ≥ 0.

Henceforth we focus on the case X t−1
i < ∆t−1

i .

The change in relative entropy depends only on the arriving uncovered constraint it, not on the
randomly chosen columnsRt. Expanding definitions,

E
it,Rt

[
KLc

(
x∗ || xt

)
− KLc

(
x∗ || xt−1

)
| xt−1, U t−1,Υt, X t−1

i < ∆t−1
i

]
= E

i∼Ut−1

[∑
j

cj · x∗j · log
xt−1
j

xtj

∣∣∣∣∣ X t−1
i < ∆t−1

i

]

= E
i∼Ut−1

[∑
j

cj · x∗j · logZt −
∑
j

cj · x∗j · κti ·
aij
cj

∣∣∣∣∣ X t−1
i < ∆t−1

i

]

≤ E
i∼Ut−1

[
β · logZt − κti ·

∑
j

aijx
∗
j

∣∣∣∣∣ X t−1
i < ∆t−1

i

]
(4.4.3)

where we used that 〈c, x∗〉 ≤ β. Expanding the definition of Zt and applying the fact that x∗ is a
feasible solution i.e. 〈ai, x∗〉 ≥ 1, we continue to bound (4.4.3) as

≤ E
i∼Ut−1

[
β · log

(
1

β

∑
j

cjx
t−1
j exp

(
κti ·

aij
cj

))
− κti

∣∣∣∣∣ X t−1
i < ∆t−1

i

]

≤ E
i∼Ut−1

[
β · log

(
1 +

e− 1

β
· κti ·

∑
j

aijx
t−1
j

)
− κti

∣∣∣∣∣ X t−1
i < ∆t−1

i

]
. (4.4.4)

(4.4.4) is derived by applying the approximation ey ≤ 1 + (e − 1)y for y ∈ [0, 1] and the fact
that 〈c, xt−1〉 = β by Invariant 1; the exponent lies in [0, 1] because by definition κti · aij/cj =
∆t−1
i · (aij/cj) ·mink(ck/aik) ≤ 1 since ∆t−1

i ∈ [0, 1]. Finally, using the fact that log(1 + y) ≤ y,
we have that (4.4.4) is at most

≤ E
i∼Ut−1

[
(e− 1) · κti ·

∑
j

aijx
t−1
j − κti

∣∣∣∣∣ X t−1
i < ∆t−1

i

]

43

≤ E
i∼Ut−1

[
(e− 1) · κti ·min

(
X t−1
i ,∆t−1

i

)
− κti

∣∣ X t−1
i < ∆t−1

i

]
. (4.4.5)

The lemma statement follows by combining (4.4.2) and (4.4.5) using the law of total expectation.

We move to bounding the expected change in log ρt provided by updating the solution z on Line 6
on the arrival of the random row i. Recall that U t = {i | ∆t

i > γ} are the unseen elements which
are at most half covered by z.

We will make use of the following lemma, which we prove in Section 4.9:

Fact 4.4.4. Given probabilities pj and coefficients bj ∈ [0, 1], let W :=
∑

j bj Ber(pj) be the sum
of independent weighted Bernoulli random variables. Let ∆ ≥ γ = (e− 1)−1 be some constant.
Then

E[min (W,∆)] ≥ α ·min (E[W],∆) ,

for a fixed constant α independent of the pj and bj .

We are ready to bound the expected change in log ρt.

Lemma 4.4.5 (Change in log ρt). For rounds in which Υt holds, the expected change in log ρt is

E
it,Rt

[
log ρt − log ρt−1 | xt−1, U t−1,Υt

]
≤ −α

β
· E
i′∼Ut−1

[
κti′ ·min

(
X t−1
i′ ,∆t−1

i′

)]
where α is a fixed constant.

Proof. Conditioned on it = i, the expected change in log ρt depends only onRt.

E
it,Rt

[
log ρt − log ρt−1 | xt−1, U t−1,Υt, it = i

]
= E
Rt

[
log

(
1− ρt−1 − ρt

ρt−1

) ∣∣∣∣ U t−1, it = i

]
≤ − 1

ρt−1
E
Rt

[
ρt−1 − ρt

∣∣ U t−1, it = i
]
. (4.4.6)

Above, follows from the approximation log(1− y) ≤ −y. Expanding definitions again, and using
the fact that κt−1

i′ − κti′ = mink(ck/ai′k) · (∆t−1
i′ − ∆t

i′) ≥ κti′(∆
t−1
i′ − ∆t

i′), we further bound
(4.4.6) by

≤ − 1

ρt−1
E
Rt

[∑
i′∈Ut−1

κti′ · (∆t−1
i′ −∆t

i′)

]

= − 1

ρt−1

∑
i′∈Ut−1

κti′ · ERt[∆
t−1
i′ −∆t

i′]

= − 1

ρt−1

∑
i′∈Ut−1

κti′ · α ·min

(
κti
β
·X t−1

i′ , ∆t−1
i′

)
. (4.4.7)

44

To understand (4.4.7), note that ∆t−1
i′ −∆t

i′ = min(
∑

j ai′jbyjc+
∑

j ai′j Ber(ỹ), ∆t−1
i′). By the

definition of y, the first term inside the minimum has expectation κti
β
·X t−1

i′ , and since Υt holds
we have ∆t−1

i′ > γ. Therefore applying Fact 4.4.4 gives (4.4.7) (where α is the constant given by
the lemma). Since κti/β ≤ 1, we bound (4.4.7) with

≤ −α
β
· κti ·

1

ρt−1

∑
i′∈Ut−1

κti′ ·min
(
X t−1
i′ ,∆t−1

i′

)
= −α

β
· κti ·

|U t−1|
ρt−1

· E
i′∼Ut−1

[
κti′ ·min

(
X t−1
i′ ,∆t−1

i′)
)]
. (4.4.8)

Taking the expectation of (4.4.8) over i ∼ U t−1, and using the fact that Ei∼Ut−1 [κti] = ρt−1/U t−1,
the expected change in log ρt becomes

E
it,Rt

[
log ρt − log ρt−1 | xt−1, U t−1,Υt

]
≤ −α

β
· E
i′∼Ut−1

[
κti′ ·min

(
X t−1
i′ ,∆t−1

i′

)]
,

as desired.

We may now combine the two previous lemmas as before.

Proof of Theorem 4.4.1. In the round in which constraint i arrives, the expected cost of sampling
is κti

β
〈c, xt−1〉 = κti (by Invariant 1). The algorithm pays an additional

ck∗

⌈
∆t−1
i

aik∗

⌉
= ck∗

⌈
κti
ck∗

⌉
≤ 2κti

in Line 13, where this upper bound holds because κti
ck∗

=
∆t−1
i

aik∗
≥ 1/2, since ∆t−1

i ≥ γ ≥ 1/2 and
aik∗ ≤ 1. Hence the total expected cost per round is at most 3 · κti.
Combining Lemma 4.4.3 and Lemma 4.4.5 and choosing C1 = 3 and C2 = 3(e− 1)/α, we have

E
it,Rt

[
Φ(t)− Φ(t− 1)

∣∣ i1, . . . , it−1,R1, . . . ,Rt−1,Υt
]

= E
it,Rt

[
C1 · (KLc (x∗ || xt)− KLc (x∗ || xt−1))

+ C2 · β · (log ρt − log ρt−1)

∣∣∣∣ i1, . . . , it−1,R1, . . . ,Rt−1,Υt

]
≤ − E

it,Rt

[
3 · κtit

∣∣ i1, . . . , it−1,R1, . . . ,Rt−1,Υt
]
,

which cancels the expected change in the algorithm’s cost. Hence we have the inequality

E
it,Rt

[
Φ(t)− Φ(t− 1) + c(ALG(t))− c(ALG(t− 1))

∣∣ i1, . . . , it−1,R1, . . . ,Rt−1
]
≤ 0.

Let t∗ be the last time step for which Φ(t∗) ≥ 0. By applying Lemma 4.9.1 and the bound on the
starting potential, Φ(0) = O(β · log(mn)), we have that E[c(ALG(t∗))] ≤ O(β · log(mn)).

To bound the expected cost of the algorithm after time t∗, note that as before that KL divergence
is a nonnegative quantity, and Φ is negative only when ρt ≤ β. The algorithm pays O(κti) in
expectation during rounds t where i ∈ U t−1 and 0 during rounds where i 6∈ U t−1, and hence the
expected cost paid by the algorithm after time t∗ is at most

∑
i∈Ut∗ κ

t∗
i = ρt

∗
= O(β).

45

4.5 Non- Metric Facility Location

We continue with an extension of LEARNORCOVER to a problem that is not on its surface an
instance of SUBMODULARCOVER: NONMETRICFACILITYLOCATION. The input is a set of n
clients and m facilities. Each facility f has an opening cost cf , and each client-facility pair (v, f)
has a connection cost cfv. The goal is to open a number of facilities and connect each client to
exactly one open facility such that the total cost is minimized. In the random order online version,
which we call ROFACILITYLOCATION, the facilities are known ahead of time, and the clients
arrive online in random order; on arrival each client, the algorithm must choose which (if any)
facility to open, and connect the client to that facility. Decisions are irrevocable, in the sense that
a client may not change which facility it has connected to after arrival.

Our algorithm is essentially LEARNORCOVER run on the following dynamic set system that
changes with time. The sets are the facilities and the clients are the elements. Let Ct be the
facilities purchased by the end of round t. For every client v, define

f t(v) := argmin
f

(1{f 6∈ Ct} · cf + cfv)

κtv := min
f

(1{f 6∈ Ct} · cf + cfv)

to be the marginal cost of connecting v in the cheapest way possible. Also define Γt(v) := {f :
cfv ≤ κtv/2} to be the set of set of facilities that reduce the marginal cost of connecting v by at
least a factor of 2. Then a facility f covers a client v at time t, if f ∈ Γt(v).

As before, by a guess-and-double approach, we assume we know a bound β such that LPOPT ≤
β ≤ 2 · LPOPT; here LPOPT is the cost of the optimal integral solution to the NONMETRICFACIL-
ITYLOCATION instance.

Algorithm 3 LEARNORCOVERNMFL

1: Let m′ ← |{f : cf ≤ β}|.
2: Initialize x0

f ←
β

cf ·m′
· 1{cf ≤ β}, and C0 ← ∅.

3: for t = 1, 2 . . . , n do
4: vt ← tth client in the random order, and letRt ← ∅.
5: for each facility f , with probability min(κt−1

vt · x
t−1
f /β, 1) addRt ← Rt ∪ {f}.

6: Update Ct ← Ct−1 ∪Rt.
7: if

∑
f∈Γt−1(vt) x

t−1
f < 1 then

8: For every set f , update xtS ← xt−1
S · exp

{
1{f ∈ Γt−1(vt)} · κt−1

vt /cf
}

.
9: Let Zt = 〈c, xt〉/β and normalize xt ← xt/Zt.

10: else
11: xt ← xt−1.
12: Ct ← Ct ∪ {f t−1(vt)} and connect vt to f t−1(vt).

We maintain the invariant:

Invariant 2. For all time steps t, it holds that 〈c, xt〉 = β.

Our main theorem is:

Theorem 4.5.1. Algorithm 3 is O(logmn)-competitive for ROFACILITYLOCATION

46

Let us start by defining notation. Let x∗ to be the indicator vector of the facilities in the optimal
solution. Let U t be the clients remaining uncovered at the end of round t (where U0 = U is the
entire client set). Recall again the definition of ρt and Φ from (4.3.2) and (4.3.3).

Lemma 4.5.2 (Initial Potential). The initial potential is bounded as Φ(0) = O(β · log(mn)).

We now show the potential decreases sufficiently in every round. Define Υt to be the event that
OPT ∩ Γt−1(vt) 6= ∅. If event Υt does not hold, then OPT pays at least κt−1

v /2 to connect client v;
the algorithm also pays O(κt−1

v) in expectation in every round, so in this case we can charge the
cost of this round to OPT. Henceforth we focus on the case that event Υt does occur.

We bound the decrease of each term in the potential separately.

Lemma 4.5.3 (Change in KL). The expected change in the weighted KL divergence is

E
vt,Rt

[
KLc

(
x∗ || xt

)
− KLc

(
x∗ || xt−1

)
| xt−1, U t−1,Υt

]
(4.5.1)

≤ E
v∼Ut−1

e2 − 1

2
· κt−1

v ·min

 ∑
f∈Γt−1(v)

xf , 1

− κt−1
v

. (4.5.2)

We emphasize that the expected change in relative entropy in the statement above depends only
on the randomness of the arriving uncovered client vt, not on the randomly chosen facilitiesRt.

Proof. We break the proof into cases. Let Λt be the event that
∑

f∈Γt−1(vt) x
t−1
f < 1. If Λt does

not hold, in Line 11 we set the vector xt = xt−1, so the change in KL divergence is 0. This means
that inequality (4.5.2) holds trivially. Henceforth we focus on the case when Λt holds.

Recall that the expected change in relative entropy depends only on the arriving uncovered element
vt. Expanding definitions,

E
vt,Rt

[
KLc

(
x∗ || xt

)
− KLc

(
x∗ || xt−1

)
| xt−1, U t−1,Υt,Λt

]
= E

v∼Ut−1

[∑
S

cf · x∗f · log
xt−1
S

xtf

∣∣∣∣∣ Υt,Λt

]

= E
v∼Ut−1

〈c, x∗〉 · logZt −
∑

f∈Γt−1(v)

cf · x∗f · log eκ
t−1
v /cf

∣∣∣∣∣∣ Υt,Λt

≤ E
v∼Ut−1

β · log

 ∑
f∈Γt−1(v)

cf
β
· xt−1

f · eκ
t−1
v /cf +

∑
f 6∈Γt−1(v)

cf
β
· xt−1

f

−

∑
f∈Γt−1(v)

κt−1
v · x∗f

∣∣∣∣∣∣∣∣∣∣
Υt,Λt

, (4.5.3)

where in the last step (4.5.3) we expanded the definition of Zt, and used 〈c, x∗〉 ≤ β. Since we
condition on Υt holding, which means that

∑
f∈Γt−1(v) κ

t−1
v · x∗f ≥ κt−1

v , we can further bound
(4.5.3) by

≤ E
v∼Ut−1

β · log

 ∑
f∈Γt−1(v)

cf
β
· xt−1

f · eκ
t−1
v /cf +

∑
f 6∈Γt−1(v)

cf
β
· xt−1

f

− κt−1
v

∣∣∣∣∣∣ Λt

47

≤ E
v∼Ut−1

β · log

∑
f

cf
β
· xt−1

f +
e2 − 1

2
·
∑

f∈Γt−1(v)

κt−1
v

β
· xt−1

f

− κt−1
v

∣∣∣∣∣∣ Λt

, (4.5.4)

where we use the approximation ey ≤ 1 + (e2 − 1) · y/2 for y ∈ [0, 1] (note that κt−1
v is the

cheapest marginal connection cost for v, so for any f ∈ Γt−1(v) for which cfv ≤ κt−1
v /2 we have

that cf ≥ κt−1
v /2 and thus κt−1

v /cf ≤ 2). Finally, using Invariant 2, along with the approximation
log(1 + y) ≤ y, we bound (4.5.4) by

≤ E
v∼Ut−1

e2 − 1

2
·
∑

f∈Γt−1(v)

κt−1
v · xf − κt−1

v

∣∣∣∣∣∣ Λt

≤ E

v∼Ut−1

e2 − 1

2
· κt−1

v ·min

 ∑
f∈Γt−1(v)

xf , 1

− κt−1
v

. (4.5.5)

We have shown the lemma statement when Λt holds and when it does not, which completes the
proof.

We move to bounding the change in log ρ.

Lemma 4.5.4 (Change in log ρt). For rounds when v is uncovered on arrival, the expected change
in log ρt is

E
vt,Rt

[
log ρt − log ρt−1 | xt−1, U t−1,Υt

]
≤ −1− e−1

2β
· E
u∼Ut−1

κt−1
u ·min

 ∑
f∈Γ(u)

xf , 1

.
Proof.

E
Rt

[
log ρt − log ρt−1 | xt−1, U t−1,Υt, vt = v

]
= E
Rt

[
log

(
1− ρt−1 − ρt

ρt−1

) ∣∣∣∣ U t−1, vt = v

]
≤ − 1

ρt−1
· E
Rt

[
ρt−1 − ρt

∣∣ U t−1, vt = v
]
. (4.5.6)

Above, (4.5.6) follows from the approximation log(1− y) ≤ −y. Expanding the definition of ρt

from (4.3.2), (4.5.6) is bounded by

≤ − 1

ρt−1
· E
Rt

[∑
u∈Ut−1

κt−1
u

2
· 1{Γt−1(u) ∩Rt 6= ∅}

∣∣∣∣∣ U t−1, vt = v

]

= − 1

ρt−1

∑
u∈Ut−1

κt−1
u

2
· P
Rt

(
Γt−1(u) ∩Rt 6= ∅ | U t−1, vt = v

)
≤ −1− e−1

2β
· κt−1

v · 1

ρt−1

∑
u∈Ut−1

κt−1
u ·min

 ∑
f∈Γt−1(v)

xt−1
f , 1

 (4.5.7)

48

= −1− e−1

2β
· κt−1

v · |U
t−1|

ρt−1
· E
u∼Ut−1

κt−1
u ·min

 ∑
f∈Γt−1(v)

xt−1
f , 1

. (4.5.8)

Step (4.5.7) is due to the fact that each facility f is sampled independently with probability
min(κt−1

v xt−1
f /β, 1), so the probability any given client u ∈ U t−1 gets at least one facility from

Γt−1(u) is

1−
∏

f∈Γt−1(u)

(
1−min

(
κt−1
v xt−1

f

β
, 1

))
≥ 1− exp

−min

κt−1
v

β

∑
f∈Γt−1(u)

xt−1
f , 1

(∗∗)
≥ (1− e−1) ·min

κt−1
v

β

∑
f∈Γt−1(u)

xt−1
f , 1

 .

Above, (∗∗) follows from convexity of the exponential. Step (4.5.8) follows since κt−1
v /β ≤ 1.

Taking the expectation of (4.5.8) over vt ∼ U t−1, and using the fact that Ev∼Ut−1 [κt−1
v] =

ρt−1/|U t−1|, the expected change in log ρt becomes

E
vt,Rt

[
log ρt − log ρt−1 | xt−1, U t−1,Υt

]
≤ −1− e−1

2β
· E
u∼Ut−1

κt−1
u ·min

 ∑
f∈Γt−1(u)

xt−1
f , 1

,
as desired.

Proof of Theorem 4.5.1. In every round t, the expected cost of the sampled facilitiesRt is κt−1
vt ·

〈c, xt−1〉/β = κt−1
vt (by Invariant 2). The algorithm pays an additional κt−1

vt in Line 12, and hence
the total expected cost per round is at most 2 · κt−1

vt .

In rounds t for which Υt holds, by combining Lemmas 4.5.3 and 4.5.4, and setting the constants
C1 = 2 and C2 = 2e(e+ 1), we have

E
vt,Rt

[
Φ(t)− Φ(t− 1)

∣∣ v1, . . . , vt−1,R1, . . . ,Rt−1,Υt
]

= E
vt,Rt

[
C1 (KLc (x∗ || xt)− KLc (x∗ || xt−1))

+ C2 · β · (log ρt − log ρt−1)

∣∣∣∣ v1, . . . , vt−1,R1, . . . ,Rt−1,Υt

]
≤ − E

vt,Rt

[
2 · κt−1

vt

∣∣ v1, . . . , vt−1,R1, . . . ,Rt−1,Υt
]
,

which cancels the expected change in the algorithm’s cost. Hence we have the inequality

E
vt,Rt

[
Φ(t)− Φ(t− 1) + c(ALG(t))− c(ALG(t− 1))

∣∣ Υt, v1, . . . , vt−1,R1, . . . ,Rt−1
]
≤ 0.

Let t∗ be the last time step for which Φ(t∗) ≥ 0. By applying Lemma 4.9.1 and the bound on the
starting potential from Lemma 4.5.2, we have that the total cost paid by the algorithm over all
rounds in which Υt holds is O(β · log(mn)).

In rounds for which Υt does not hold, we know that OPT ∩ Γt−1(vt) = ∅, so OPT connects vt to a
facility f ∗(vt) and pays at least cf∗(vt)vt ≥ κt−1

v /2 to connect vt. Hence

E
vt,Rt

[
c(ALG(t))− c(ALG(t− 1))

∣∣ Υt, v1, . . . , vt−1,R1, . . . ,Rt−1
]
≤ 2 · κt−1

v ≤ 4 · cf∗(vt)vt .

49

Summing over all such rounds, we get that the total cost paid by the algorithm over all rounds in
which Υt does not hold is O(β).

It remains to bound the expected cost paid by the algorithm after time t∗. Since KL divergence is a
nonnegative quantity, Φ is negative only when ρt ≤ β. The algorithm pays O(κt−1

vt) in expectation
during rounds t where vt ∈ U t−1 and 0 during rounds where vt 6∈ U t−1. Since for each v the
backup cost κtv is nonincreasing in t, the expected cost paid by the algorithm after time t∗ is
therefore bounded above by

∑
t>t∗ 2 · κt−1

vt ≤ 2
∑

u∈Ut∗ κ
t∗
u = 2 · ρt∗ = O(β).

4.6 SETCOVER with a Sample

The idea of algorithms with predictions has emerged as a recent trend in modern computer science:
can algorithms be made to perform better if they are granted access to some advance insight or
advice about the input they are given? In the context of online algorithms, a natural assumption is
that the algorithm is allowed to sample from its input before the online sequence begins. We ask
what benefit such an assumption gives for SETCOVER. Specifically:

What is competitive ratio is possible for ONLINESETCOVER when the algorithm is
allowed to sample an α fraction of the elements before the sequence begins?

We call this version α-SAMPLESETCOVER1. We highlight that the adversary is allowed to choose
the order of the elements after the realization of the randomness from the sampling.

A priori it is not clear that this problem has much to do with ROSETCOVER. Nevertheless, we give
an efficient algorithm for α-SAMPLESETCOVER with expected competitive ratio O(log(mn)/α)
via a reduction to the random order setting. This is best possible offline in polynomial time when
m = poly(n) and α = Ω(1).

Theorem 4.6.1. Algorithm 4 is a polytime randomized algorithm for α-SAMPLESETCOVER

achieving competitive ratio O(log(mn)/α).

It is convenient to first reduce α-SAMPLESETCOVER to a slightly different problem in which
instead of assuming that the algorithm samples exactly αn of the elements, every element is
assigned to the sampled set independently with probability α. By subsampling elements with
probability α/2 and using standard concentration bounds, it is straightforward to argue that the
number of elements sampled this way is less than αn with high probability. Hence, at the expense
of a constant multiplicative decrease in α, it suffices to give an algorithm for this modified version.

Definition 4.6.2. A randomized ONLINESETCOVER algorithm A is RO-compliant with a poten-
tial function Φ ≥ 0, if for every time step t, if the element vt is sampled uniformly at random from
the uncovered elements U t, then

E
vt,Rt

[∆tΦ + ∆tc(A)] ≤ 0

where ∆tΦ, ∆tc(A) andRt are the change in Φ, the cost paid by algorithm A, and the random
coin flips of A at time t respectively.

From the proof of Theorem 4.3.1, the following is immediate:

1A similar question was asked in the context of the secretary problem [KNR20] and online matching [KNR22].

50

Fact 4.6.3. LEARNORCOVER is RO-compliant with a potential function Φ such that Φ(0) =
c(OPT) log(mn).

Algorithm 4 REDUCTION TO RO-COMPLIANT ALGORITHM A
1: SAMPLES ← sampled elements of U .
2: REST ← U\SAMPLES.
3: C ← ∅.
4: for v ∈ SAMPLES in uniformly random order do
5: Feed v to A and add any sets bought to C.
6: Buy all sets of C.
7: for v ∈ REST in arbitrary order do
8: if v uncovered by C then
9: Buy cheapest set covering v.

Our main theorem is:

Theorem 4.6.4. If ONLINESETCOVER algorithm A is RO-compliant with a potential Φ, then
Algorithm 4 with A is O(Φ(0)/α)-competitive for α-SAMPLESETCOVER.

Together with Fact 4.6.3, we immediately get:

Corollary 4.6.5. There is an O(log(mn)/α)-competitive algorithm for α-SAMPLESETCOVER.

Proof of Theorem 4.6.4. Consider the following imaginary process. Define U t to be the elements
uncovered by the algorithm A at time t, where initially U0 := U . In step t, sample an element vt

uniformly at random from U t, then color it red with probability α and blue with probability 1− α.
If element was colored red, feed vt to algorithm A and buy any sets A buys; else if the element vt

was blue, buy the cheapest set covering it.

Observe that the cost of Algorithm 4 is only less than the cost paid during this imaginary process.
To see this note that the distribution on the ordered sequences of red elements is the same as the
distribution on ordered sequences of the SAMPLES elements, and hence A pays the same total
cost in both. On the other hand in the imaginary process, at time t we pay κvt for every blue
element vt not covered by A by time t; in Algorithm 4 we pay κvt for every element not covered
by A ever. It remains to bound the cost paid during the imaginary process.

To this end, let Dt be the sets bought in round t of the imaginary process. Since vt was uncovered
on arrival and is covered by the end of round t, the cost c(Dt) paid in round t is at least κvt . Since
this cost is exactly κvt when the element vt is colored blue, we have

E
vt,Rt

[
∆tc(A)

∣∣ vt red
]

= E
vt

[
c(Dt)

∣∣ vt red
]
≥ E

[
c(Dt)

∣∣ vt blue
]
.

Since A is RO-compliant with Φ, this implies that

E
vt,Rt

[
∆tΦ

∣∣ vt red
]
≤ − E

vt,Rt

[
∆tc(A)

∣∣ vt red
]
≤ −E

[
c(Dt)

]
.

Since elements are colored red with probability α, and Φ does not change in rounds when vt is
colored blue, we get

E
vt,Rt

[
∆tΦ

]
= α E

vt,Rt

[
∆tΦ | vt red

]
≤ −αE

[
c(Dt)

]
.

51

Defining Φ′ = Φ/α, we have that Φ′ ≥ 0, Φ′(0) = Φ(0)/α, and

E
vt,Rt

[∆tΦ′ + ∆tc(A)] ≤ 0,

which together imply that the total expected cost paid during the imaginary process is Φ(0)/α.

4.7 Lower Bounds

We turn to showing lower bounds for SETCOVER and related problems in the random order
model. The lower bounds for ROSETCOVER are proven via basic probabilistic and combinatorial
arguments. We also show hardness for a batched version of ROSETCOVER, which has implications
for related problems.

4.7.1 Lower Bounds for ROSETCOVER

We start with information theoretic lower bounds for the RO setting.

Theorem 4.7.1. The competitive ratio of any randomized fractional or integral algorithm for
ROSETCOVER is Ω(log n).

Proof. Consider the following instance of ROSETCOVER in which m = 2` and n = 2` − 1.
Construct the instance recursively in ` rounds. Define the sub collection of sets S0 = S, i.e.
initially all the sets. For each round i from 1 to `, do: (a) create 2`−i new elements and add each
to every set in Si−1, and (b) choose Si to be a uniformly random subcollection of Si−1 of size
|Si−1|/2.

By Yao’s principle, it suffices to lower bound the cost of any fixed deterministic algorithm A that
maintains a monotone LP solution in random order. Let xt be the fractional solution of A at the
end of round t. Assume A is lazy in the sense that in every round and for every coordinate xS
that is incremented in that round, setting that coordinate to xS − ε is infeasible for all ε > 0 with
respect to the elements observed up until and including this round.

We refer to the elements added in round i as the type i elements. Let g(i) be the event that at least
one element of that type arrives in random order before any element of type j for j > i. Note that
P (g(i)) = 2l−i/(2l−i+1 − 1) > 1/2 for all i.

Also define c(A, i) be the cost paid by the algorithm to cover the first element of type i that arrives
in random order (potentially 0). Conditioned on g(i) holding, we claim the expected cost c(A, i)
is at least 1/2. To see this, first suppose that i is the first type for which g(i) holds; then this is the
first element to arrive, and so

∑
S∈S0

xtS = 0 beforehand and
∑

S∈Si x
t
S = 1 afterward, and so

c(A, i) = 1 ≥ 1/2.

Otherwise, let k < i be the last type for which g(k) held. Since A is lazy, at the time t before
the first element of type i arrived, we had

∑
S∈Sk x

t
S = 1. By the construction of the instance

and the fact that i > k, the collection Si consists of a uniformly random subset of Sk of size
at most |Sk|/2. Deferring the random choice of this collection Si until this point, we have that
E[
∑

S∈Si x
t
S] ≤ 1/2. Hence E[c(A, i) | g(i)] ≥ 1/2.

52

To conclude, the optimal solution consists of the vector that has 1 on the one coordinate S
containing all the elements and 0 elsewhere, whereas

E[c(A)] ≥
∑
i

P (g(i)) · E[c(A, i) | g(i)] >
`

4
= Ω(log n).

Since the optimum is integral, the competitive ratio lower bound also holds for integral algorithms.

We emphasize that this set system has a VC dimension of 2, which rules out improved algorithms
for set systems of small VC dimension in this setting.

Theorem 4.7.2. The competitive ratio of any randomized algorithm for ROSETCOVER is
Ω
(

logm
log logm

)
even when m� n.

The following proof uses the construction in Proposition 4.2 of [AAA+09]; they take the product
of this construction with another to show a stronger bound for the adversarial order setting. It is a
simple observation that the part of the construction we use gives a bound even in random order,
but we include the proof for completeness.

Proof. Given integer parameter r, let S =
(

[10r2]
r

)
be the set of all subsets of [10r2] of size r. The

adversary chooses U to be a random subset of [10r2] of size r and reveals it in random order.

By Yao’s principle, it again suffices to bound the performance of any deterministic algorithm A,
and we may again assume that A is lazy. By deferring randomness, the adversary is equivalent
to one which randomly selects an element r times without replacement from [10r2]. Since the
algorithm selects at most r sets each of size at most r, the number of elements of [10r2] covered
by A is at most [r2], and hence every element chosen by the adversary has probability at least
4/5 of being uncovered on arrival. Hence the algorithm selects at least 4r/5 sets in expectation,
whereas OPT consists of the single set covering the r elements of the adversary, so the competitive
ratio of A is Ω(r). The claim follows by noting that r = Ω(logm/ log logm).

4.7.2 Performance of [BN09b] in Random Order

In this section we argue that the algorithm of [BN09b] has a performance of Ω(logm log n)
for ROSETCOVER in general. One instance demonstrating this bound is the so called upper
triangular instance ∆ = (U∆,S∆) for which n = m and which we now define. Let the sets
S∆ = {S1, . . . , Sn} be fixed. Choose a random permutation π ∈ Sn. Then for every i = 1, . . . ,m,
let Sπ(i) = {n − i + 1, . . . , n}, since it will be convenient for elements to appear in Fig. 4.1 in
descending order.

53

. . .
Sπ(1) Sπ(3) Sπ(n)Sπ(2)

Figure 4.1: Tight instance for [BN09b] in random order.

Claim 4.7.3. [BN09b] is Ω(logm log n)-competitive on the instance ∆ = (U∆,S∆) in RO.

Proof. The final solution T output by [BN09b] on this instance is equivalent to that of the
following algorithm which waits until the end of the sequence to buy all of its sets. Maintain
a (monotone) LP solution x whose coordinates are indexed by sets. Every time an uncovered
element i arrives, for all j ≥ i increase the weights of all sets xπ(j) uniformly until

∑
j≥i xπ(j) = 1.

Finally, at the end of the element sequence, sample each set with probability min(log n · xS, 1).
We claim that this produces a solution of cost Ω(log2 n) in expectation on the instance above
when elements are presented in random order, whereas the optimal solution consists of only the
one set S1.

Let Xi be the event that i arrives before any element j with j < i. This corresponds to i
appearing in the fewest sets of any element seen thus far; we call such an element leading. Let
k(i) = min{k | Xk, k > i} be the most recent leading index before i, if one exists. Note that if
Xi occurs and k(i) = k, then the expected increase in the size of the final solution due to Xi is
exactly i ·

(
min

(
logn
i
, 1
)
−min

(
logn
k
, 1
))

. (If Xi occurs but k(i) does not exist, then i is the first
leading element and so the expected cost increase in the final solution is i ·min

(
logn
i
, 1
)
.)

What is P (Xi, k(i) = k) for some i < k? It is precisely the probability that the random arrival
order induces an order on only the elements k, k − 1, . . . , i, . . . , 1 which puts k first and i second,
which is 1/(k(k − 1)).

Thus the total expected size of the final solution T can be bounded by

E[|T |] =
n−1∑
i=1

n∑
k=i+1

P (Xi, k(i) = k) · i
(

min

(
log n

i
, 1

)
−min

(
log n

k
, 1

))

≥
n−1∑
i=1

n∑
k=i+1

1

k(k − 1)
· i
(

min

(
log n

i
, 1

)
−min

(
log n

k
, 1

))

≥ log n ·
n−1∑
i=logn

n∑
k=i+1

1

k(k − 1)
· i
(

1

i
− 1

k

)
≥ log n · Ω(log n− log log n)

= Ω(log2 n).

54

4.7.3 Lower Bounds for Extensions

We study lower bounds for several extensions of ROSETCOVER. Our starting point is a lower
bound for the batched version of the problem. Here the input is specified by a set system (U,S)
as before, along with a partition of U into batches B1, B2, . . . Bb. For simplicity, we assume
all batches have the same size s. The batches are revealed one-by-one in their entirety to the
algorithm, in uniform random order. After the arrival of a batch, the algorithm must select sets to
buy to cover all the elements of the batch.

Using this lower bound, we derive as a corollary a lower bound for the random order version of
SUBMODULARCOVER from Chapter 3. It is tempting to use the method of Theorem 4.3.1 to
improve the competitive ratio of O(logm log(T · f (T)(N)/fmin)) in RO. We show that removing
a log from the bound is not possible in general.

Theorem 4.7.4. The competitive ratio of any polynomial-time randomized algorithm on batched
ROSETCOVER with b batches of size s is Ω(log b log s) unless NP ⊆ BPP.

We follow the proof of [Kor04, Theorem 2.3.4], which demonstrates that there is no randomized
o(logm log n)-competitive polynomial-time algorithm for (adversarial order) ONLINESETCOVER

unless NP ⊆ BPP. We adapt the argument to account for random order.

Consider the following product of the upper triangular instance from Section 4.7.2 together with
an arbitrary instance of (offline) SETCOVER H . In particular, take ∆ = (U∆,S∆) to be the upper
triangular instance on N elements, and let H = (UH ,SH) denote a SETCOVER instance, where
UH = [N ′] and |SH | = M ′. Note that ∆ is a random instance, where the randomness is over the
choice of label permutation π. Define product instance ∆×H = (U∆×H ,S∆×H) by

U∆×H = {(i, j) ∈ U∆ × UH}
S∆×H = {Sij = Si × Sj : (Si, Sj) ∈ S∆ × SH}.

Observe that |U∆×H | = NN ′ and |S∆×H | = NM ′.

Each copy of H is a batch of this instance, so that batches of elements B1, . . . , BN are given
by Bi = {(i, j) : j ∈ UH}. Thus the parameters of the batched ROSETCOVER instance are
b = N and s = N ′. These batches Bi will arrive in uniformly random order according to some
permutation σ ∈ SN . For a randomized algorithm A, let

C(A(∆×H)) := E
σ,π∈SN
R

[c(A(∆×H))]

denote the expected cost of A on the instance ∆×H , whereR denotes the randomness of A.

We begin by establishing an information-theoretic lower bound, whose proof we defer to Sec-
tion 4.9.

Lemma 4.7.5. Let A be a randomized algorithm for batched ROSETCOVER. Then on the
instance ∆×H ,

C(A(∆×H)) ≥ 1

2
· |OPT(H)| · logN.

We also require the following theorem of [RS97]:

Lemma 4.7.6. There exists a polynomial-time reduction from SATto SETCOVER that, given a
formula ψ, produces a SETCOVER instance Hψ with N ′ elements and M ′ sets for which

55

• M ′ = N ′α for some constant α,

• if ψ ∈ SAT then OPT(Hψ) = K(N ′),

• if ψ 6∈ SAT then OPT(Hψ) ≥ c · logN ′ ·K(N ′),

for some polynomial-time-computable K and constant c ∈ (0, 1).

We are ready to show the lower bound.

Proof of Theorem 4.7.4. Suppose that there is some polynomial-time randomized algorithm A
with competitive ratio at most c/4 · log b log s for batched ROSETCOVER (recall that c is the
constant given in Lemma 4.7.6 above). Then, we argue, the following is a BPP algorithm deciding
SAT.

Given a formula ψ, we first reduce it to an instance of batched ROSETCOVER: first feed
the formula through the reduction in Lemma 4.7.6 to get the instance Hψ, then create the
batched ROSETCOVER instance defined by ∆ × Hψ. Finally, run A on ∆ × Hψ a number
W = poly(n) times, and let C be the empirical average of c(A(∆ × Hψ)) over these runs. If
C ≥ 3c/8 · log b log s ·K(N ′), output ψ ∈ SAT, else output ψ 6∈ SAT. It suffices to argue that
this procedure answers correctly with high probability.

Claim 4.7.7. If ψ ∈ SAT, then C(A(∆, Hψ)) ≤ c
4
· log b log s ·K(N ′).

Proof. By assumption, A has the guarantee

C(A(∆×Hψ)) ≤ c

4
log b log s · |OPT(∆×Hψ)|

=
c

4
· log b log s ·K(N ′).

Claim 4.7.8. If ψ 6∈ SAT, then C(A(∆, Hψ)) ≥ c
2
· log b log s ·K(N ′).

Proof. By Lemma 4.7.5, the performance of A is lower bounded as

C(A(∆×Hψ)) ≥ 1

2
HN · |OPT(Hψ)|

≥ 1

2
logN · c · log(N ′) ·K(N ′)

≥ c

2
· log b log s ·K(N ′).

To complete the proof, note that c(A(∆×Hψ)) ∈ [0, NM ′]. Setting W = poly(n) sufficiently
high, by a Hoeffding bound, the estimate C concentrates to within c

8
· log b log s · K(N ′) of

C(A(∆, Hψ)) with high probability, in which case the procedure above answers correctly.

We now use Theorem 4.7.4 to derive lower bounds for ROSUBMODULARCOVER.

Corollary 4.7.9. The competitive ratio of any polynomial-time randomized algorithm against
ROSUBMODULARCOVER is Ω(logm · log(f (T)(N)/fmin)) unless NP ⊆ BPP.

Proof. Batched ROSETCOVER is a special case of online SUBMODULARCOVER in which fi
is the coverage function of block i. In this case the parameter f (T)/fmin = n, so the statement
follows by applying Theorem 4.7.4 with b = s =

√
n (and remembering that m = poly(n)).

56

4.8 Conclusion

In this work we introduce LEARNORCOVER as a method for solving ROSETCOVER and ROCIP
with competitive ratio nearly matching the best possible offline bounds. On the other hand we
prove nearly tight information theoretic lower bounds in the RO setting. We also show lower
bounds and separations for several generalizations of ROSETCOVER.

We leave as an interesting open question whether it is possible to extend the technique to covering
IPs with box constraints, and beyond that to the even more general SUBMODULARCOVER

problem. Another question is whether the result for NONMETRICFACILITYLOCATION extends
to GROUPSTEINERTREE. In particular, can one get an O(log3 n) competitive algorithm when
the terminals are revealed in random order2? Finally, we show an O(log(mn)/α) competitive
ratio for α-SAMPLESETCOVER, but what is the right dependence on α? We conjecture that
O(log(mn) log(1/α)) is possible.

We hope our method finds uses elsewhere in online algorithms for RO settings. In Section 4.12
we discuss suggestive connections between our technique and other methods in online algorithms,
namely projection based algorithms and stochastic gradient descent.

4.9 Deferred Proofs

In this chapter we use several potential function arguments, and the following simple lemma.

Lemma 4.9.1 (Expected Potential Change Lemma). Let ALG be a randomized algorithm for
ROSETCOVER and let Φ be a potential which is a function of the state of the algorithm at time
t. Let c(ALG(t)) be the cost paid by the algorithm up to and including time t. Let Rt and vt

respectively be the random variables that are the random decisions made by the algorithm in
time t, and the random element that arrives in time t. Suppose that for all rounds t in which the
algorithm has not covered the entire ground set at the beginning of the round, the inequality

E
vt,Rt

[
Φ(t)− Φ(t− 1) + c(ALG(t))− c(ALG(t− 1))

∣∣ v1, . . . , vt−1,R1, . . . ,Rt−1
]
≤ 0.

holds. Let t∗ be the last time time step such that Φ(t∗) ≥ 0. Then the expected cost of the
algorithm, c(ALG(t∗)) can be bounded by

E[c(ALG(t∗))] ≤ Φ(0).

Proof. Let T be the set of rounds for which Φ > 0 at the beginning of the round.

Define the stochastic process:

X t :=

{
Φ(t) + c(ALG(t)) if t ∈ T ,
X t−1 otherwise.

By assumption, this is a supermartingale with respect to ((vt,Rt))t; that is,

E
vt,Rt

[
X t+1

∣∣ v1, . . . , vt−1,R1, . . . ,Rt−1
]
≤ X t

2We refer the reader to [AAA+06] for a full description of online GROUPSTEINERTREE.

57

for all t. By induction we have that for all t > 0

E
v1,...,vt

R1,...,Rt

[X t] ≤ X0,

so in particular,

E[Φ(t∗)] + E[c(ALG(t∗))] ≤ Φ(0).

The claim follows since the leftmost term is nonnegative by assumption.

Fact 4.3.3. Every pure covering LP of the form minx≥0{〈c, x〉 : Ax ≥ 1} for c ≥ 0 and
aij ∈ [0, 1] with optimal value less than β has an optimal solution x∗ which is supported only on
columns j such that cj ≤ β.

Proof. Suppose otherwise and let x∗ be an optimal LP solution. Let j′ be a coordinate for which
cj′ > β and x∗j′ > 0. Then define the vector x′ by

x′j =

{
0 if j = j′

x∗j
1−x′∗j

otherwise,

First of all, note that x∗j′ < 1 since x∗j′cj′ ≤
∑

j cjx
∗
j ≤ β < cj′ , and so x′ ≥ 0. To see that x′ is

feasible for each constraint 〈ai, x〉 ≥ 1,

〈ai, x∗〉 = (1− x∗j′)〈ai, x′〉+ aij′x
∗
j′ ≥ 1 so 〈ai, x′〉 ≥

1

1− x∗j′
(1− aij′x∗j′) ≥ 1,

since aij′ ∈ [0, 1]. Finally, observe that x′ costs strictly less than x∗, since

〈c, x′〉 =
〈c, x∗〉 − x∗j′cj′

1− x∗j′
<
〈c, x∗〉 − x∗j′〈c, x∗〉

1− x∗j′
= 〈c, x∗〉.

This contradicts the optimality of x∗, and so the claim holds.

Fact 4.4.4. Given probabilities pj and coefficients bj ∈ [0, 1], let W :=
∑

j bj Ber(pj) be the sum
of independent weighted Bernoulli random variables. Let ∆ ≥ γ = (e− 1)−1 be some constant.
Then

E[min (W,∆)] ≥ α ·min (E[W],∆) ,

for a fixed constant α independent of the pj and bj .

Proof. We first consider the case when E[W] ≥ ∆/3. By the Paley-Zygmund inequality, noting
that E[W] =

∑
j bjpj and so σ2 =

∑
j pj(1− pj)b2

j ≤ E[W], we have

P (W ≥ ∆/6) ≥ P (W ≥ E[W]/2) ≥ 1

4
· E[W]2

E[W]2 + σ2
≥ 1

4
· E[W]

1 + E[W]
≥ 1

4
·

∆/3

1 + ∆/3
≥ 1/28,

since ∆ ≥ γ ≥ 1/2 by assumption. This implies the claim because in this case

E[min (W,∆)] ≥ ∆

6
· P (W ≥ ∆/6) ≥ ∆

168
≥ 1

168
·min(E[W],∆).

58

Otherwise E[W] < ∆/3. Let R denote the random subset of j for which Ber(pj) = 1 in a
given realization of W , and let K be the random subset of the j which is output by the (1/3, 1/3)-
contention resolution scheme for knapsack constraints when given R as input, as defined in
[CVZ14, Lemma 4.15]. The set K has the properties that (1) (over the randomness inR) every j
appears in K with probability at least pj/3, (2)

∑
j∈K aij < ∆, and (3) K ⊆ R. Hence in this case

E[min (W,∆)] ≥ E
K

[∑
j∈K

aij

]
≥ E[W]

3
=

1

3
·min(E[W],∆).

Therefore the claim holds with α = 1/168.

Lemma 4.7.5. Let A be a randomized algorithm for batched ROSETCOVER. Then on the
instance ∆×H ,

C(A(∆×H)) ≥ 1

2
· |OPT(H)| · logN.

Proof. By Yao’s principle, it suffices to bound the expected performance of any deterministic
algorithm A over the randomness of the instance. Here the performance is in expectation over the
random choice of instance as well as the random order of batch arrival.

The randomness in the input distribution ∆ × H is over the set labels, given by the random
permutation π ∈ SN . For convenience, we instead equivalently imagine the set labels in ∆ are
fixed, and that π is a random permutation over batch labels, so that the label of batch i is li = π(i).
This means that for a fixed realization of π, for any two sets Slj, Sl′j′ ∈ S∆×H , even before any
batches have arrived A can determine whether l = l′, but because π ∼ SN uniformly at random,
A cannot determine which batches i the sets Slj and Sl′j′ intersect. Without loss of generality, we
assume that A is lazy, in that for each batch it only buys sets which provide marginal coverage.

The (offline) instance H has some optimal cover {S∗1 , . . . , S∗k} := OPT(H). Let S∗ := {Slj =
Sl×Sj : Sl ∈ S∆, Sj ∈ OPT(H)} denote the sets in S∆×H which project down to sets in OPT(H).
We argue that it suffices to consider a deterministic lazy algorithm A∗ which only buy sets in S∗.
Let c(A(π, σ)) denote the cost of A on batch label permutation π, when the batch arrival order
is σ ∈ SN . For every feasible A we argue that there is some A∗ which buys only sets in S∗, is
feasible for every batch σ(i) upon arrival, and buys at most as many sets as A for any π ∈ σN , so
that

c(A∗(π, σ)) ≤ c(A∗(π, σ)). (4.9.1)

This will in turn imply that

E
σ,π∼SN

[c(A∗(π, σ))] ≤ E
σ,π∼SN

[c(A(π, σ))], (4.9.2)

and so it will suffice to lower bound the performance of any A∗ in this restricted class.

Given A, we will construct an A∗ which satisfies (4.9.1). But first, some notation. For each batch
arrival order σ(1), . . . , σ(N), suppose that in round i upon the arrival of Bσ(i), A buys the sets
Ci ⊆ S∆×H . These C1, . . . , Ci together cover each Bσ(i) upon its arrival, and c(A, σ) =

∑
i |Ci|.

Let Ci := {S ∈
⋃
i′≤i Ci′ : S ∩ Bσ(i) 6= ∅} be the collection of sets which A uses to cover Bσ(i).

We say a set Slj ∈ S∆×H is live in round i if it intersects with all batches Bσ(1), . . . , Bσ(i) which
have arrived so far. All sets are live to start, and once a set is not-live it will never be live again;
note that the liveness of Slj in round i is a property of its label l and the batch order σ. In each

59

round i we will match each set S∗ ∈ C∗i which A∗ buys with some set S ∈
⋃
i′≤i Ci′ . We will

maintain that at most one S∗ is matched to each S, and that a matched pair of sets is never
unmatched.

Let A∗ operate by running A in the background. For each round i with incoming batch Bσ(i), if
A∗ already covers Bσ(i) upon arrival then A∗ does nothing. Otherwise for each j∗ ∈ OPT(H) for
which A∗ has not already bought a copy which is live in round i, A∗ identifies an unmatched set
Slj ∈ Ci which A is using to cover Bσ(i), buys the set Slj∗ (with the same label), and matches Slj∗
with Slj .

It is immediate that c(A∗, σ) ≤ c(A, σ), since A∗ matches every set which it buys to a set which
A buys. Therefore we need only show that A is feasible in each round i; that is, it never runs out
of unmatched sets.

To see this, first note that projecting Ci onto H gives a feasible cover, and so |Ci| ≥ k. In
particular, this means that A∗ succeeds in the first round i = 1. Next observe that in any round
i > 1, algorithm A∗ has bought at most one Slj∗ which is live for each given Sj∗ ∈ OPT(H). This
is because it only buys Slj∗ for j∗ for which it does not currently have a live copy, and no sets
go from not-live to live. Also note that any set which shares a label with some Slj ∈ Ci is live
in round i. Therefore any Slj∗ matched to Slj ∈ Ci at the beginning of round i are live, since A∗

ensures that matched sets share labels. Let Γi be the collection of these Slj∗ , and let t := |Γi|.
Since A∗ maintains at most one live set for each Sj∗ ∈ OPT(H) at once, the j∗ for Slj∗ ∈ Γi are
distinct. Therefore to cover Bσ(i), A∗ must buy sets Slj∗ for the k − t remaining Sj∗ ∈ OPT(H)
not represented in Γi with live labels l. Fortunately there are |Ci| − t ≥ k− t unmatched sets with
live labels which A has bought for A∗ to choose from, and so A∗ never gets stuck.

Therefore A∗ is feasible for every round i, and so (4.9.1) holds.

We now lower-bound the performance of A∗. Since A∗ is lazy and OPT(H) is a minimal cover
for H , for each arriving batch Bσ(i) the algorithm A∗ buys exactly one Slj∗ corresponding to each
Sj∗ ∈ OPT(H) for which it does not already have a live copy. Therefore we can analyze the
expected number of copies of Sj∗ which A∗ buys over the randomness of the batch arrival order
for each Sj∗ ∈ OPT(H) independently.

Fix some S∗ = Sj∗ ∈ OPT(H), and let CN denote the expected number of copies of S∗ which
A∗ buys, where the expectation is taken over the batch arrival order σ ∼ SN . In the first round
i = 1, A∗ buys some Slj∗ with label l, and uses this copy until the first batch arrives for which l is
no longer live; let P (l) denote the number of batches Bσ(1) . . . , Bσ(P (l)) for which l remains live.
Once l is no longer live, A∗ must choose another copy Sl′j∗ for one of the remaining live l′. This
is a sub-instance of the problem it faced at i = 1.

We will prove that CN ≥ HN/2 by induction on N (where here HN denotes the N th harmonic
number). By definition we have that C1 = 1, and so this holds for N = 1. Now assume the claim
Cn ≥ Hn/2 holds for all integers n ∈ [0, N − 1]. Using the observations above, we can express
CN by the following recurrence:

CN = 1 +
N∑
j=1

P (P (l) = j) · CN−j

= 1 +
1

N

N−1∑
n=0

(HN −Hn) · Cn,

60

where we take H0 = 0. By computing CN−1 and substituting, we then obtain

CN =
1

N
+
N − 1

N
CN−1 +

1

N2

N−1∑
n=0

Cn

≥ 1

N
+
N − 1

2N

(
HN −

1

N

)
+

1

2N
(HN − 1)

≥ 1

2
HN ,

where here we used that
∑N−1

n=0 Hn = N(HN − 1). Since HN ≥ logN , we therefore have

E
σ∼SN

[∣∣∣∣∣
{
Slj∗ ∈

⋃
i

C∗i

}∣∣∣∣∣
]

= CN ≥
1

2
logN.

Since this analysis holds for each of the k such sets Sj∗ ∈ OPT(H), the claim follows from
linearity of expectation.

4.10 Pseudocode

In this section we give pseudocode for secondary algorithms in this chapter.

4.10.1 The Exponential-Time SETCOVER Algorithm

First we give the algorithm from Section 4.2.

Algorithm 5 SIMPLELEARNORCOVER

1: Initialize T0 ←
(S
k

)
and C0 ← ∅.

2: for t = 1, 2 . . . , n do
3: vt ← tth element in the random order.
4: if vt uncovered then
5: Choose T ∼ Tt−1 uniformly at random, and choose T ∼ T uniformly at random.
6: Add Ct ← Ct−1 ∪ {S, T} for any choice of S containing vt.
7: Update Tt ← {T ∈ Tt−1 : vt ∈

⋃
T }.

4.10.2 The SETCOVER Algorithm for Unit Costs

Next, we give a slightly simplified version of algorithm from Section 4.3 in the special case of
unit costs. We give it here to illustrate the essential simplicity of our algorithm in the unit-weight
case. (Much of the complication comes from managing the non-uniform set costs.)

61

Algorithm 6 UNITCOSTLEARNORCOVER

1: Initialize x0
S ← 1

m
, and C0 ← ∅.

2: for t = 1, 2 . . . , n do
3: vt ← tth element in the random order.
4: if vt not already covered then
5: Sample one set Rt from distribution x, update Ct ← Ct−1 ∪ {Rt}.
6: if

∑
S3vt x

t−1
S < 1 then

7: For every set S 3 vt, update xtS ← e · xt−1
S .

8: Normalize xt ← xt/‖xt‖1.
9: else

10: xt ← xt−1.
11: Let Svt be an arbitrary set containing vt. Add Ct ← Ct ∪ {Svt}.

4.11 Discussion of Claim in [GGL+13]

[GGL+13] writes in passing that SETCOVER in “the random permutation model (and hence any
model where elements are drawn from an unknown distribution) [is] as hard as the worst case”.

Our algorithm demonstrates that the instance of [Kor04] witnessing the Ω(log2 n) lower bound in
adversarial order can be easily circumvented in random order. Korman’s instance is conceptually
similar to our hard instance for the batched case from Section 4.7.3 but with batches shown in
order, deterministically.

A natural strategy to adapt the instance to the random order model is to duplicate the elements in
the ith batch Cb−i times for a constant C > 1 (where b is the number of batches). This ensures that
elements of early batches arrive early with good probability. Indeed, this is the strategy used for
the online Steiner Tree problem in random order (see e.g [GS20]). However, for the competitive
ratio lower bound of [Kor04], which is log b log s, to be Ω(log2 n), the number of batches b and
the number of distinct elements per batch s must be polynomials in the number of elements n. In
this case the total number of elements after duplication is n′ = O(Cpoly(n)), which degrades the
Ω(log b log s) bound to doubly logarithmic in n′.

4.12 Connections to Other Algorithms

In this section we discuss connections between LEARNORCOVER and other algorithms. Whether
these perspectives are useful or merely spurious remains to be seen, but regardless, they provide
interesting context.

Projection interpretation of [BGMN19]. In [BGMN19] it is shown that the original ONLINE-
SETCOVER algorithm of [AAA+09, BN09b] is equivalent to the following. Maintain a fractional
solution x. On the arrival of every constraint 〈ai, x〉 ≥ 1, update x to be the solution to the convex

62

program

argminy KL (y || x)
s.t. A≤iy ≥ 1

y ≥ 0,
(4.12.1)

where A≤i is the matrix of constraints up until time i. Finally, perform independent randomized
rounding online. The KKT and complementary slackness conditions ensure that the succes-
sive fractional solutions obtained this way are monotonically increasing, and in fact match the
exponential update rule of [BN09b].

Interestingly, we may view LEARNORCOVER as working with the same convex program but with
an additional cost constraint (recall that β is our guess for c(OPT)).

argminy KL (y || x)
s.t. A≤iy ≥ 1

〈c, y〉 ≤ β
y ≥ 0,

(4.12.2)

The extra packing constraint already voids the monotonicity guarantee of (4.12.1) which we argue
is a barrier for [BN09b] in Sections 4.7.1 and 4.7.2. Furthermore, instead of computing the full
projection, we fix the Lagrange multiplier of the most recent constraint 〈ai, x〉 ≥ 1 to be κvi
(the cost of the cheapest set containing this last element), the multipliers of the other elements’
constraints to 0, and the multiplier of the cost packing constraint such that y is normalized to cost
precisely β. Hence we only make a partial step towards the projection, and sample from the new
fractional solution regardless of whether it was fully feasible.

Stochastic Gradient Descent (SGD). Perhaps one reason ROSETCOVER is easier than the
adversarial order counterpart is that, in the following particular sense, random order grants access
to a stochastic gradient.

Consider the unit cost setting. Given fractional solution x, define the function

f(x) :=
∑
v

max

(
0, 1−

∑
S3e

xS

)
,

in other words the fractional number of elements uncovered by x. Clearly we wish to minimize
f , and if we assume that every update to x coincides with buying a set (as is the case in our
algorithm), we wish to do so in the smallest number of steps.

The gradient of f evaluated at the coordinate S is

[∇f]S = −|S ∩ U t|.

On the other hand, conditioning on the next arriving element v being uncovered, the random
binary vector χv denoting the set membership of v has the property

E
v
[χvS] =

|S ∩ U t|
|U t|

,

meaning χv is a scaled but otherwise unbiased estimate of∇f . Since LEARNORCOVER performs
updates to the fractional solution using χv, it can be thought of as a form of stochastic gradient

63

descent (more precisely of stochastic mirror descent with entropy mirror map since we use a
multiplicative weights update scheme, see e.g. [Bub15]).

One crucial and interesting difference is that SGD computes a gradient estimate at every point to
which it moves, whereas our algorithm is only allowed to query the gradient at the vertex of the
hypercube corresponding to the sets bought so far. This analogy with SGD seems harder to argue
in the non-unit cost setting, where the number of updates to the solution is no longer a measure of
the competitive ratio.

64

Chapter 5

Block-Aware Caching

5.1 Introduction

CACHING (also known as paging) has been extensively studied since the early days of online com-
putation and competitive analysis, establishing itself as a cornerstone problem in this field, see e.g.,
[ST85, FKL+91, You91, You02, MS91, BBN12a, BBN12b, ACN00, AAK99, BBK99, BFT96,
Ira96, Ira02b, Ira02a]. Recent years have witnessed increased activity on non-standard caching
models, e.g., elastic caches [GKKP19], caching with time windows [GKP20], caching with dy-
namic weights [EMR18], caching with machine learning predictions [LV21], and writeback-aware
caching [BGHM20, BNT21]. Many of the recent developments in competitive analysis, e.g., the
online primal-dual method, projections, and mirror descent [BN09a, BCN14b, BCL+18] are all
rooted in online paging. We study here BLOCKAWARECACHING, a non-standard caching model
studied recently, as well as its generalizations.

In the (classic) weighted paging problem there is a universe of n pages, a cache that can hold up
to k pages, and each page is associated with a weight (fetch cost). At each time step a page is
requested; if the requested page is already in cache then no cost is incurred, otherwise the page
must be fetched into the cache, incurring a cost equal to its weight. The goal is to minimize the
total cost incurred. This problem is well studied and understood, and we briefly mention the main
results known for it.

Sleator and Tarjan [ST85], in their seminal paper on competitive analysis, showed that any
deterministic algorithm is at least k-competitive, and that LRU (Least Recently Used) is precisely
k-competitive for unweighted paging (i.e., all weights are equal). The k-competitive bound was
later generalized to weighted paging as well [CL91, You94]. When randomization is allowed,
Fiat et al [FKL+91] gave the elegant Randomized Marking algorithm for unweighted paging,
which is Θ(log k)-competitive against an oblivious adversary. For weighted paging, Bansal et
al. [BBN12a] gave an O(log k)-competitive randomized algorithm using the online primal-dual
framework [BN09a, AAA+09]. It uses a two-step approach. First, a deterministic competitive
algorithm is designed for a fractional version of the problem. Then, a randomized online algorithm
is obtained by rounding the deterministic fractional solution online.

65

BLOCKAWARECACHING. Real storage systems operate by constructing a hierarchy of mem-
ory levels, starting from a very fast and small memory (e.g., an SRAM cache) to a very large and
slow memory (e.g., flash or disk). The data items in each level are typically organized in blocks,
and fetching (or evicting) data items from the same block incurs the same cost as fetching (or
evicting) just a single item from the block. Using fetching costs models scenarios in which data is
read-only; using eviction costs models scenarios in which data must be written to slow memory
upon eviction, and the writing cost dominates the reading cost (see e.g. [BGHM20, BNT21]).

Thus, a natural question is how can one optimize cache performance by taking advantage of
granularity changes across different storage hierarchy levels. This question was recently raised by
Beckmann et al. [BGM21], who defined the BLOCKAWARECACHING problem, generalizing the
classic paging problem, as follows. Given a cache of size k, and a sequence of requests from n
pages that are partitioned into given blocks of size β ≤ k, minimize the total cost of fetching (or
evicting) from the cache so as to serve the requests1.

BLOCKAWARECACHING also arises in web and cloud settings, where data items can be aggregated
into chunks (i.e., blocks) of data, such that accessing a whole chunk incurs the same cost as
accessing just a single item. Consider a distributed cluster of servers, where a common cache of
data items is maintained. One such example is the ZFS distributed file system that aggregates
different devices into a single storage pool acting as an arbitrary data store. When accessing a
server for a specific data item, the main cost paid (e.g., latency) is for accessing the server. The
notion of a block of data in this setting corresponds to the largest chunk of data items that can be
fetched from (or evicted to) a server, while maintaining that the cost of this operation is dominated
by the cost of accessing the server. Web caching is another example of BLOCKAWARECACHING.
Consider a content delivery network (CDN) that maintains a cache of data items and suppose the
CDN connects to a website so as to access a data item (see, e.g., [HGDS14, SBLL20]). Typically,
TCP/IP provides a time window for connecting to the website and accessing the data item. Hence,
it might be beneficial to fetch (or evict) many data items that belong to the website, and not just
the particular data item that is currently accessed. Thus, the notion of a block of data in this setting
corresponds to the maximum number of such data items that can be sent without increasing the
travel time.

In the GENERALIZEDCACHING problem [BBN12b, ACER19], pages are associated with both a
size and a cost. At any point of time, the sum of the sizes of the pages in the cache cannot exceed
the cache size. In the offline setting, GENERALIZEDCACHING is known to be NP-hard, and in the
online setting the known competitive factors for GENERALIZEDCACHING [BBN12b, ACER19]
match those of weighted CACHING. It is not hard to see that BLOCKAWARECACHING captures
generalized GENERALIZEDCACHING as a special case. Replace a page p of size s by a block B
of size s containing page p partitioned into unit size “slices”. The cost of accessing each slice is
equal to the cost of p. Now, a request to page p is replaced by many requests to the slices in B.
Thus, an optimal solution to the BLOCKAWARECACHING problem generated has to fetch the full
block B into the cache.

Eviction and fetching costs. In classic paging, costs can be associated with either evicting or
fetching pages. Clearly, for a given request sequence, optimal eviction and fetching costs of
serving the requests can differ by at most an additive constant that only depends on the initial

1We note that Beckmann et al. [BGM21] considered BLOCKAWARECACHING only in the fetching cost model.

66

contents of the cache. However, this is not the case for BLOCKAWARECACHING, as optimal
eviction and fetching costs can differ significantly, separating the two cost models. (We provide
an example in Section 5.2.) As discussed above, the two cost models are practically motivated for
BLOCKAWARECACHING, and we thus study both of them in this chapter. We note that in the
eviction cost model we are able to circumvent known lower bounds [BGM21] that hold in the
fetching cost model.

5.1.1 Results and Techniques

Observe that if an algorithm is r-competitive for classical paging, then it is at most β ·r-competitive
for BLOCKAWARECACHING in both fetching/eviction cost models; the reason is simply that OPT

can be simulated by a classical paging algorithm that performs any single batched fetch/eviction in
at most β rounds. With this in mind, our goal in this work is to beat this trivial linear dependence
on β.

Indeed, for the eviction cost model, we give the first set of algorithms avoiding a trivial multiplica-
tive β overhead over their classical paging counterparts. We also give (h, k)-bicriteria2 algorithms
for both fetching and eviction cost models, which we in turn use to adapt the lower bound of
[BGM21] for the fetching cost model to randomized algorithms.

Eviction cost. We start in Section 5.3 with our main contributions: competitive algorithms for
the eviction cost model. We show the following theorem.

Theorem 5.1.1. For the BLOCKAWARECACHING problem with eviction cost, there exist:

• a k-competitive deterministic online algorithm.

• an O(log2 k)-competitive randomized (integral) online algorithm.

• an O(log k)-approximate randomized offline algorithm.

In fact, we study a more general version than the one introduced in [BGM21] in which every
block B may have a separate cost cB. For this more general weighted setting we get competitive
ratios of k, O(log k log(k∆)) and O(log(k∆)) for the deterministic online, randomized online,
and randomized offline settings respectively (where ∆ is the aspect ratio, i.e., the maximum cost
ratio between any two blocks).

A first main technical ingredient is a linear programming relaxation for BLOCKAWARECACHING.
It is tempting to use a formulation with a variable xtp for each page p and time t indicating whether
p is present in cache in step t. However, in this case the eviction cost becomes a complicated
non-linear function of the xtp. Instead, we define variable φtB for each block B and time step t
indicating whether we evict B at t. This is reminiscent of the linear program for classical paging
of [BBN12a] in which every variable represents whether a page is present in cache between two
subsequent requests to a page, only that it may now be necessary to evict pages at any point
between subsequent requests.

A naı̈ve linear programming formulation has an integrality gap of β (see Section 5.7): this is
unsurprising since the naı̈ve LP exhibits this gap even for the special case of generalized paging.

2In (h, k) paging, an online algorithm with cache size k competes against an offline cache of size h, where k > h.

67

To get around this, we express feasibility as the constraint that a particular sequence of monotone,
submodular functions is maximized. We then make use of the LP relaxations for these submodular
set function constraints which we presented in Section 2.4. Our formulation may be viewed as a
generalization of the strengthened LP relaxation due to [BBN12b] for GENERALIZEDCACHING,
which used the so-called knapsack cover (KC) inequalities. We first use the relaxation to give a
k-competitive deterministic online algorithmic in Section 5.3.2.

Next, we develop an O(log k)-competitive fractional algorithm in Section 5.3.3, followed by an
O(log ∆k)-competitive online randomized rounding procedure in Section 5.3.4. Together these
imply our O(log k log ∆k)-competitive randomized online algorithm. It is natural to try to adapt
the continuous online primal-dual framework of [BBN12a, BBN12b]; however, owing to the
increased complexity of our LP, there are several technical roadblocks. For one, our formulation
now has primal variables corresponding to the eviction of every block at every point in time,
and a naı̈ve adaptation of the continuous dynamics of [BBN12b] incurs loss that depends on the
length of the request sequence. Nevertheless, we show how to carefully set the rate of increase of
primal variables (with respect to the dual rate of increase) to construct a feasible solution with
our claimed guarantee. For convenience, we do not present the fractional algorithm as online in
the strict sense as we allow it to change decisions made in the past. However, it has the crucial
property that it only increases LP variables, which suffices for the online rounding procedure.

For the rounding step, we forego maintaining an explicit distribution over cache states as in
previous work [BBN12a, BBN12b, ACER19], since it is unclear how to control the cost of the
rebalancing stage when updating the distribution in each time step. Instead, we use the method of
random rounding with alterations. We crucially make use of the randomized rounding analysis of
Chapter 3 for ONLINESUBMODULARCOVER; interestingly we are able to charge our alteration
cost to the fractional fetching cost, even though this may be a factor β larger than the eviction cost.

Fetching cost. We turn in Section 5.4 to the fetching cost model, where we show strong lower
bounds, implying that the integrality gap of Ω(β) of the natural LP formulation cannot be
circumvented. We prove the following theorem for (h, k) block-aware caching3.

Theorem 5.1.2. When k = O(h), no randomized online algorithm has competitive ratio better
than Ω(β + log k) for BLOCKAWARECACHING with fetching costs.

Our main idea here is an online deterministic rounding procedure for fractional algorithms that
incurs constant blowup in both cache usage and cost. This implies an online derandomization
procedure for any randomized algorithm, which in turn strengthens the lower bounds for deter-
ministic algorithms of [BGM21] to apply to randomized algorithms as well. Our lower bound
implies that beating the trivial linear dependence on β is not possible for the fetching cost model.

Our deterministic rounding procedure immediately implies improved bounds for the offline (h, k)
BLOCKAWARECACHING problem. In particular, when k = 2h, we match the performance of
classical CACHING algorithms up to constant factors.

3Beckmann et al. [BGM21] showed several deterministic lower bounds on the competitive factor achievable for
(h, k) block-aware caching, when k ≥ h+ β-1.

68

5.2 Model and Preliminaries

5.2.1 Problem Definition

In the BLOCKAWARECACHING problem, there is a cache of size k and n pages which are
partitioned into blocks. Let B be the partition of the pages into blocks. Each block contains at
most β pages, for some β ∈ [k]. For a block B ∈ B, we denote by cB > 0 its cost. At each
time-step t, a page pt is requested. To serve the request, the page pt must be fetched into the cache
if it is missing from the cache. The goal is to obtain a feasible cache policy while minimizing the
total cost. We consider two different cost functions.

Eviction cost model. In this model, fetching into the cache is free, while evictions have a cost
that can be aggregated: Evicting any subset A of a block B at a time-step has a cost of cB. The
goal is to minimize the total eviction cost.

Fetching cost model. In this model, evicting pages from the cache is free, while fetching of pages
has a cost that can be aggregated. Fetching of any subset A of a block B at a time-step has a cost
of cB. The goal is to minimize the total fetching cost.

Unlike classic paging and its variants, the fetching cost and eviction cost models are not equivalent
in BLOCKAWARECACHING. We show that the optimal fetching and eviction costs for the same
request sequence may be off by a factor of β (in either direction!), and this bound is tight.

Claim 5.2.1. There exist instances of BLOCKAWARECACHING for which the optimal fetching
cost is β larger than the optimal eviction cost, and there exist instances where the optimal eviction
cost is β larger than the optimal fetching cost.

See Section 5.6 for the proof.

For a page p, define B(p) to be the block containing p, and let r(p, t) be the time of the last
request to p up until (and including) time t; if there is no such request, then r(p, t) := −∞. Define
the aspect ratio ∆ := cmax/cmin where cmax := maxB∈B c(B) and cmin := minB∈B c(B). For
convenience we will use the notation [`] = {1, . . . , `} and [`]0 = {0, 1, . . . , `}.

5.3 Eviction Cost

In this section we show our algorithmic results for BLOCKAWARECACHING with respect to
eviction costs. Our proof uses the (online) primal-dual method and hence requires an LP for the
eviction cost model. It is straightforward to write a simple LP relaxation; unfortunately, the naı̈ve
relaxation has an integrality gap of Ω(β) (see Section 5.7), and recall that our goal is to beat the
trivial algorithm’s linear dependence on β.

5.3.1 SUBMODULARCOVER LP Formulation

To circumvent the naı̈ve LP barrier, we strengthen the formulation using ideas from Wolsey’s
SUBMODULARCOVER LP. We start with some notation.

69

B1

B2

(B1, t1)(B2, t2) τ

Figure 5.1: Illustration of the function fτ . Each line represents a page, and each horizontal bar within the line
represents an interval in which the page is not requested. Pages are grouped into their corresponding blocks. The
solid vertical lines represent flushes. Suppose n = 8 and k = 4. Then fτ ({(B1, t1)}) = 2, fτ ({(B2, t2)}) = 3,
but fτ ({(B1, t1), (B2, t2)}) = 4.

A flush is a tuple (B, t) ∈ B × [T]0. The flush (B, t) corresponds to the event of evicting all
cached pages of block B at time t. (There is no reason to only evict some of them, since they
can be fetched back for free.) Let S be a set of flushes. We say that a page p is missing at time τ
according to S if there exists r(p, τ) < t ≤ τ such that (B(p), t) ∈ S.4 Crucially, this definition
ensures that the page pt requested at time t is not missing at time t. We say than an algorithm is
induced by a set of flushes S if the algorithm evicts all pages of block B (except pt) at time t if
and only if (B, t) ∈ S, and always loads pt at time t. Let nt be the number of pages requested up
until time t.

We use the above to define a set function fτ : 2B×[T]0 → Z on sets of flushes:

fτ (S) := min(n− k, |{p : p is missing at time τ according to S}|)

In words, fτ (S) is the number of pages that are outside of the cache at time τ for the algorithm
induced by S, where this number is capped at n− k. The algorithm induced by a set of flushes S
is feasible at time τ iff fτ (S) ≥ n− k for all τ .

We show the following simple fact in Section 5.6:

Claim 5.3.1. For every τ , the function fτ is submodular.

With the notation above, we can reformulate the BLOCKAWARECACHING problem with eviction
cost as the solution to5

min
S⊆B×[T]0

∑
(B,t)∈S
t≥1

cB

subject to

∀τ ∈ [T] : fτ (S) ≥ n− k.

(5.3.1)

4Adding to S all flushes of the form (B, 0) ensures that also never-requested pages are missing by this definition.
5This formulation is reminiscent of the online and dynamic SUBMODULARCOVER problems of Chapter 3 and

Chapter 6. However BLOCKAWARECACHING cannot be neatly reduced to Chapter 6, and the generic bounds from
Chapter 3 are too coarse since they have a dependence on T .

70

Note that because fτ (S) counts the number of pages evicted by S that are not pτ , this single
constraint captures both that the algorithm must flush at least n− k pages in order to respect the
cache size limit, and that the cache must contain page pt at time t.

Note as well that we allow the algorithm to perform flushes at time 0, but only charge the cost for
flushes performed after time 1. This conveniently allows the algorithm to clear the cache initially
at no extra cost.

Finally, we are ready to write our LP, which is is the intersection of the SUBMODULARCOVER

LPs of (2.4.1) for the functions fτ , across all time steps τ ∈ [T].

Primal

min
∑
B,t≥1

cB · φtB

subject to

∀S ⊆ B × [T]0,
∀τ ∈ [T]

:

∑
B,t

fτ ((B, t) | S) · φtB

≥ n− k − fτ (S)

∀B ∈ B, t ∈ [T]0 : φtB ≥ 0

(P)

We will require the dual of this program, which is

Dual

max
∑
S,τ

(n− k − fτ (S)) · yτS

subject to

∀B ∈ B, t ∈ [T] :
∑
S,τ

fτ ((B, t) | S) · yτS ≤ cB

∀S ⊆ B × [T],
∀τ ∈ [T]

: yτS ≥ 0

(D)

That (P) is a valid relaxation of (5.3.1) follows from Claim 2.4.1.

Claim 5.3.2 (Corollary of Claim 2.4.1). A set S has fτ (S) = n− k for all τ if and only if χS , the
characteristic vector of S, is a feasible integer solution to (P).

We note for intuition’s sake that even the constraints∑
B,t

fτ ((B, t)) · φtB ≥ n− k

alone already avoid the bad integrality gap example of Section 5.7. One reason is that truncating
fτ at n− k prevents the LP from overestimating how much space will be saved by evictions.

71

Given an LP solution φ, we also define the fractional value of a page p missing from cache at time
t to be

xtp :=

{
1 if r(p, t) = −∞.
min

{
1,
∑t

u=r(p,t)+1 φ
u
B(p)

}
otherwise.

(5.3.2)

Intuitively, whenever some fraction δ of a flush (B, t) is chosen, we imagine increasing the
fractional amount by which each page in B is evicted to extent δ. On the other hand when a page
pt is requested at time t, we reset its fractional value to xtpt = 0.

5.3.2 A k-Competitive Deterministic Online Algorithm

Our first algorithmic result is a k-competitive deterministic online algorithm, which beats the trivial
kβ competitive ratio obtained by running the deterministic online algorithm for classical paging.
Our deterministic algorithm is given in Algorithm 7. The algorithm constructs simultaneously a
primal solution x and a dual solution y to the LPs (P) and (D). We will ensure that these solutions
satisfy all constraints known up to that time. We use C(τ) for the set of pages in cache at time
τ , and we use S for the set of flushes performed by the algorithm so far. At the start of the
algorithm, S is initialized as the set of all flushes of all blocks at time 0; this amounts to clearing
the initial cache.The primal solution φ is set to the characteristic vector of S, and dual solutions
y is initialized as the all-0-vector. At time τ , we first add the requested page pτ to the cache. If
this violates the cache constraint, we continuously increase the dual variable yτS corresponding
to the current set S and the current time τ until the dual constraint corresponding to some (B, t)
with fτ ((B, t) | S) ≥ 1 becomes tight. Once this happens, we evict all pages of block B that are
in cache (except pτ , in case it belongs to this block) and update x and S to reflect that the flush
(B, τ) has been performed.

Algorithm 7 Deterministic Online Algorithm

1: S ← {(B, 0) : B ∈ B}
2: φ← χS , y ← ~0
3: for time τ = 1, . . . , T do
4: C(τ)← C(τ − 1) ∪ {pτ}
5: if |C(τ)| > k then
6: Increase yτS until the dual constraint corresponding to some (B, t) for which

fτ ((B, t) | S) ≥ 1 is tight.
7: C(τ)← C(τ) \ (B \ {pτ}).
8: φτB ← 1.
9: S ← S ∪ {(B, τ)}.

We show that both primal and dual solutions are feasible, and that the cost of the primal is at most
k times the cost of the dual. By weak duality, this implies:

Theorem 5.3.3. Algorithm 7 is k-competitive.

We begin by showing feasibility.

72

Lemma 5.3.4. Algorithm 7 terminates. Upon termination, φ is feasible for (P) and y is feasible
for (D).

Proof. We first show that the algorithm terminates and the primal is feasible. Assume by induction
that the algorithm maintains a feasible cache for every time step strictly less than τ (it is trivially
feasible at time 0). Since exactly one page is requested per time step, if the cache is not feasible
at the beginning of time step τ , then |C(τ)| = k + 1. If this is the case, then there must exist
some (B, t) such that fτ ((B, t) | S) ≥ 1, in which case the dual constraint corresponding to
such a (B, t) will become tight after yτS is increased sufficiently (in particular, the increase of
yτS terminates). Note that t ≤ τ in this case. Then fτ ((B, τ) | S) ≥ fτ ((B, t) | S) ≥ 1, so at
least one page is evicted upon performing the flush (B, τ), and thus feasibility is restored at time
τ . Hence the algorithm maintains a feasible cache state for every time τ , and by Claim 5.3.2 it
follows that the primal is feasible for (P).

We now show feasibility of the dual. Clearly yτS ≥ 0. Increasing yτS could lead to a violation of the
dual constraint corresponding to (B, t) only if fτ ((B, t) | S) ≥ 1, but in this case we stop once
the constraint becomes tight. Thus, dual constraints are never violated. Note that dual variables yτS
corresponding to future time steps τ are 0, so it does not matter that the coefficients fτ ((B, t) | S)
of future time steps are not known yet.

Finally, we relate the primal and dual costs.

Lemma 5.3.5. The cost of the primal is at most k times the cost of the dual.

Proof. The algorithm sets φτB = 1 if and only if (B, τ) ∈ S, so the primal cost is

P =
∑
B,τ

cB · φτB =
∑

(B,τ)∈S

cB.

The algorithm adds (B, τ) to S only if a constraint corresponding to some (B, t) = (B, tτ) with
fτ ((B, tτ) | S) ≥ 1 becomes tight at time τ . Thus,

cB =
∑
S′,u

fu((B, tτ) | S ′) · yuS′ . (5.3.3)

To account for our primal cost, for every flush (B, τ) ∈ S, we charge fu((B, tτ) | S ′) · yuS′ of
the cost of the flush to the dual variable yuS′ . Since every non-zero dual variable yuS′ in our final
solution has its coefficient in the objective n− k − fu(S ′) ≥ 1 (otherwise it would never have
been increased), it suffices to argue that each dual variable yuS′ receives a total charge of at most
k · yuS′ .
To see this, note that (B, τ) only charges its cost to variables yuS′ for which u ∈ [tτ , τ]. Indeed,
fu((B, tτ) | S ′) > 0 only if tτ ≤ u; moreover, when (5.3.3) becomes tight at time τ we have
yuS′ = 0 for u > τ and all S ′, and such yuS′ could subsequently increase only if fu((B, tτ) | S ′) = 0
since otherwise the dual constraint would become violated. After (B, τ) is added to S, for all
t′ ≤ τ and all τ ′ ≥ τ the multiplier fτ ′((B, t′) | S) = 0, and so yuS′ is charged at most once
by every block B. Furthermore, if flush (B, τ) charges dual variable yuS′ then the coefficient
fu((B, t) | S ′) is at most the number of pages from block B that were in cache at the end of time
step u− 1. Since the total number of pages in cache at the end of time step u− 1 was at most k,
the total amount charged to yuS′ is at most k · yuS′ .

73

5.3.3 An O(log k)-Competitive Monotone-Incremental Algorithm

In this section we give a competitive fractional algorithm for BLOCKAWARECACHING with
eviction cost. For simplicity of presentation, our algorithm is not online in the strict sense, as at
time τ we allow it to change the value of φtB for t < τ . However, it has the crucial property that it
only increases LP variables φtB. We call an algorithm with this property monotone-incremental.
This property suffices for our rounding procedure in Section 5.3.4 to yield an online algorithm.
We prove:

Theorem 5.3.6. There is an O(log k)-competitive monotone-incremental fractional algorithm for
BLOCKAWARECACHING with eviction cost.

To describe the algorithm, we define a flush (B, t) to be alive at time τ if t = r(p, τ) + 1 for
some p ∈ B. Intuitively, for an offline algorithm it is most beneficial to flush a block B only at
time steps directly after some page from B was requested. Accordingly, our fractional algorithm
will increase φtB only for (B, t) that are alive. The algorithm is given in Algorithm 8. It starts by
initializing S as the set of all flushes at time 0, φ as the corresponding characteristic vector, and y
as the all-0-vector. At time τ , when some constraint (S ′, τ) is violated, we will show that this will
also be the case for some S ′ ⊇ S, so that the condition of the while-loop will be true. We then
increase the corresponding dual variable as well as primal variables corresponding to all alive
flushes according to (5.3.4). While doing so, we occasionally add new flushes to the set S. As
we will show later, all flushes (B, t) added to the set S will satisfy φtB = 1, i.e., they are chosen
integrally by the fractional algorithm.

Algorithm 8 O(log k)-competitive monotone-incremental fractional algorithm

1: S ← {(B, 0) : B ∈ B}.
2: φ← χS , y ← ~0.
3: for time τ = 1, . . . , T do
4: while ∃S ′ ⊇ S s.t. primal constraint of (S ′, τ) violated do
5: Increase yτS′ continuously, and meanwhile for every alive (B, t) increase φtB at rate

dφtB
dyτS′

=
ln(k · β + 1)

cB
· fτ ((B, t) | S ′) ·

(
φtB +

1

k · β

)
(5.3.4)

until the dual constraint corresponding to some alive (B0, t0) for which
fτ ((B0, t0) | S ′) ≥ 1 is tight.

6: S ← S ∪ {(B0, t0)}.

Lemma 5.3.7. Algorithm 8 terminates.

Proof. If the condition of the while-loop is true, then fτ (S ′) < n− k, and thus there exists some
alive (B0, t0) with fτ ((B0, t0) | S ′) ≥ 1. Increasing yτS′ sufficiently will eventually tighten a
corresponding constraint, so each iteration of the while-loop terminates. When a new element is
added to S at the end of an iteration, fτ (S) increases by at least 1. When fτ (S) has reached value
n− k (or earlier), the condition of the while-loop cannot be true any more.

Lemma 5.3.8. At the end of Algorithm 8, φ is feasible for (P) and y is feasible for (D).

74

Before proving Lemma 5.3.8, we need the following claim, whose proof we leave for Section 5.6.

Definition 5.3.9. Given a fractional solution φ, we say that the constraint (S, τ) is maximal-
integral if for any (B, t) such that φtB = 1 it holds that (B, t) ∈ S.

Claim 5.3.10. If a fractional solution φ to (P) has no violated maximal-integral constraints, then
φ is feasible.

Proof of Lemma 5.3.8. We first show feasibility of the dual. Suppose the dual constraint cor-
responding to some (B, t) gets violated when yτS′ is increased. Let t0 ≤ t be maximal such
that (B, t0) is alive at time τ . (If no such t0 exists, then any pages evicted by the flush (B, t)
are requested again in [t, τ]; but then fτ ((B, t) | S ′) = 0, so increasing yτS′ would not have led
to a violation of the constraint corresponding to (B, t).) Since no pages of B are requested at
times in [t0, t), we have fτ ((B, t0) | S ′′) = fτ ((B, t) | S ′′) for any S ′′, meaning that the dual
constraint of (B, t0) would become violated at the same time during the increase of yτS′ . But then
fτ ((B, t0) | S ′) ≥ 1 (otherwise, increasing yτS′ would not increase the left-hand side of constraint
(B, t0)) and therefore we would have stopped increasing yτS′ when the constraint got tight.

To see that the primal is feasible, we will show that for all (B, t) ∈ S we have φtB = 1. It then
follows from Claim 5.3.10 that if a primal constraint (S ′, τ) is infeasible, then this is also the case
for some S ′ ⊇ S; thus, the algorithm would not have terminated.

Consider the differential equation dz/dy = η · (z+ δ) for some constants η ≥ 0 and δ > 0. When
y increases from a to b, we have

ln(z(b) + δ)− ln(z(a) + δ) = η · (b− a). (5.3.5)

For some (B, t) that eventually gets added to S, consider the dynamics of φtB. It starts at 0, and
increases with every yτS′ according to (5.3.4). Applying (5.3.5) for every such yτS′ and summing,
we have

ln

(
φtB +

1

k · β

)
− ln

(
1

k · β

)
=
∑
S′,τ

ln(k · β + 1)

cB
· fτ ((B, t) | S ′) · yτS′ .

Taking exponents and solving, we have that

φtB =
1

k · β
·

(
exp

(
ln(k · β + 1)

cB

∑
S′,τ

fτ ((B, t) | S ′) · yτS′

)
− 1

)
.

In particular, when constraint (B, t) becomes tight and is added to S, the value of φtB is 1.

Lemma 5.3.11. The cost of the primal is at most O(log k) times the cost of the dual.

Proof. Consider the algorithm at a fixed time τ during a step in which yτS′ is increased by an
infinitesimal amount dyτS′ . The dual profit is dyτS′ · (n− k − fτ (S ′)), and so it suffices bound the
corresponding increase in primal cost. The primal cost increase is:∑

B,t

cB ·
1

cB
ln(k · β + 1) · fτ ((B, t) | S ′) ·

(
φtB +

1

k · β

)
· dyτS′

=
∑
B,t

ln(k · β + 1) · fτ ((B, t) | S ′) ·
(
φtB +

1

k · β

)
· dyτS′ .

75

Since we only increase yτS′ if the corresponding constraint in the primal is not satisfied, we have∑
B,t

fτ ((B, t) | S ′) · φtB < n− k − fτ (S ′). (5.3.6)

We claim that ∑
(B,t) alive

fτ ((B, t) | S ′)
k · β

≤ n− k − fτ (S ′). (5.3.7)

Inequalities (5.3.6) and (5.3.7) together imply that the increase in the primal cost is at most
2 ln(k · β + 1) · (n− k − fτ (S)) · dyτS , which in turn implies the lemma statement since β ≤ k.

To prove (5.3.7), we first show that∑
B

fτ ((B, τ) | S ′)
k

≤ n− k − fτ (S ′) (5.3.8)

Note that
∑

B fτ ((B, τ) | S ′) ≤ n−fτ (S ′)−1. In the case that n−fτ (S ′) ≥ k+1, (5.3.8) holds
by the fact that (z − 1)/k ≤ z − k for every z ≥ k + 1. Otherwise, when n− fτ (S ′) < k + 1,
then fτ (S ′) = n− k (since fτ is integer valued and truncated at n− k). Then (5.3.8) holds with
both sides equal to 0.

We now obtain (5.3.7) via∑
(B,t) alive

fτ ((B, t) | S ′)
k · β

≤
∑

(B,t) alive

fτ ((B, τ) | S ′)
k · β

≤
∑
B

fτ ((B, τ) | S ′)
k

≤ n− k − fτ (S ′)

where the second inequality uses that there are at most β flushes alive at any time, and the last
inequality is (5.3.8).

5.3.4 An O(log ∆k)-Competitive Online Randomized Rounding Scheme

Finally we show an online O(log ∆k) randomized rounding scheme for our block caching LP
(P). Recall the definition of the aspect ratio ∆ from Section 5.2 and note that in the standard
unweighted setting, ∆ = 1.

At time t, the algorithm evicts block B with probability γ · φτB, where γ = O(log k∆). If the
cache is still infeasible at time t, evict an arbitrary block so long as at least one of its pages has
xtp > 0 (recall from the definition (5.3.2) that xtp is the amount missing from page p at time t). For
clarity of exposition, the rounding procedure is written as if the underlying fractional solution
(x, φ) is computed online. However the procedure can be carried out so long as the solution is
monotone-incremental; at time τ , if the fractional solution increases any φtB for t < τ by some
amount δt, we can evict B at time τ with probability min(1, γ · (φτB +

∑
t<τ δt)).

Thus together with Theorem 5.3.6, our rounding scheme implies:

76

Theorem 5.3.12. For BLOCKAWARECACHING with eviction cost, there exists an algorithm
which is O(log k log(k∆))-competitive.

Furthermore, using the round-or-separate procedure of Section 3.4, one can simultaneously solve
and round the SUBMODULARCOVER LP (2.4.1) offline in polynomial time. Using the analysis of
this section, this implies:

Theorem 5.3.13. For BLOCKAWARECACHING with eviction cost, there exists an O(log(k∆))-
approximation algorithm.

We perform the rounding assuming a few key properties of our fractional solution which we show
we can assume (online) without changing our asymptotic guarantees.

Lemma 5.3.14. Let (x, φ) be a fractional solution for LP (P). For an additional multiplicative
constant factor to the competitive ratio, we can assume that (x, φ) has the following properties:

• For every time t, every page p has xtp ∈ [0, 1/2] ∪ {1}.
• Every nonzero coordinate has φtB ≥ 1/4k2.

We defer the proof to Section 5.6.

A key technical tool in this section is Lemma 3.2.5 from Section 3.2.

We can now present our rounding scheme.

Algorithm 9 O(log k)-Approximate Rounding

1: for time τ ∈ [T] do
2: For every block B evict the set {p ∈ B | xtp > 0} with probability min(1, γ · φtB).
3: Fetch pτ if it is missing from the cache.
4: while the cache is infeasible do
5: Let B be an arbitrary block in the cache that has a page p with xtp > 0, evict the set of

pages {p ∈ B | xtp > 0}.

Note that we assume that the fractional solution on which Algorithm 9 executes is one that has
the properties given by Lemma 5.3.14.

We now prove our main rounding lemma.

Lemma 5.3.15. For γ = log(4k2β∆), given a feasible fractional solution (x, φ) with cost c(φ),
Algorithm 9 produces a feasible integral cache policy of cost O(log k∆) · c(φ).

To prove Lemma 5.3.15, we charge the cost of the algorithm to the fetching cost of the fractional
solution. To relate this fractional fetching cost to the fractional eviction cost, we need a claim
which we prove in Section 5.6.

Claim 5.3.16. Let cFETCH(z) be the fetching cost of a fractional solution z. Then

cFETCH(z) ≤ β

(
c(z) +

∑
B∈B

cB

)
.

Proof of Lemma 5.3.15. Let x, φ be a fractional solution given by Lemma 5.3.14, and let S be the
set of flushes performed by our algorithm.

77

The algorithm produces a feasible cache policy by construction, as we always fetch pt and we
always run the eviction loop in Lines 4 and 5 until the cache is feasible. Note that there is always
a block to evict with a page p that has xp > 0, otherwise x is integral, and is the characteristic
vector of the pages the algorithm has in cache, in which case the algorithm’s cache is already
feasible since the fractional solution is feasible. Furthermore, the expected cost of the evictions
due to the randomized rounding step at Line 2 is at most γ · c(φ) = O(log k∆) · c(φ).

It remains to show that the total cost due to alterations in the eviction loop in Lines 4 and 5 is
bounded. We now show that it is at most O(c(φ)).

Let Λ be the set of times τ such that pτ is not already fully in the fractional cache. Our algorithm
maintains the invariant that if xtp = 0, then it is also fully in cache of the integral solution produced
by our algorithm at time t. This means that at times τ 6∈ Λ, neither the fractional solution nor the
rounding algorithm incur a cost increase. Hence we focus on the case where τ ∈ Λ.

For every τ , the solution φ is feasible for the LP (2.4.1) with the function f τ , so by Lemma 3.2.5

E[fτ (S)] ≥ n− k − 1

4k2β∆
.

In particular, this holds for all τ ∈ Λ. In words, the expected number of pages in cache is bounded
by k+ 1

4k2β∆
. Since every eviction due to Line 5 costs at most cmax and evicts at least one page, the

expected cost of the alteration while loop at time τ is bounded by cmax/(4k
2β∆) = cmin/4k

2β.

On the other hand, since τ ∈ Λ, the page pτ is not fully in cache, and since by Lemma 5.3.14
the fractional solution evicts pages in increments of at least 1/(4k2), it holds that xτpτ ≥ 1/(4k2).
This means that the fetching cost of the fractional solution at time τ is at least cmin/4k

2.

Hence the expected cost of the alteration step in time τ is at most the fractional fetching cost at
time τ , divided by β. Summing this inequality over time, the total cost paid by the algorithm
over all all time due to Line 5 is at most cFETCH(φ)/β. By Claim 5.3.16, the fetching cost
cFETCH(φ) ≤ β(c(φ)+

∑
B∈B cB), and hence the total cost of alterations is at most c(φ)+

∑
B∈B cB .

This completes the proof.

5.4 Fetching Cost

We present our Ω(β) lower bound against randomized algorithms for online BLOCKAWARE-
CACHING with fetching costs. We first present a bicriteria rounding algorithm for the naı̈ve LP of
Section 5.7. We then argue that this procedure can be used to derandomize any randomized algo-
rithm for BLOCKAWARECACHING with fetching costs. Together with the lower bound against
deterministic algorithms given by [BGM21], this implies a lower bound against randomized
algorithms.

5.4.1 Bicriteria Online Rounding Algorithm

Consider the following deterministic online rounding scheme. For every page p, evict p from the
cache at time t if xtp > 1/2. If a page pt is not in cache upon request at time t, then at time t fetch
all pages from B(pt) such that xtp ≤ 1/2.

78

Theorem 5.4.1. Given a feasible fractional solution x to the BLOCKAWARECACHING problem,
the procedure above produces an integral solution that uses at most 2k cache space at any point
in time, and whose fetching cost is at most twice the fetching cost of x.

Proof. The procedure produces a feasible solution by construction, since xtpt = 0 ≤ 1/2. It also
violates the cache size constraint by at most a factor of 2, since no page is present in the integral
cache unless xtp ≤ 1/2, meaning the fractional cache usage is at least half the integral cache usage.

Finally, to justify that the integral solution has cost at most twice the fractional cost, charge the cost
of integrally loading B(pt) to the fractional decrease of xtB since the last time t′ at which B(pt)
was loaded. Since pt had xt′p > 1/2 (otherwise we would have loaded it earlier), the fractional cost
incurred since time t′ was at least 1/2 · cB(p).

Corollary 5.4.2. When k = 2h, there is a 2-competitive offline algorithm for BLOCKAWARE-
CACHING with fetching cost.

We mention briefly that a similar rounding procedure produces a cache policy that is 2-competitive
with the eviction cost of the fractional solution, and also uses at most a factor 2 more space. If pt
is not in cache at time t, fetch it. On the other hand if any page in cache at time t has fractional
value xtp < 1/2, evict all of B(p).

5.4.2 Lower Bounds for Randomized Algorithms

Finally we turn to showing our lower bound. Our starting point is the lower bound of [BGM21]
against deterministic algorithms.

Theorem 5.4.3 (Theorem 4.1 of [BGM21]). The competitive ratio of any deterministic online
policy for BLOCKAWARECACHING with fetching costs is at least

k + (B − 1)(h− 1)

k − h+ 1

for h ≤ k −B + 1.

We now show how to use the online deterministic rounding procedure of Section 5.4.1 to deran-
domize any online algorithm for BLOCKAWARECACHING with fetching costs. This proves the
main claim of this section:

Theorem 5.4.4. The competitive ratio of any randomized policy for BLOCKAWARECACHING

with fetching costs is at least
2k + (B − 1)(h− 1)

4k − 2h+ 2

for h ≤ k −B + 1.

Proof. Suppose there is a randomized online algorithmR for (h, k)-BLOCKAWARECACHING

with fetching costs with expected cost cR. Then we can convert this randomized cache policy
online to a fractional solution x. To do so, set xtp be the expected value of the indicator of whether
page p is loaded at time t. Note that these expectations can be computed using only the sequence
of requests up to and including time t. This solution x is feasible to the simple fetching cost LP
(5.7.1), and furthermore has LP cost cR.

79

Applying Theorem 5.4.1 to the fractional solution x produces an integral cache policy cost at most
2 · cR and space 2k. The claim follows by using the lower bound on the cost of any such policy
given by Theorem 5.4.3, and solving for cR.

Combining this with the well known Ω(log k) lower bound for randomized algorithms for classical
paging, we obtain the following consequence.

Corollary 5.4.5. When k = O(h), no randomized algorithm has competitive ratio better than
Ω(B + log k).

5.5 Conclusion

In this chapter we significantly expand on known results of [BGM21] for the block-aware caching
problem. For the eviction cost model, we give the first set of algorithms avoiding a trivial
multiplicative β overhead over their classical paging counterparts. We also give (h, k)-bicriteria
algorithms for both fetching and eviction cost models, which we in turn use to adapt the lower
bound of [BGM21] for the fetching cost model to randomized algorithms.

We leave the following open questions. Can our O(log2 k) competitive ratio for block-caching
in the eviction cost model be improved to O(log k) to match the lower bound from classical
paging? Note that even for the special case of generalized caching, the first result of [BBN12b]
achieved competitive ratio O(log2 k). The subsequent improvement due to [ACER19] required
non-trivial ideas which seem difficult to adapt to the more general block-aware caching problem.
For the fetching cost model, is there an algorithm matching the lower bound of β + log k, or
can the lower bound be strengthened to match the trivial β log k upper bound? Finally, are there
constant-approximation offline algorithms for block-caching in either the fetching or eviction cost
models?

This chapter is demonstrates the versatility of the ideas from Chapter 3; more generally it illustrates
the power of the abstraction of submodularity in the context of online algorithms.

5.6 Deferred Proofs

Claim 5.2.1. There exist instances of BLOCKAWARECACHING for which the optimal fetching
cost is β larger than the optimal eviction cost, and there exist instances where the optimal eviction
cost is β larger than the optimal fetching cost.

Proof. Consider the following instance. For any β, let n = 2β2 pages be organized into 2β blocks
of size β. Let P be the first β blocks and Q be the second β blocks. We set k = β2, and fill the
cache initially with all the pages of the P blocks. The request sequence consists of rounds. For
i = 1, . . . , β, in round i request the first β − i pages of each P block, and the first i of the Q
blocks in their entirety, and repeat this sequence L times within the round. For sufficiently large
constant L, the optimal solution must have precisely the requested pages of a round in its cache.
Thus, in round i it evicts the (β − i+ 1)th page of each P block and fetches the ith Q block in its
entirety. The fetching cost of this solution is β, while the eviction cost is β2.

80

To see the other direction, observe that if we instead start the cache with the pages of the Q blocks,
and for i = 1, . . . , β we make round i request precisely the pages not requested in round i above
(and once again repeat this sequence L times), the optimal solution will always evict one Q block
in its entirety and fetch a single page from each P block in each round. Here the fetching cost is
β2 and the eviction cost is β.

Claim 5.3.1. For every τ , the function fτ is submodular.

Proof. Consider the function gτ , where

gτ (S) := |{p : p is missing at time τ according to S}|

=

∣∣∣∣∣⋃
φ∈S

{p : p is missing at time τ according to φ}

∣∣∣∣∣ .
gτ is a coverage function, and hence it is submodular. The function f τ is the minimum of gτ and
the constant function n− k, and so f τ is also submodular.

Claim 5.3.10. If a fractional solution φ to (P) has no violated maximal-integral constraints, then
φ is feasible.

Proof. It suffices to show that if φ violates a constraint (S, τ), and (B0, t0) is such that φt0B0
= 1,

then x also violates (S ∪ {(B0, t0)}, τ). Since x is violated,

n− k − fτ (S) >
∑
B,t

fτ ((B, t) | S) · φtB

=
∑

(B,t)6=(B0,t0)

fτ ((B, t) | S) · φtB + fτ ((B0, t0) | S)

≥
∑

(B,t)6=(B0,t0)

fτ ((B, t) | S ∪ {(B0, t0)}) · φtB

+ fτ ((B0, t0) | S)

where the second inequality above used submodularity. Rearranging gives that∑
(B,t)6=(B0,t0)

fτ ((B, t) | S ∪ {(B0, t0)}) · φtB < n− k − fτ (S ∪ {(B0, t0)}).

Lemma 5.3.14. Let (x, φ) be a fractional solution for LP (P). For an additional multiplicative
constant factor to the competitive ratio, we can assume that (x, φ) has the following properties:

• For every time t, every page p has xtp ∈ [0, 1/2] ∪ {1}.
• Every nonzero coordinate has φtB ≥ 1/4k2.

Proof. To guarantee the first property, every time a page from a block B is evicted to extent 1/2,
evict the entire block B for a cost of cB . Charge this eviction to the evictions that caused this page
to go from 0 to 1/2, which cost at least cB/2.

To ensure the second property, consider the following online algorithm.

81

Algorithm 10 Structure Solution

1: Define solution x̃ such that φ̃tB = φtB + 1{φtB ≥ 1/2} · (1− φtB).
2: for block B do
3: Set tB ← 0.
4: for time t ∈ [T] do
5: Let ∆ =

∑t
t′=tB+1 φ̃

t′
B.

6: if ∆ ≥ 1/4k2 then
7: ϕtB ← ∆.
8: tB ← t.
9: Output ϕ̃ = min(2 · ϕ, 1).

The structural guarantee that every nonzero coordinate has ϕtB ≥ 1/4k2 holds by construction. The
cost is also less than 2 · c(φ) by construction.

It remains to show ϕ is feasible. Consider any constraint of the form:∑
B,t

fτ ((B, t) | S) · φtB ≥ n− k − fτ (S)

For a block B, let τB be the last time before τ that tB was set to in Line 8. By construction

τ∑
t=τB+1

φtB ≤
1

4k2
.

Since f((B, t)|S) ≤ k, and by the property that every p has xtp ∈ [0, 1/2] ∪ {1}, there are at most
2k blocks with nonzero pages in cache. This also means

∑
B

τ∑
t=τB+1

f((B, t) | S) · φtB ≤
1

2

and hence ∑
B,t

fτ ((B, t) | S) · ϕtB ≥ n− k − fτ (S)− 1

2
.

If n− k − fτ (S) = 0, then the constraint is also trivially satisfied by ϕ. Else n− k − fτ (S) ≥ 1.
To conclude, note that since S is maximal-integral, and φ has no coordinates φtB ∈ (1/2, 1):∑

t≤τ0

∑
B

f((B, t) | S) · ϕtB = 2
∑
t≤τ0

∑
B

f((B, t) | S) · φtB

≥ 2

(
n− k − fτ (S)− 1

2

)
≥ n− k − fτ (S)

If ϕ satisfies all integral-maximal constraints, Claim 5.3.10 implies it also satisfies all other
constraints, and the lemma statement follows.

82

Claim 5.3.16. Let cFETCH(z) be the fetching cost of a fractional solution z. Then

cFETCH(z) ≤ β

(
c(z) +

∑
B∈B

cB

)
.

Proof. Let c(z) and cFETCH(z) be the classic paging eviction/fetching cost of z, i.e. the cost if page
fetches/evictions cannot be batched in blocks. The difference between the total fetching cost and
eviction cost paid for a single page is at most c(B(p)), and hence c(z) = cFETCH(z)±

∑
B∈B cB ·β.

On the other hand, c(z) ≤ β · c(z). Combining these observations:

cFETCH(z) ≤ cFETCH(z) ≤ c(z) + β ·
∑
B∈B

cB ≤ β ·

(
c(z) +

∑
B∈B

cB

)
.

5.7 The Natural LP has Ω(β) Integrality Gap

Consider the following simple LP formulation, where σ ∈ {−1, 1} is a fixed constant. We use xtp
for the fraction of page p missing from the cache at time t.

min
φ,x

∑
B,t

cB · φtB

subject to

∀t ∈ [T] : xtp(t) = 0

∀t ∈ [T],∀B ∈ B,∀p ∈ B : φtB ≥ σ
(
xtp − xt−1

p

)
∀t ∈ [T] :

∑
p x

t
p ≥ n− k

∀t ∈ [T], ∀B ∈ B : φtB ∈ [0, 1]
∀t ∈ [T], ∀p ∈ [n] : xtp ∈ [0, 1]

(5.7.1)

If σ = 1, this is the eviction cost model and φtB denote the fractional extent to which B is evicted
at time t; if σ = −1, this is the fetching cost model and φtB denote the fractional extent to which
B is fetched at time t.

Unfortunately, for both fetching and eviction cost models, this LP has an integrality gap of Ω(β).
Consider the following instance in which n = 2β pages are divided into two blocks B1 and B2.
The cache is of size k = 2β − 1, and is initially empty. The request sequence repeats for several
rounds. In each round, it requests first all pages from B1 and then all pages from B2.

The integral algorithm must pay at least 1 per round, since 2β pages are requested and the cache
is of size 2β − 1. On the other hand, the fractional solution begins by loading both blocks to
extent (β − 1)/β. Subsequently, when Bi is requested for i ∈ {1, 2}, it loads Bi to extent 1 and
Bj (where j 6= i) to extent (β − 1)/β. Hence both the fractional fetching and eviction costs per
round are 2/β. We summarize this observation in the following theorem.

83

Theorem 5.7.1. The simple LP relaxation for BLOCKAWARECACHING in both fetching/eviction
cost models has an integrality gap of Ω(β).

84

Part II

Dynamic Algorithms

85

Chapter 6

Fully-Dynamic Submodular Cover

6.1 Introduction

We consider the SUBMODULARCOVER problem in a fully-dynamic setting, where the notion of
coverage changes over time. At each time, the underlying submodular function changes from
f (t) to f (t+1), and the algorithm may have to change its solution from St to St+1 to cover this
new function. We do not want our solutions to change wildly if the function changes by small
amounts. The goal of this work is to develop algorithms where this “churn” |St4St+1| is small
(perhaps in an amortized sense), while maintaining the requirement that each solution St is a good
approximate solution to the function f (t). The change |St4St+1| is often called recourse in the
literature. We call this problem DYNAMICSUBMODULARCOVER.

This problem has been posed and answered in the special case of SETCOVER—for clarity,
from now on this chapter we consider the equivalent HYPERGRAPHVERTEXCOVER (a.k.a. the
HITTINGSET) problem. In this problem, hyperedges arrive to and depart from an active set
over time, and we must maintain a small set of vertices that hit all active hyperedges. We
know an algorithm that maintains an O(log nt)-approximation which has constant amortized
recourse [GKKP17]; here nt refers to the number of active hyperedges at time t. In other words,
the total recourse—the total number of changes over T edge arrivals and departures—is only
O(T). The algorithm and analysis are based on a delicate token-based argument, which gives
each hyperedge a constant number of tokens upon its arrival, and moves these tokens in a careful
way between edges to account for the changes in the solution. What do we do in the more general
SUBMODULARCOVER case, where there is no notion of sets any more?

We focus on the bag-of-functions model (see Section 2.6): at time t a submodular function
gt is added or removed from the active set G(t) at each timestep, and this defines the current
submodular function f (t) :=

∑
g∈Gt g. The algorithm must maintain a subset St ⊆ N such that

f (t)(St) = f (t)(N) with cost c(St) being within a small approximation factor of the optimal
SUBMODULARCOVER for f (t), such that the total recourse

∑
t |St4St+1| remains small1. Recall

that to model dynamic HYPERGRAPHVERTEXCOVER, each arriving/departing edge At should
correspond to a submodular function gt taking on value 1 for any set S that hits At, and value zero

1We emphasize the difference between this problem and the one defined in Chapter 3: in that setting, functions
may only be inserted into the active set, and no recourse is allowed.

87

otherwise (i.e., gt(S) = 1[S ∩ At 6= ∅]).

6.1.1 Our Results

Our main result is the following:

Theorem 6.1.1 (Informal). There is an e2 · (1 + log fmax)-competitive deterministic algorithm
for DYNAMICSUBMODULARCOVER with total recourse:

O

(∑
t

gt(N) log
(cmax

cmin

))
,

where gt(N) is the largest value of the function considered at time t, and cmax, cmin are the
maximum and minimum element costs.

Let us parse this result. Firstly, the approximation factor almost matches Wolsey’s result up to
the multiplicative factor of e2; this is best possible in polynomial time unless P = NP even in the
offline setting. Secondly, the amortized recourse bound should be thought of as being logarithmic—
indeed, specializing it to HITTINGSET where each gt(N) = 1, we get a total recourse of
O(T · log(cmax/cmin)) over T timesteps, or an amortized recourse of O(log(cmax/cmin)) per
timestep. Hence this recourse bound is weaker by a log-of-cost-spread factor, while generalizing
to all monotone submodular functions. Finally, since we are allowed to give richer functions gt at
each step, it is natural that the recourse scales with

∑
t gt(N), which is the total “volume” of these

functions. In particular, this problem captures fully-dynamic HYPERGRAPHVERTEXCOVER

where at each round a batch of k edges appears all at once (this is in contrast to the standard
fully-dynamic model where hyperedges appear one at a time). In this case the algorithm may have
to buy up to k = gt(N)/fmin new vertices in general to maintain coverage.

Our results can be seen as an extension/improvement of the main result in Chapter 3 when recourse
is allowed: not only can our algorithm handle the fully-dynamic case with insertions and deletions,
but we improve the competitive ratio from O(log n · log fmax/fmin) to O(log fmax/fmin), which
is best possible even in the offline case.

We next show that for coverage functions (and hence for the HYPERGRAPHVERTEXCOVER

problem), a variation on the algorithm from Theorem 6.1.1 can remove the log-of-cost-spread
factor in terms of recourse, at the cost of a slightly coarser competitive ratio. E.g., for HYPER-
GRAPHVERTEXCOVER the new competitive ratio corresponds to an O(log n) guarantee versus an
O(logDmax) guarantee, where Dmax being the largest degree of any vertex.

Theorem 6.1.2 (Informal). There is an O(log f(N))-competitive deterministic algorithm for
DYNAMICSUBMODULARCOVER, in the setting where the gt function are 3-increasing in addition
to monotone and submodular, with total recourse:

O

(∑
t

gt(N)

)
.

Indeed, this result holds not just for coverage functions, but for the broader class of 3-increasing,
monotone, submodular functions [FH05], which are the functions we have been considering, with
the additional property that have positive discrete mixed third-derivatives. At a high level, these
are functions where the mutual coverage does not increase upon conditioning.

88

6.1.2 Techniques and Overview

The most widely known algorithm for SUBMODULARCOVER is the greedy algorithm; this
repeatedly adds to the solution an element maximizing the ratio of its marginal coverage to its
cost. It is natural to try to use the greedy algorithm in our dynamic setting; the main issue is that
out-of-the-box, greedy may completely change its solution between time steps. In their result on
recourse-bounded HYPERGRAPHVERTEXCOVER, [GKKP17] showed how to effectively imitate
the greedy algorithm without sacrificing more than a small amount of recourse. A barrier to
making greedy algorithms dynamic is their sequential nature, and hyperedge inserts/deletes can
play havoc with this. So they give a local-search algorithm that skirts this sequential nature, while
simultaneously retaining the key properties of the greedy algorithm. Unfortunately, their analysis
hinges on delicately assigning edges to vertices. In the more general SUBMODULARCOVER

setting, there are no edges to track, and this approach breaks down.

Our first insight is to return to the sequential nature of the greedy algorithm. Our algorithm main-
tains an ordering π on the elements of N , which induces a solution to the SUBMODULARCOVER

problem: we define the output of the algorithm as the prefix of elements that have non-zero
marginal value. We maintain this permutation dynamically via local updates, and argue that
only a small amount of recourse is necessary to ensure the solution is competitive. To bound the
competitive ratio, we imagine that the permutation corresponds to the order in which an auxiliary
offline algorithm selects elements, i.e. a stack trace. We show that our local updates maintain the
invariant that this is the stack trace of an approximate greedy algorithm for the currently active set
of functions. We hope that this general framework of doing local search on the stack trace of an
auxiliary algorithm finds uses in other online/dynamic algorithms.

Our main technical contribution is to give a potential function to argue that our algorithm needs
bounded recourse. The potential measures the (generalized) entropy of the coverage vector of
the permutation π. This coverage vector is indexed by elements of the universe N , and the value
of each coordinate is the marginal coverage (according to permutation π) of the corresponding
element. Entropy is often used as a potential function (notably, in recent developments in online
algorithms) but in a qualitatively different way. In many if not all cases, these algorithms follow
the maximum-entropy principle and seek high entropy solutions subject to feasibility constraints;
the potential function then tracks the convergence to this goal. On the other hand, in our setting the
cost function is the support size of the coverage vector, and minimizing this roughly corresponds
to low entropy. We show entropy decreases sufficiently quickly with every change performed
during the local search, and increases by a controlled amount with insertion/deletion of each
function g, thus proving our recourse bounds.

We find our choice of entropy to be interesting for several reasons. For one, we use a suitably
chosen Tsallis entropy [Tsa88], which is a general parametrized family of entropies, instead
of the classical Shannon entropy. The latter also yields recourse bounds for our problem, but
they are substantially weaker (see Section 6.9). Tsallis entropy has appeared in several recent
algorithmic areas, for example as a regularizer in bandit settings [SS14], and as an approximation
to Shannon entropy in streaming contexts [HNO08]. Secondly, it is well known that for certain
problems, minimizing an `1-objective is an effective proxy for minimizing sparsity [CRT06]. In
our dynamics, the `1 mass stays constant since total coverage does not change when elements
are reordered. However, entropy is a good proxy for sparsity, in the sense that it decreases
monotonically (and quickly!) as our algorithm moves within the `1 level set towards sparse

89

vectors.

In Section 6.2, we study the unit cost case to lay out our framework and highlight the main ideas.
We show a log fmax/fmin competitive algorithm for fully-dynamic SUBMODULARCOVER with
O(
∑

t gt(N)/fmin) total recourse. Then in Section 6.3, we turn to general cost functions. We
again show a log(fmax/fmin) competitive algorithm, this time with log(cmax/cmin)·

∑
t gt(N)/fmin

recourse. The algorithm template is the same as before, but with a suitably generalized potential
function and analysis. Here we also require a careful choice of the Tsallis entropy parameter, near
(but not quite at) the limit point at which Tsallis entropy becomes Shannon entropy.

In Section 6.4, we show how to remove the log(cmax/cmin) dependence and achieve optimal
recourse for a structured family of monotone, submodular functions: the class of 3-increasing
(monotone, submodular) set functions [FH05]. These are set functions, all of whose discrete
mixed third derivatives are nonnegative everywhere. Submodular functions in this class include
measure coverage functions, which generalize set coverage functions, as well as entropies for
distributions with positive interaction information (see, e.g., [Jak05] for a discussion). Since this
class includes SETCOVER, this recovers the optimal O(1) recourse bound of [GKKP17]. For this
result we use a more interesting generalization of the potential function from Section 6.2 that
reweights the coverage of elements in the permutation non-uniformly as a function of their mutual
coverage with other elements of the permutation.

In Section 6.5, we show how to get improved randomized algorithms when the functions gt are
assumed to be r-juntas. This is in analogy to approximation algorithms for SETCOVER under
the frequency parametrization. In Section 6.6, we also show how to run an online “combiner”
algorithm that gets the best of all worlds, with a competitive ratio of O(min(r, log fmax/fmin)). In
Section 6.7, we demonstrate the generality of our framework by using it to recover known recourse
bounded algorithms for fully-dynamic MINIMUMSPANNINGTREE and MINIMUMSTEINERTREE.
These achieve O(1) competitive ratios, and recourse bounds of O(logD) where D is the aspect
ratio of the metric. Our proofs here are particularly simple and concise.

6.1.3 Related Work

The definition ofm-increasing functions is due to Foldes and Hammer [FH05]. Bach [Bac13] gave
a characterization of the class of measure coverage functions (which we define later) in terms of its
iterated discrete derivatives. This class generalizes coverage functions, and is contained in the class
of 3-increasing functions. [IKBA21] give several additional examples of 3-increasing functions.
Several papers [IKBA21, CM18, WMWP15, WWLP13] have given algorithms specifically for
3-increasing submodular function optimization.

Online and Dynamic Algorithms. There is a still budding series of work on recourse-bounded
algorithms. Besides [GKKP17] which is most directly related to our work, researchers have stud-
ied the Steiner Tree problem [IW91, GK14, GGK16, LOP+15], clustering [GKLX20, CHP+19],
matching [GKKV95, CDKL09, BLSZ14], and scheduling [PW93, Wes00, AGZ99, SSS09, SV10,
EL14, GKS14].

A rich parallel line of work has studied how to minimize update time for problems in the
dynamic or fully-dynamic setting. In [GKKP17], the authors give an O(log n) competitive
and O(F log n) update time algorithm for fully-dynamic HYPERGRAPHVERTEXCOVER. An
ongoing program of research for the frequency parametrization of HYPERGRAPHVERTEXCOVER

90

[BHI18, BCH17, BK19, AAG+19, BHN19, BHNW21] has so far culminated in an F (1 + ε)
competitive algorithm with poly(F, log cmax/cmin, 1/ε) update time (where F is the frequency).

Our work is related to work on convex body chasing (e.g., [AGTG21, Sel20]) in spirit but not
in techniques. For an online/dynamic covering problems, the set of feasible fractional solutions
within distance α of the optimal solution at a given time step form a convex set: our goal is
similarly to “chase” these convex bodies, while limiting the total movement traversed. The main
difference is that we seek absolute bounds on the recourse, instead of recourse that is competitive
with the optimal chasing solution. (We can give such bounds because our feasible regions are
structured and not arbitrary convex bodies).

6.2 Unit Cost SUBMODULARCOVER

6.2.1 The Algorithm

We now present our first algorithm for unit-cost fully-dynamic SUBMODULARCOVER. We will
show the following:

Theorem 6.2.1. For any γ > e, there a is a γ · (log f
(t)
max/f

(t)
min + 1)-competitive deterministic

algorithm for unit-cost DYNAMICSUBMODULARCOVER with total recourse:

2 · e log γ

γ − e log γ
·
∑

t gt(N)

fmin

= O

(∑
t gt(N)

fmin

)
.

The algorithm and its analysis are particularly clean; we will build on these in the following
sections. We begin by describing the algorithm. We maintain a permutation π of the elements in
N , and assign to each element its marginal coverage given what precedes it in the permutation.
We write this marginal value assigned to element πi as

Fπ(πi) := f(πi | π1:i−1). (6.2.1)

We consider two kinds of local search moves:

1. Swaps: transform π to π′ by moving an element at position i to position i − 1 on the
condition that F(πi) ≥ F(πi−1). In words, this is a bubble operation (as in bubble-sort).

2. γ-moves: transform the permutation π to π′ by moving an element u from a position q to
some other position p < q on the condition that for all i ∈ {p, . . . , q − 1},

Fπ′(π
′
p) ≥ γ · Fπ(πi).

In words, when u moves ahead in line, it “steals” coverage from other elements along the
way; we require that the amount covered by u after the move (which is given by Fπ′(π

′
p)

since u now sits at position p) to be at least a γ factor larger than the coverage before the
move of any element that u jumps over. (See Figure 6.1.)

The dynamic algorithm is the following. When a new function g(t) arrives or departs, update the
coverages Fπ of all the elements in the permutation. Subsequently, while there is a local search
move available, perform the move. Output the prefix of π of all elements with non-zero coverage.
This is summarized in Algorithm 11, with a setting of γ > e.

91

a b c d e

(a) Before Move

e a b c d

(b) After Move

Figure 6.1: Illustration of a legal γ-move. Each rectangle represents the marginal coverage of an element of the
permutation. The height of the item that moves must be at least γ times the height of anyone it cuts in line.

Algorithm 11 FULLYDYNAMICSUBMODULARCOVER

1: π ← arbitrary initial permutation of elements N .
2: for t = 1, 2, . . . , T do
3: tth function gt arrives/departs.
4: while there exists a legal γ-move or a swap for π do
5: Perform the move, and update π.
6: Output the collection of πi such that Fπ(πi) > 0.

6.2.2 Bounding the Cost

Let us start by arguing that if the algorithm terminates, it must produce a competitive solution.

Lemma 6.2.2. Suppose no γ-moves are possible, then for every index i such that Fπ(πi) > 0,
and for every index i′ > i, the following holds. Let π′ be the permutation where πi′ is moved to
position i. Then

Fπ(πi) >
Fπ′(πi′)

γ
(6.2.2)

Proof. Suppose there are elements πi and πi′ such that condition (6.2.2) does not hold, i.e.
Fπ′(πj) ≥ γ · Fπ(πi). Since by assumption there are no swaps available, the permutation π is
in non-increasing order of Fπ(πi) values, so for all indices j > i it also holds that Fπ(πi′) ≥
γ · Fπ(πj). Hence moving i′ from its current position to position i is a legal γ-move, which is a
contradiction.

Corollary 6.2.3. The output at every time step is γ · (log f
(t)
max/f

(t)
min + 1)-competitive.

Proof. Lemma 6.2.2 implies that the solution is equivalent to greedily selecting an element whose
marginal coverage is within a factor of 1/γ of the largest marginal coverage currently available.
Given this, the standard analyses of the greedy algorithm for SUBMODULARCOVER [Wol82]
imply that the solution is γ · (log f

(t)
max/f

(t)
min + 1) competitive.

92

6.2.3 Bounding the Recourse

We move on to showing that the algorithm must terminate with O(g(N)/fmin) amortized recourse.
For this analysis, we define a potential function parameterized by a number α ∈ (0, 1) to be fixed
later:

Φα(f, π) :=
∑
i∈N

(Fπ(πi))
α .

As noted in the introduction, up to scaling and shifting, this is the Tsallis entropy with parameter
α. We show several properties of this potential:

Properties of Φα:
(I) Φα increases by at most gt(N) · (fmin)α−1 with the addition of function gt to the active

set.

(II) Φα does not increase with deletion of functions from the system.

(III) Φα does not increase during swaps.

(IV) For an appropriate range of γ, the potential Φα decreases by at least (γ/(e log γ)− 1) ·
(fmin)α = Ω((fmin)α) with every γ-move.

Lemma 6.2.4. If α = (log γ)−1, then Φα respects properties (I)–(IV).

Proof. For brevity, define h(z) := zα. Since α ∈ (0, 1), this function is concave and non-
decreasing.

We start with property (I). When a function g is added to the system, for some set of i ∈ [n], it
increases ki := Fπ(π(i)) by some amount ∆i. Observe that

∑
i ∆i = g(N). By the concavity of

h: ∑
i

h(ki + ∆i)−
∑
i

h(ki) ≤
∑
i

h(∆i) ≤
∑

i ∆i

fmin

· h(fmin) = g(N) · (fmin)α−1.

Property (II) follows since h is non-decreasing.

For property (III), we wish to show that if u immediately precedes v in π and Fπ(u) ≤ Fπ(v),
then swapping u and v does not increase the potential. Let π̂ denote the permutation after the
swap. Note that Fπ̂(u) ≤ Fπ(v) and Fπ̂(v) ≥ Fπ(v), since u may only have lost some amount of
coverage to v. Suppose this amount is k, i.e. k = Fπ(u)− Fπ̂(u) = Fπ̂(v)− Fπ(v). Then:

Φα(f, π̂)− Φα(f, π) = h(Fπ̂(u)) + h(Fπ̂(v))− h(Fπ(u))− h(Fπ(v))

= h(Fπ(u)− k) + h(Fπ(v) + k)− h(Fπ(u))− h(Fπ(v))

which is non-positive due to the concavity of h.

It remains to prove property (IV). Suppose we perform a γ-move on a permutation π. Let u be the
element moving to some position p from some position q > p, and let π′ denote the permutation
after the move. For convenience, also define:

vi := Fπ(πi), (the original coverage of the ith set)
ai := If (πi;u | π1:i−1) = Fπ(πi)− Fπ′(πi). (the loss in coverage of the ith set)

93

Note that for all i 6∈ {p, . . . , q}, we necessarily have ai = 0. Also note that Fπ′(S) =
∑

i ai, and
by the definition of a γ-move, for any j we have

∑
i ai ≥ γ · vj . Then the change in potential is:

Φα(f, π′)− Φα(f, π) =
(∑

i

ai

)α
+
∑
i

(vi − ai)α −
∑
i

vαi

≤
(∑

i

ai

)α
−
∑
i

ai · α · vα−1
i (6.2.3)

≤
(∑

i

ai

)α
−
(∑

i

ai

)α
· α · γ1−α (6.2.4)

≤ −
(γ

e log γ
− 1
)

(fmin)α. (6.2.5)

Above, (6.2.3) holds since h is concave and thus h(vi−ai)−h(vi) ≤ ∇h(vi) · (−ai). Line (6.2.4)
holds by the definition of a γ-move, since

∑
i ai ≥ γvj for every j ∈ {p, . . . , q}. Finally, (6.2.5)

comes from our choice of α = (log γ)−1 and the fact that
∑

i ai ≥ fmin.

Finally, we return to proving the main theorem.

Proof of Theorem 6.2.1. By Lemma 6.2.2, if Algorithm 11 (using Definition 6.2.1 for Fπ) termi-
nates then it is γ · (log f

(t)
max/f

(t)
min + 1)-competitive.

By (I)–(IV), the potential Φα increases by at most gt(N)(fmin)α−1 for every function gt inserted
to the active set, decreases by (fmin)α · (γ/(e log γ)− 1) per γ-move, and otherwise does not
increase. By inspection, Φα ≥ 0. The number of elements e with Fπ(e) > 0 grows by 1 only
during γ-moves in which Fπ(e) was initially 0. Otherwise, this number never grows. We account
for elements leaving the solution by paying recourse 2 upfront when they join the solution.

Hence, the number of changes to the solution is at most:

2 ·
∑

t gt(N)

(fmin)1−α ·
e log γ

(fmin)α(γ − e log γ)
= O

(∑
t gt(N)

fmin

)
.

Our algorithm gives a tunable tradeoff between approximation ratio and recourse depending on
the choice of γ. Note that if we wish to optimize the competitive ratio, setting γ = e(1 + δ) gives
a recourse bound of[(

1 +
log(1 + δ)

δ − log(1 + δ)

)] ∑
t gt(N)

fmin

= O

(
1

δ2

)∑
t gt(N)

fmin

as δ approaches 0. For simplicity one can set γ = e2 to get the bound in Theorem 6.2.1.

6.3 General Cost SUBMODULARCOVER

6.3.1 The Algorithm

We now turn to the general costs case and show the main result of our chapter:

94

Theorem 6.3.1. There is an e2 · (log f
(t)
max/f

(t)
min + 1)- competitive deterministic algorithm for

DYNAMICSUBMODULARCOVER with total recourse:

O

(∑
t

gt(N)

fmin

log

(
cmax

cmin

))
.

Given the last section, our description of the new algorithm is very simple. We reuse Algorithm 11,
except we redefine:

Fπ(πi) :=
f(πi | π1:i−1)

c(πi)
.

We will specify the last free parameter γ shortly.

6.3.2 Bounding the Cost

To bound the competitive ratio, note that (6.2.2) did not use any particular properties of Fπ, except
that in the solution output by the algorithm, there are no γ-moves or swaps with respect to Fπ in
permutation π. The analog of Corollary 6.2.3 is nearly identical:

Corollary 6.3.2. The output at every time step is γ · (log f
(t)
max/f

(t)
min + 1)-competitive.

Proof. Lemma 6.2.2 implies that the solution is equivalent to greedily selecting an element whose
marginal coverage/cost ratio is within a factor of 1/γ of the largest marginal coverage/cost ratio
currently available. The standard analyses of the greedy algorithm for SUBMODULARCOVER

[Wol82] imply that the solution is γ · (log f
(t)
max/f

(t)
min + 1) competitive.

6.3.3 Bounding the Recourse

To make our analysis as modular as possible, we will write a general potential function, parame-
terized by a function h : R→ R:

Φh(f, π) :=
∑
i∈N

c(πi) · h (Fπ(πi)) .

With foresight, we require several properties of h:

Properties of h:
(i) h is monotone and concave.

(ii) h(0) = 0.

(iii) h satisfies x · h′(x/γ) ≥ (1 + εγ)h(x).

(iv) h satisfies y · h(x/y) is monotone in y.

To bound the recourse, our goal will again be to show the following properties of our potential
function Φh:

95

Properties of Φh:
(I) Φh increases by at most

gt(N)

fmin

· cmax · h
(
fmin

cmax

)
with the addition of function gt to the active set.

(II) Φh does not increase with deletion of functions from the system.

(III) Φh does not increase during sorting.

(IV) For an appropriate range of γ, the potential Φh decreases by at least

εγ · cmin · h
(
fmin

cmin

)
with every γ-move.

Together, the statements imply a total recourse bound of:∑
t gt(N)

εγ · fmin

· cmax

cmin

· h(fmin/cmax)

h(fmin/cmin)
.

Lemma 6.3.3. If h respects properties (i)–(iv) then Φh respects properties (I)–(IV).

Proof. We start with property (I). When a function gt is added to the system, for some set of
i ∈ [n], it increases ki := Fπ(π(i)) by some amount ∆i. Then the potential increase is:

Φh(f
(t), π)− Φh(f

(t−1), π) =
∑
i∈[n]

c(πi) · h
(
ki + ∆i

c(πi)

)
−
∑
i∈[n]

c(πi) · h
(

ki
c(πi)

)

≤
∑
i∈[n]

c(πi) · h
(

∆i

c(πi)

)
(6.3.1)

≤
∑
i∈[n]

cmax · h
(

∆i

cmax

)
(6.3.2)

≤
∑

i ∆i

fmin

· cmax · h
(
fmin

cmax

)
(6.3.3)

=
gt(N)

fmin

· cmax · h
(
fmin

cmax

)
.

Above step (6.3.1) is by properties (i) and (ii), step (6.3.2) is by property (iv) and step (6.3.3) is
by property (i).
Property (II) follows since h is non-decreasing.

The proof of property (III) is similar to the one in Lemma 6.2.4. Suppose u immediately precedes
v in π but Fπ(u) ≤ Fπ(v), and let π̂ denote the permutation after the swap. We have that
Fπ̂(u) ≤ Fπ(v) and Fπ̂(v) ≥ Fπ(v), since u may only have lost some amount of coverage to v.
Suppose this amount is k, i.e. k = Fπ(u)− Fπ̂(u) = Fπ̂(v)− Fπ(v). Then:

Φh(f, π̂)− Φh(f, π) = c(u) · h (Fπ̂(u)) + c(v) · h(Fπ̂(v))− c(u) · h(Fπ(u))− c(v) · h(Fπ(v))

96

= c(u)

(
h

(
Fπ(u)− k

c(u)

)
− h(Fπ(u))

)
+ c(v)

(
h

(
Fπ(v) +

k

c(v)

)
− h(Fπ(v))

)
≤ k · (h′(Fπ(v))− h′(Fπ(u)))

which is non-positive due to the concavity of h and the fact that Fπ(v) ≥ Fπ(u).

Finally the proof of property (IV) is also similar to the version in the last section. Suppose we
perform a γ-move on a permutation π. Let u be the element moving to some position p from
some position q > p, and let π′ denote the permutation after the move. Then:

Φh(f, π
′)− Φh(f, π) = c(u) · h

(∑
i∈[n] ai

c(u)

)
+
∑
i∈[n]

c(πi) ·
(
h

(
vi − ai
c(πi)

)
− h

(
vi
c(πi)

))

≤ c(u) · h

(∑
i∈[n] ai

c(u)

)
−
∑
i∈[n]

ai · h′
(

vi
c(πi)

)
(6.3.4)

≤ c(u) · h

(∑
i∈[n] ai

c(u)

)
− c(u)

∑
i∈[n]

ai
c(u)

· h′
(∑

i∈[n] ai

γ · c(u)

)
(6.3.5)

≤ c(u) · h

(∑
i∈[n] ai

c(u)

)
− (1 + εγ) · c(u) · h

(∑
i∈[n] ai

c(u)

)
(6.3.6)

≤ −εγ · c(u) · h

(∑
i∈[n] ai

c(u)

)

≤ −εγ · cmin · h
(
fmin

cmin

)
. (6.3.7)

Above step (6.3.4) uses the concavity of h. Step (6.3.5) uses the fact that moving u was a legal
γ-move and thus

∑
i∈[n] ai/c(u) ≥ γvi/c(πi). Step (6.3.6) follows from property (iii). Finally,

(6.3.7) uses property (iv) again.

With this setup, the proof of the main theorem boils down to identifying an appropriate function
h, and a suitable choice of γ.

Proof of Theorem 6.3.1. Recall the general recourse bound is∑
t gt(N)

εγ · fmin

· cmax

cmin

· h(fmin/cmax)

h(fmin/cmin)
.

A good choice for h is h(x) = x1−δ/(1 − δ) for δ = (log(cmax/cmin) + 1)−1, and with γ = e2.
Properties (i)–(iv) are easy to verify. To see that this implies the bound

O

(∑
t gt(N)

fmin

log

(
cmax

cmin

))
,

note that γ = e2 ≥ ((1 + δ)/(1 − δ))1/δ, in which case εγ = γδ(1 − δ) − 1 ≥ δ. Furthermore,
(cmax/cmin)δ = O(1).

97

6.4 Improved bounds for 3-increasing functions

In this section we show to remove the log(cmax/cmin) dependence from the recourse bound when
f is assumed to be from a structured class of set functions: the class of 3-increasing functions.
We start with some definitions.

6.4.1 Higher Order Monotonicity of Boolean Functions

Recall the definition of m-increasing functions Definition 2.2.3.

We will soon show improved algorithms for the class D+
3 , that is the class of 3-increasing set

functions. The following derivation gives some intuition for these functions:

df

d{x, y, z}
(S) =

∑
B⊆{x,y,z}

(−1)|B|f((S ∪ {x, y, z})\B)

= f(x | S)− f(x | S ∪ {y})− (f(x | S ∪ {z})− f(x | S ∪ {y, z}))
= If (x, y | S)− If (x, y | S ∪ {z}). (6.4.1)

Thus a function f in contained in D+
3 if and only if mutual coverage decreases after conditioning.

Bach [Bac13, Section 6.3] shows that a nonnegative function is in D+
2m−1 ∩ D−2m simultaneously

for all m ≥ 1 if and only if it is a measure coverage function2: each element i ∈ N is associated
with some measurable set Si under a measure µ, and f(S1, . . . , St) = µ

(⋃t
i=1 Si

)
.

6.4.2 The Algorithm

We now show our second main result:

Theorem 6.4.1. There is an O(log f(N)/fmin)-competitive deterministic algorithm for DYNAM-
ICSUBMODULARCOVER, in the setting where the gt function are 3-increasing in addition to
monotone and submodular, with total recourse:

O

(∑
t gt(N)

fmin

)
.

We reuse Algorithm 11 from previous sections, only this time we redefine Fπ more substantially.
Given two permutations α and β on N , we define the (i, j) mutual affinity of (α, β) (and its
conditional variant) as

Iα,β(αi, βj) := If (αi, βj | α1:i−1 ∪ β1:j−1),

Iα,β(αi, βj | S) := If (αi, βj | α1:i−1 ∪ β1:j−1 ∪ S).

Recall that If denotes the Mutual Coverage. To give some insight into these definitions, observe
that mutual affinity telescopes cleanly:

2We avoid the term set coverage function used by [Bac13], since we already use this terminology to mean the
special case of a counting measure defined by a finite set system, as in SETCOVER.

98

Observation 6.4.2. The chain rule implies that∑
j∈[n]

Iα,β(αi, βj) = f(αi | α1:i−1),

∑
i∈[n]

Iα,β(αi, βj) = f(βj | β1:j−1),

∑
i,j∈[n]

Iα,β(αi, βj) = f(N).

Let ψ denote the ordering of N in increasing order of cost. Then:

Fπ(πi) :=
∑
j∈[n]

Iπ,ψ(πi, ψj)

c(πi) · c(ψj)
. (6.4.2)

The following observation gives some intuition for this definition.

Observation 6.4.3. The expression Iα,β(αi, βj) is nonzero only if (a) element αi precedes element
βj in permutation α, and also (b) element βj precedes element αi in permutation β.

In light of these remarks, Fπ(πi) decomposes the marginal coverage of πi into its mutual affinity
with all the elements ψj ∈ N that are simultaneously cheaper than πi and that follow πi in the
permutation π, and weights each of these affinities by (c(πi)c(ψj))

−1.

With this re-definition of Fπ, Algorithm 11 is fully specified (though it is still parametrized by γ).
We move to proving formal guarantees.

6.4.3 Bounding the Cost

Since our definition of Fπ (and thus the behavior of the algorithm) has significantly changed, we
need to reprove the competitive ratio guarantee. Our goal will be the following Lemma:

Lemma 6.4.4. If no swaps or γ-moves are possible, the solution is γ2 · log(f (t)(N)/f
(t)
min)-

competitive.

For the remainder of Section 6.4.3, we drop the superscript and refer to f (t) as simply f .

Define a level L` be the collection of elements u such that Fπ(u) ∈ [γ`, γ`+1). Note that since
no swaps were possible, permutation π is sorted in decreasing order of Fπ, and thus L` forms a
contiguous interval of indices in π. Our proof strategy will be to show that for any level `, the
total cost of all elements in L` is at most γ2 · c(OPT). Subsequently, we will argue that there are
at most O(log f(N)/fmin) non-trivial levels.

Lemma 6.4.5 (Each Level is Inexpensive). If there are no swaps or γ-moves for π, then for any
` > 0, the total cost of all elements in L` is at most γ2 · c(OPT).

Proof. Suppose some level L` has cost c(L`) > γ2 · c(OPT). We will argue that in this case there
must be a legal γ-move available. To start, using Fact 2.1.1 we observe that:

γ` ≤ min
u∈L`

Fπ(u)
(def)
= min

u∈L`

∑
j∈[n] Iπ,ψ(u, ψj)/c(ψj)

c(u)
≤
∑

u∈L`

∑
j∈[n] Iπ,ψ(u, ψj)/c(ψj)∑

u∈L` c(u)
,

99

L`

o1 o2 o3 o4 o5 o6

(a) Permutation π.

L`

o1 o2

o3 o4 o5 o6

(b) Permutation π′, with OPT≥ moved ahead of L`.

Figure 6.2: Illustration of the proof of Lemma 6.4.5.

which by rearranging means:∑
u∈L`

∑
j∈[n]

Iπ,ψ(u, ψj)

c(ψj)
≥ γ` · c(L`) > γ`+2 · c(OPT). (6.4.3)

Let π< be the set of items preceding L` in π, and π≥ be the set of items in or succeeding L`. We
also define OPT≥ := OPT ∩ π≥.

First, we imagine moving all the elements of OPT≥, simultaneously and in order according to π,
to positions just before L`. Let π′ be this new permutation. We first show that some o ∈ OPT has
a high value Fπ′(o) after this move. Then we show that this element o also constitutes a potential
γ-move in π, a contradiction.

For the first claim, we start by using Fact 2.1.1 again:

max
o∈OPT≥

Fπ′(o) ≥
∑

o∈OPT≥

∑
j∈[n] Iπ′,ψ(o, ψj | π<)/c(ψj)∑

o∈OPT≥
c(o)

=
1

c(OPT≥)
·
∑

o∈OPT≥

∑
j∈[n]

Iπ′,ψ(o, ψj | π<)

c(ψj)

=
1

c(OPT≥)
·
∑
j∈[n]

fψ(ψj | π<)

c(ψj)
(6.4.4)

≥ 1

c(OPT≥)
·
∑
u∈L`

∑
j∈[n]

Iπ,ψ(u, ψj | π<)

c(ψj)
(6.4.5)

The lines (6.4.4) and (6.4.5) above follow by Observation 6.4.2 (note that (6.4.5)) is an inequality
because L` may be a strict subset of π≥). Since u ∈ L` ⊆ π≥, this is:

=
1

c(OPT≥)
·
∑
u∈L`

∑
j∈[n]

Iπ,ψ(u, ψj)

c(ψj)
(6.4.6)

> γ`+2, (6.4.7)

where line (6.4.7) used the inequality (6.4.3). In summary, Fπ′(o) is a factor γ bigger than any of
the Fπ(u) values for u ∈ L`.
However, since permutation π′ is obtained by moving many elements of π and not a single γ-move,
we need to show that moving this element o alone gives a legal γ-move in π. In fact, observe that
we have not yet used that f ∈ D+

3 : we will use it now.

100

Claim 6.4.6. Let πo be the permutation derived from π where a single element o ∈ OPT≥ is
moved before L`. Then Fπo(o) ≥ Fπ′(o).

Proof. Start from π′ and move an element o′ ∈ OPT≥ with o′ 6= o back to its original position in
π. Call this permutation π′′. Then:

Fπ′′(o) =
∑
j∈[n]

Iπ′′,ψ(o, ψj)

c(o)c(ψj)

=
∑
j∈[n]

Iπ′,ψ(o, ψj) + (Iπ′′,ψ(o, ψj)− Iπ′′,ψ(o, ψj | {o′}))
c(o)c(ψj)

≥
∑
j∈[n]

Iπ′,ψ(o, ψj)

c(o)c(ψj)
,

where the second equality used Iπ′,ψ(o, ψj) = Iπ′′,ψ(o, ψj | {o′}), and where the inequality used
equation (6.4.1), that If (a, b)−If (a, b | c) ≥ 0 for 3-increasing functions. Repeating this process
inductively until all elements but o have been returned to their original positions in π yields the
permutation πo, which proves the claim.

Now we can complete the proof of Lemma 6.4.5. This means that if Fπ′(o) ≥ γ`+2, then there is a
legal γ-move (namely the one which moves o ahead of L`), because by assumption every u ∈ π≥
has Fπ(u) ≤ γ`+1. This contradicts the assumption that none existed.

Next, we argue that the cost of all elements with very high or very low values of Fπ is small.

Lemma 6.4.7 (Extreme Values Lemma). If there are no swaps or γ-moves for π, the following
hold:

(i) There are no elements u such that 0 < Fπ(u) ≤ fmin/(γ · (c(OPT))2) .

(ii) The total cost of all elements u such that Fπ(u) ≥ (f(N))2/(fmin · (c(OPT))2) is at most√
γ · OPT .

Proof of Lemma 6.4.7. To prove item (i), we observe that if permutation π has no local moves,
then every element u must have high enough Fπ(u) to prevent any elements that follow it from
cutting it in line.

Claim 6.4.8. If there are no swaps or γ-moves for π, then for every πi ∈ N , and every j ∈ [n]
such that Iπ,ψ(πi, ψj) > 0 we have:

Fπ(πi) >
f(ψj | π1:i−1)

γ · (c(ψj))2
.

Proof. If there are no swaps or γ moves, then Fπ′(ψj) < γ · Fπi (where π′ is the permutation
obtained from π by moving the element ψj to the position ahead of u). Expanding definitions:

Fπ′(ψj)
(def)
=
∑
j′∈[n]

Iπ′,ψ(ψj, ψj′)

c(ψj)c(ψj′)
≥
∑
j′∈[n]

Iπ′,ψ(ψj, ψj′)

(c(ψj))2
=
f(ψj | π1:i−1)

(c(ψj))2
.

In the first inequality we used that c(ψj′) ≤ c(ψj) by Observation 6.4.3, in the second equality we
used Observation 6.4.2. Rearranging terms yields the claim.

101

Now item (i) follows by setting ψj to be the cheapest element that succeeds u in the permutation.
Note that c(ψj) ≤ c(OPT).

For item (ii), let S be the set of indices i with Fπ(πi) ≥ (f(N))2/(fmin · (c(OPT))2). Then by
Fact 2.1.1:

f(N)

c(OPT)
√
fmin

≤ min
i∈S

√
Fπ(πi) = min

i∈S

Fπ(πi)√
Fπ(πi)

(6.4.8)

(def)
=

1

c(πi)

∑
j∈[n]

Iπ,ψ(πi, ψj)

c(ψj)
√

Fπ(πi)
(6.4.9)

≤ 1

c(S)
·
∑
i∈S

∑
j∈[n]

Iπ,ψ(πi, ψj)

c(ψj)
√

Fπ(πi)
.

Rearranging to bound the cost:

c(S) ≤ c(OPT)
√
fmin

f(N)
·
∑
i∈S

∑
j∈[n]

Iπ,ψ(πi, ψj)

c(ψj)
√

Fπ(πi)

≤
√
γ · c(OPT)

√
fmin

f(N)
·
∑
i∈S

∑
j∈[n]

Iπ,ψ(πi, ψj)√
f(ψj | π1:i−1)

(6.4.10)

≤
√
γ · c(OPT)

√
fmin

f(N)
·
∑
i∈S

∑
j∈[n]

Iπ,ψ(πi, ψj)√
fmin

≤
√
γ · c(OPT)

f(N)
·
∑
i∈S

∑
j∈[n]

Iπ,ψ(πi, ψj)

=
√
γ · c(OPT). (6.4.11)

Above, step (6.4.10) is due to Claim 6.4.8 again and noting that if the denominator is 0 then the
numerator is also 0, and step (6.4.11) is due to Observation 6.4.2.

Using these ingredients, we can now wrap up the proof of the competitive ratio.

Proof of Lemma 6.4.4. The number of levels ` such that γ` lies between fmin/(γ(c(OPT))2) and
(f(N))2/(fmin · (c(OPT))2) is O(logγ(f(N)/fmin)2) = O(log(f(N)/fmin)). By Lemma 6.4.5,
each level in this range has cost at most O(c(OPT)). By Lemma 6.4.7, there are no elements with
non-zero coverage in levels below this range, and the total cost of all elements above this range is
O(c(OPT)). Thus the total cost of the solution is O(log(f(N)/fmin)) · c(OPT).

6.4.4 Bounding the Recourse

We follow our recipe of using the modified Tsallis entropy as a potential (with a reminder that the
underlying definitions of Fπ have changed) with α fixed to 1/2:

Φ1/2(π) :=
n∑
i=1

c(πi)
√
Fπ(πi).

102

Φ1/2 =
∑
i

√
c(πi)

c(ψ1)
· Iπ(πi;ψ1) +

c(πi)

c(ψ2)
· Iπ(πi;ψ2) +

c(πi)

c(ψ3)
· Iπ(πi;ψ3) +

c(πi)

c(ψ4)
· Iπ(πi;ψ4) + . . .

Figure 6.3: Illustration of Φ1/2. Elements are arranged in order of π.

It is worthwhile to interpret these quantities in the context of HYPERGRAPHVERTEXCOVER. In
this case, ψi and ψj correspond to vertices. Let Γ(v) (and Γ(V)) denote the edge-neighborhood
of v (and the union of the edge neighborhoods of vertices in the set V), then

Iπ,ψ(πi, ψj) = |(Γ(πi) ∩ Γ(ψj))\(Γ(π1:i−1 ∪ ψ1:j−1))|,

and if we use c(e) to denote the cost of the cheapest vertex hitting edge e, we can simplify

c(πi) ·
√
Fπ(πi) :=

√√√√ ∑
e∈Γ(πi)\Γ(π1:i−1)

c(πi)

c(e)
.

In words, we are reweighting each hyperedge by the ratio of costs between the current vertex
covering it, and its cheapest possible vertex that could cover it. Intuitively, this means the potential
will be high when many elements are in sets that are significantly more expensive than the cheapest
sets they could lie in.

This time the properties of Φ1/2 we show are:

Properties of Φ1/2:
(I) Φ1/2 increases by at most g(N)/

√
fmin with every addition of a function to the system.

(II) Φ1/2 does not increase with deletion of functions from the system.

(III) Φ1/2 does not increase during swaps.

(IV) If γ > 4, then Φ1/2 decreases by at least Ω(
√
fmin) with every γ-move.

Together, these will yield a recourse bound of
∑

t gt(N)/fmin.

Lemma 6.4.9. Φ1/2 satisfies property (I).

Proof. Consider a step in which f changes to f ′ because the function g was added to the system.
For convenience, let F̂π and Îπ,ψ denote the quantities Fπ and Iπ,ψ after g has been added. Then
the potential increase is:

Φ1/2(f (t), π)− Φ1/2(f (t−1), π) =
∑
i∈[n]

c(πi)
F̂π(πi)√
F̂π(πi)

−
∑
i∈[n]

c(πi)
Fπ(πi)√
Fπ(πi)

103

=
∑
i∈[n]

∑
j∈[n]

Îπ,ψ(πi, ψj)

c(ψj)

√
F̂π(πi)

−
∑
i∈[n]

∑
j∈[n]

Iπ,ψ(πi, ψj)

c(ψj)
√

Fπ(πi)
.

Since Fπ(πi) can only increase when a function g is added to the active set, this is

≤
∑
i∈[n]

∑
j∈[n]

Îπ,ψ(πi, ψj)− Iπ,ψ(πi, ψj)

c(ψj)
√

Fπ(πi)

(def)
=
∑
i∈[n]

∑
j∈[n]

Ig(πi, ψj | π1:i−1 ∪ ψ1:j−1)

c(ψj)
√

Fπ(πi)

≤
∑
j∈[n]

∑
i∈[n] Ig(πi, ψj | π1:i−1 ∪ ψ1:j−1)

c(ψj)
√

Fπ(ψj)
(6.4.12)

=
∑
j∈[n]

g(ψj | ψ1:j−1)

∑
j′∈[n]

c(ψj)Iπ,ψ(ψj, ψj′)

c(ψj′)

−1

≤
∑
j∈[n]

g(ψj | ψ1:j−1)

∑
j′∈[n]

Iπ,ψ(ψj, ψj′)

−1

(6.4.13)

≤
∑

j∈[n] g(ψj | ψ1:j−1)
√
fmin

(6.4.14)

=
g(N)√
fmin

.

Step (6.4.12) uses the relationship Fπ(πi) ≥ Fπ(ψj), which holds because summands are nonzero
only if ψj succeeds πi in permutation π (by Observation 6.4.3), or the numerator is 0, and the
fact that elements are sorted in decreasing order of Fπ. Step (6.4.13) uses c(ψj′) ≤ c(ψj), also by
Observation 6.4.3. Finally step (6.4.14) uses Observation 6.4.2.

Lemma 6.4.10. Φ1/2 satisfies property (III).

Proof. Consider an index i such that swapping πi and πi+1 increases the potential. Then for some
quantity δ :=

∑
j∈[n](Iπ,ψ(πi, ψj)− Iπ′,ψ(πi, ψj))/c(j) > 0 (since f ∈ D+

3) we have:

0 < ∆Φ1/2

0 < c(πi+1)

(√
Fπ(πi+1) +

δ

c(πi+1)
−
√
Fπ(πi+1)

)
+ c(πi)

(√
Fπ(πi)−

δ

c(πi)
−
√

Fπ(πi)

)
0 <

δ

2
√

Fπ(πi+1)
− δ

2
√

Fπ(πi)
(6.4.15)

⇒ Fπ(πi+1) ≤ Fπ(πi).

Above, (6.4.15) holds since square root is a concave function and thus
√
a+ b−

√
a ≤ b/(2

√
a).

This implies that the local move was not a legal swap.

Lemma 6.4.11. If γ > 4, then Φ1/2 satisfies property (IV).

104

Proof. Suppose the local move changes the permutation π to π′ by moving element u from
position q to p. For notational convenience, define the following quantities:

vi := Fπ(πi),

aij := Iπ(πi, ψj)− Iπ′(πi, ψj)
(def)
= 1[p ≤ i ≤ q] · (Iπ(πi, ψj)− Iπ(πi, ψj | {u})) .

Recall that by (6.4.1), the quantity aij is (crucially) nonnegative when f is 3-increasing. Also, by
expanding the definition of Mutual Coverage, for all indices i ∈ {p, . . . , q} we can rewrite aij as:

aij = f(ψj | π1:i−1 ∪ ψ1:j−1)− f(ψj | π1:i ∪ ψ1:j−1)

− [f(ψj | π1:i−1 ∪ ψ1:j−1 ∪ {u})− f(ψj | π1:i ∪ ψ1:j−1 ∪ {u})]
= If (u, ψj | π1:i−1 ∪ ψ1:j−1)− If (u, ψj | π1:i ∪ ψ1:j−1).

Thus, by the Chain Rule these terms telescopes such that:∑
i∈{p,...,q}

aij = If (u, ψj | π1:p−1, ψ1:j−1)
(def)
= Iπ′,ψ(u, ψj).

With this, we can bound the potential change after a local move as

Φ1/2(f, π′)− Φ1/2(f, π)

= c(u)
√
Fπ′(u) +

∑
i∈[n]

c(πi)

√
vi −

∑
j∈[n]

aij
c(πi)c(ψj)

−
∑
i∈[n]

c(πi)
√
vi

≤ c(u)
√

Fπ′(u)− c(πi)
∑
i∈[n]

1

2
√
vi
·
∑
j∈[n]

aij
c(πi)c(ψj)

(6.4.16)

≤ c(u)
√

Fπ′(u)−
√
γ

2
· c(πi)√

Fπ′(u)
·
∑
i∈[n]

∑
j∈[n]

aij
c(πi)c(ψj)

(6.4.17)

= c(u)
√

Fπ′(u)−
√
γ

2
· c(u)√

Fπ′(u)
·
∑
j∈[n]

∑
i∈[n] aij

c(u)c(ψj)
.

Above, step (6.4.16) holds since square root is a concave function and thus
√
a+ b −

√
a ≤

b/(2
√
a). The next step (6.4.17) is due to the definition of γ-moves which ensure that vi ≤

Fπ′(u)/γ (note that this step also makes use of the nonnegativity of aij). Using the telescoping
property of the aij , we can continue:

= c(u)
√

Fπ′(u)−
√
γ

2
· c(u)√

Fπ′(u)
·
∑
j∈[n]

Iπ′,ψ(u, ψj)

c(u)c(ψj)

(def)
= −

(√
γ

2
− 1

)√√√√∑
j∈[n]

c(u) · Iπ′,ψ(u, ψj)

c(ψj)

≤ −
(√

γ

2
− 1

)√∑
j∈[n]

Iπ′,ψ(u, ψj) (6.4.18)

105

≤ −
(√

γ

2
− 1

)√
fmin. (6.4.19)

Step (6.4.18) comes from Observation 6.4.3, and finally step (6.4.19) follows by Observation 6.4.2
and the fact that fmin is a lower bound on marginal coverage for any element with nonzero marginal
coverage.

We wrap up with the proof of the main theorem.

Proof of Theorem 6.4.1. Set γ = 5 > 4. By Lemma 6.4.4, if Algorithm 11 (using Definition
6.4.2 for Fπ) terminates then it is O(log f(N)/fmin)-competitive.

By (I)–(IV), the potential Φ1/2 increases by at most gt(N /
√
fmin for every function gt inserted to

the active set, decreases by
√
fmin ·

(√
γ/2− 1

)
per γ-move, and otherwise does not increase. By

inspection, Φα ≥ 0. The number of elements e with Fπ(e) > 0 grows by 1 only during γ-moves
in which Fπ(e) was initially 0. Otherwise, this number never grows. We account for elements
leaving the solution by paying recourse 2 upfront when they join the solution.

Hence, the number of changes to the solution is at most:

2 ·
∑

t gt(N)√
fmin

· 2√
fmin(

√
γ − 2)

= O

(∑
t gt(N)

fmin

)
.

6.5 Algorithm for r-bounded instances

We can achieve a better approximation ratio if each function g is an r-junta for small r. Recall that
an r-junta is a function that depends on at most r variables. In this section we prove the theorem:

Theorem 6.5.1. There is a randomized algorithm that maintains an r-competitive solution to
DYNAMICSUBMODULARCOVER, in the setting where these functions are each r-juntas, with
total recourse: ∑

t gt(N)

fmin

.

Our proof follows the framework of [GKKP17], which is itself a dynamic implementation of the
algorithm of [Pit85].

We start with some notation. Let Vg = {u ∈ N | g(u) 6= 0} be the elements influencing g. Our
assumption says that |Vg| ≤ r. Let S be the solution maintained by the algorithm. Each function
g ∈ G(t) maintains a set Ug ⊆ Vg of elements assigned to it. We say that g is responsible for Ug.
We also define the following operation:

Probing a function. Sample one element u ∈ Vg\S with probability:

1

c(u)∑
v∈Vg\S

1

c(v)

.

Add the sampled element u to the current solution S, and to Ug.

Given these definitions, we are ready to explain the dynamic algorithm.

106

Function arrival. When a function g arrives, initialize its element set Ug to ∅. Then, while
g(S) 6= g(N), probe gt.

Function departure. When a function g departs, remove all its assigned elements Ug from S.
This may leave some set of functions g1, . . . , gs uncovered. For each of these functions gt in order
of arrival, while gt(S) 6= g(N), probe gt.

The
∑

t gt(N)/fmin recourse bound is immediate, since the total number of probes can be at most∑
t gt(N)/fmin in total. It remains to bound the competitive ratio.

We prove the following:

Lemma 6.5.2. For any element u ∈ N :

E

 ∑
g∈G(t):
u∈Vg

∑
v∈Ug

c(v)

 ≤ r · c(u).

This will imply as a consequence:

E[c(S)] ≤
∑
o∈OPTt

E

 ∑
g∈G(t):
o∈Vg

∑
v∈Ug

c(v)

 ≤ r ·
∑
o∈OPT

c(o) = r · c(OPTt).

Proof of Lemma 6.5.2. The proof is by induction. Fix u ∈ N , and consider the functions g ∈ G(t)

for which u ∈ Vg. Let Xi be the random variable that is the ith function probed. Let Yi be the
random variable that is the element of N sampled during the ith probe. With this notation, the
inductive hypothesis is:

E

[∑
i≥j

c(Yi) | X1, Y1, . . . Xj−1, Yj−1

]
≤ r · c(u).

For the base case i = m, note that given X1, Y1, . . . , Xm−1, Ym−1, the variable Xm is determined.
Suppose Xm = g. Then:

E[c(Ym) | X1, Y1, . . . Xm−1, Ym−1] = E[c(Ym) | X1, Y1, . . . Xm−1, Ym−1, Xm = g]

=
∑
v∈Vg

1

c(v)
(∑

v′∈Vg\St
1

c(v′)

) · c(v)

≤ |Vg|∑
v′∈Vg\St

1
c(v′)

≤ r · c(u).

For the inductive step, suppose the claim holds for j + 1, and consider the case for j:

E

[∑
i≥j

c(Yi) | X1, Y1, . . . Xj−1, Yj−1

]

107

= E[c(Yj) | X1, Y1, . . . Xj−1, Yj−1] + E

[∑
i≥j+1

c(Yi) | X1, Y1, . . . Xj−1, Yj−1

]

≤ r∑
v′∈Vg\St

1
c(v′)

+
∑
u′ 6=u

E

[∑
i≥j+1

c(Yi) | X1, . . . Yj−1, Yj = u′

]
· P (Yj = u′ | X1, . . . , Yj−1)

≤ r∑
v′∈Vg\St

1
c(v′)

+ r · c(u) ·

(
1− 1

c(u)
∑

v′∈Vg\St
1

c(v′)

)
= r · c(u).

6.6 Combiner Algorithm

We show that we can adapt the combiner algorithm of [GKKP17] to our general problem.

Theorem 6.6.1. Let AG be an O(log f(N)/fmin)-competitive algorithm for fully-dynamic SUB-
MODULARCOVER with amortized recourse RG. Let APD be an O(r)-competitive algorithm for
fully-dynamic SUBMODULARCOVER when all functions are r-juntas with amortized recourse
RPD. Then there is an algorithm achieving an approximation ratio of O(min(log(f(N)/fmin), r)
for fully-dynamic SUBMODULARCOVER when all functions are r-juntas, and it has total recourse
O(RG +RPD).

Proof. The idea is to partition the functions into different buckets based on their junta-arity, in
powers of 2 up to log f(N)/fmin. We run a copy of APD which we call A(`)

PD on each bucket B`

separately, and run AG one single time on the set of remaining functions.

Formally, for every index 0 < ` < dlog log(f(N)/fmin)e, maintain a bucket B` representing the
set of functions g such that g is a k-junta, for k ∈ [2`, 2`+1). Also maintain the bucket BG for any
remaining functions. When a functions arrives, we insert it into exactly one appropriate bucket
and update the appropriate algorithm.

Lemma 6.6.2. The total cost of the solution maintained by the algorithm is O(min(log f(N), r).

Proof. If r ≤ log(f(N)/fmin), the algorithm never runs AG. Each algorithm A
(`)
PD is O(2`+1)-

competitive, and thus maintains a solution of cost no more than O(2`+1)c(OPT). The largest
bucket index is `max = dlog re. Hence the total cost of the solution is:

`max∑
`=1

O(2`+1) · c(OPT) = O(r) · c(OPT).

Otherwise if r > log(f(N)/fmin), then the largest bucket index is `max = dlog log(f(N)/fmin)e.
The total cost of the APD algorithms is then

`max∑
`=1

O(2`+1) · c(OPT) = O(log f(N)/fmin) · c(OPT).

Meanwhile, the total cost of the solution maintained by AG on the remaining functions has cost
O(log f(N)/fmin) · c(OPT). Thus the global solution maintained by the combiner algorithm is
also O(log f(N)/fmin)-competitive.

108

The recourse bound is immediate since each function g arrives to/departs from exactly one bucket,
so at most one algorithm among {A(`)

PD}` ∪{AG} has to update its solution at every time step.

6.7 Further Applications

In this section, we show how to recover several known results on recourse bounded algorithms
using our framework. We hope this is a step towards unifying the theory of low recourse dynamic
algorithms.

6.7.1 Online Metric Minimum Spanning Tree

In this problem, vertices in a metric space are added online to an active set. Let At denote the
active set at time t. After every arrival, the algorithm must add/remove edges to maintain a
spanning tree St for At that is competitive with the MINIMUMSPANNINGTREE. We show:

Theorem 6.7.1. There is a deterministic algorithm for Online Metric MINIMUMSPANNINGTREE

that achieves a competitive ratio of O(1) and an amortized recourse bound of O(logD), where D
is the ratio of the maximum to minimum distance in the metric.

[GGK16] show how to get an O(1) worst case recourse bound.

MINIMUMSPANNINGTREE is a special case of SUBMODULARCOVER in which N is the set of
edges of the graph, and f is the rank function of a graphic matroid. The main difference between
the dynamic version of this problem and our setting is that here vertices arrive online along with
all their incident edges. Hence not only is the submodular function changing, but N is also
growing. We show that this detail can be handled easily.

We define the submodular function f (t) to be the rank function for the current graphic matroid,
i.e. f(S) = |At| − ct, where ct is the number of connected components induced by S on the
set of vertices seen thus far. Note that fmax = fmin = 1, so an edge having nonzero coverage is
equivalent to the edge being in our current solution, St.

Now the algorithm is:

Algorithm 12 FULLYDYNAMICMST
1: π ← arbitrary initial permutation of edges.
2: for t = 1, 2, . . . , T do
3: When vertex vt arrives, add edges incident to vt to tail of permutation in arbitrary order,

and update f (t).
4: while there exists a legal γ-move or a swap for π do
5: Perform the move, and update π.
6: Output the collection of πi such that Fπ(πi) > 0.

As in Corollary 6.2.3, if the algorithm terminates then it represents the stack trace of an approxi-
mate greedy algorithm for MINIMUMSPANNINGTREE. Hence the solution is O(1) competitive.
To bound the recourse, we use the general potential Φh from Section 6.3. As before, local moves

109

decrease the potential Φh by εγ · cmin · h
(

1
cmin

)
, so it suffices to show that the potential does not

increase by too much when f (t) is updated. Exactly one new edge will have increased marginal
coverage, and its coverage will increase from 0 to 1. Thus the increase in potential is at most
cmax · h(1/cmax). Together, these imply an amortized recourse bound of:

1

εγ
· cmax

cmin

· h(1/cmax)

h(1/cmin)
.

Setting h(x) = x1−δ/(1−δ) along with δ = (ln(cmax/cmin+1))−1 and γ = ε2 as in Theorem 6.3.1,
we have εγ ≥ δ, and hence we get a recourse bound of O(ln(cmax/cmin)) = O(lnD).

6.7.2 Fully-Dynamic Metric Minimum Steiner Tree

We show that we can also fit into our framework the harder problem of maintaining a tree that
spans a set of vertices in the fully-dynamic setting where vertices can both arrive and depart. We
must produce a tree St that spans the current set of active vertices At, but we allow ourselves to
use Steiner vertices that are not in the active set. We show:

Theorem 6.7.2. There is a deterministic algorithm for Fully-Dynamic Metric MINIMUMSTEIN-
ERTREE that achieves a competitive ratio of O(1) and an amortized recourse bound of O(logD),
where D is the ratio of the maximum to minimum distance in the metric.

This guarantee matches that of [LOP+15]. Separately [GK14] showed how to improve the bound
to O(1) amortized recourse.

Our algorithm is the same local search procedure as before, with one twist. We maintain a set of
vertices L we call the live set. This set is the union of the active terminals we need to span, and
any Steiner vertices currently being used. We define f (t) similarly to before as f (t)(S) = |L| − ct,
where ct is the number of connected components induced by the edge set S on the set of vertices
in L. Note that this function is submodular, because it is the rank function of the graphic matroid
on the live vertex set L.

Now when a vertex v departs, we mark it as a Steiner vertex but leave it in the live set. If at any
point during the local search deg(v) = 2, we replace v with the edge that shortcuts between v’s
two neighbors. If at any point point deg(v) = 1, we delete v and its neighboring edge.

Algorithm 13 FULLYDYNAMICSTEINERTREE

1: π ← arbitrary initial permutation of edges.
2: for t = 1, 2, . . . , T do
3: if vertex vt arrives then
4: Add edges incident to vt to tail of permutation in arbitrary order, and update f (t).
5: else if vertex vt departs then
6: Mark vt as a Steiner vertex. Run CLEANSTEINERVERTICES.
7: while there exists a legal γ-move or a swap for π do
8: Perform the move, and update π.
9: Run CLEANSTEINERVERTICES.

10: Output the collection of πi such that Fπ(πi) > 0.

110

1: procedure CLEANSTEINERVERTICES

2: while there is a Steiner vertex v with deg(v) = 2 do
3: Let u1 and u2 be the neighbors of v.
4: Add the edge (u1, u2) to the position of (v, u1) in π. . this shortcuts v
5: Delete all edges incident to v from N , remove v from the live set, and update f (t).
6: while there is a Steiner vertex v with deg(v) = 1 do
7: Delete all edges incident to v from N , remove v from the live set, and update f (t).

To show the competitive ratio we can rely on known results [IW91, GK14]. If Algorithm 13
terminates, the output tree is known as a γ-stable extension tree for the terminal set S.

Lemma 6.7.3 (Lemma 5 of [IW91]). If T is a γ-stable extension tree for At, then:

c(T) ≤ 4γ · c(OPT(At))

where OPT(At) is the optimal Steiner tree for terminal set At.

Since we set γ = e2, this gives us a competitive ratio of 4e2 = O(1).

It remains to show the recourse bound. Deleting degree 1 and 2 vertices requires a constant
number of edge changes, so this can be charged to each vertex’s departure. We show that the
potential argument from before is not hampered by the changes to the algorithm.

Claim 6.7.4. The procedure CLEANSTEINERVERTICES does not increase the potential.

Proof. When a degree 1 Steiner vertex is deleted, the incident edge is removed from the permuta-
tion and no other edge’s marginal coverage changes.

When a degree 2 Steiner vertex is deleted, the edges (v, u1) and (v, u2) are replaced by the edge
(u1, u2). Recall that our choice of potential is:

Φh(π) =
∑
e∈St

c(e)δ

for 0 < δ < 1. By triangle inequality, and concavity of h:

d(u1, u2)δ ≤ (d(v, u1) + d(v, u2))δ ≤ d(v, u1)δ + d(v, u2)δ.

Thus this replacement only decreases the potential.

Otherwise, the potential increases during vertex arrivals and decreases during γ-moves exactly as
in Section 6.7.1. We are left with the same recourse bound of O(lnD).

6.8 Conclusion

In this chapter, we gave an algorithm for fully-dynamic SUBMODULARCOVER which generalizes
the work of [GKKP17] to arbitrary submodular covering problems. In analogy to Chapter 3, this
ports any black box use of SUBMODULARCOVER to the dynamic setting. Though the problems
studied in this chapter and in Chapter 3 are very similar, it is interesting that the techniques we
use to achieve optimal results in both are completely unrelated.

111

The results in this chapter suggest several clear avenues for future work. One clear question
is whether it is possible to remove the log(cmax/cmin) in the recourse bound of Theorem 6.3.1.
Another interesting orthogonal question is whether there is a fully-dynamic algorithms for SUB-
MODULARCOVER with fast update time (as opposed to just recourse). The naive implementation
of our local search requires polynomial time, since it must greedily search for local moves, as
well as preform bubble sort between any two such moves. Since known algorithms for dynamic
SETCOVER with update time bounds ([GKKP17]) explicitly maintain an assignment of elements
to sets, it is conceivable that one may need more than black box access to a value oracle. This
question is interesting even for special cases of SUBMODULARCOVER such as partial cover, or
the SIMULTANEOUSSOURCELOCATION problem we discuss in Chapter 1.

6.9 Bounds using the Shannon entropy potential

We show that Shannon entropy also works as a potential, albeit with the weaker recourse bound
of:

O

(∑
t gt(N)

fmin

log

(
cmax

cmin

· fmax

fmin

))
.

Define the Shannon Entropy potential to be the expression:

Φ1(f, π) :=
∑
i∈N

Fπ(πi) log
c(πi)

Fπ(πi)
.

In order to ensure that Φ1 remains nonnegative and monotone in each Fπ(πi), scale c by 1/cmin

and f by 1/(e · fmax) such that all costs are greater than 1 and all coverages are less than 1/e. We
will account for this scaling at the end.

Note that Φ1 is Φh from Section 6.3 with h(x) = x log(1/x). This h satisfies properties (i), (ii)
and (iv) but not (iii).

Properties of Φ1:
(I) Φ1 increases by at most gt(N) · log (cmax/fmin) with the addition of function gt to the

active set.

(II) Φ1 does not increase with deletion of functions from the system.

(III) Φ1 does not increase during swaps.

(IV) If γ > e, then Φ1 decreases by at least fmin log(γ/e) with every γ-move.

The proofs that Φ1 satisfies properties (I)–(III) follows directly from Lemma 6.3.3, since these do
not use property (iii). It remains to show the last property.

Lemma 6.9.1. If γ > e, every γ-move decreases Φ1 by at least fmin · log(γ/ε).

Proof. Suppose we perform a γ-move on a permutation π. Let u be the element moving to some
position p from some position q > p, and let π′ denote the permutation after the move. For
convenience, also define:

vi := Fπ(πi), (the original coverage of the ith set)

112

ai := If (πi;u | π1:i−1) = Fπ(πi)− Fπ′(πi). (the loss in coverage of the ith set)

Then:

Φ1(f, π′)− Φ1(f, π)

=
n∑
i=1

(vi − ai) log
c(πi)

vi − ai
+

n∑
i=1

ai log
c(u)∑n
i=1 ai

−
n∑
i=1

vi log
c(πi)

vi

≤ −
n∑
i=1

ai log

(
c(πi)

e · vi

)
+

n∑
i=1

ai log
c(u)∑n
i=1 ai

(6.9.1)

≤ −
n∑
i=1

ai log

(
γ

e
· c(u)∑

i ai

)
+

n∑
i=1

ai log
c(u)∑n
i=1 ai

(6.9.2)

= −
n∑
i=1

ai log
(γ
e

)
= −fmin · log

(γ
e

)
.

Step (6.9.1) follows because, by concavity of the function h(x) = x log x, we have h(a + b)−
h(a) ≤ b · h′(a). Step (6.9.2) follows because u moving to position p is a γ-move, hence∑

j aj/c(u) ≥ γ · vi/c(πi).

We now show the weaker recourse bound. By (I), the potential Φh increases by at most

gt(N) · log

(
cmax

fmin

)
with the addition of function gt to the active set. By (IV), it decreases by Ω(fmin) with every
move that costs recourse 1, and otherwise does not increase. Since we scaled costs by 1/cmin and
coverages by 1/(e · fmax), this implies a recourse bound of:

O

(∑
t gt(N)

fmin

log

(
cmax

cmin

· fmax

fmin

))
.

113

114

Part III

Streaming Algorithms

115

Chapter 7

Streaming Submodular Matching

7.1 Introduction

In this chapter we turn to the study of submodular maximization subject to combinatorial con-
straints, in particular streaming maximum submodular matching (MSM) and related problems.
That is, we study the problem of computing high-value matchings where the value is determined
by a submodular function, i.e. a function which captures diminishing returns.

Submodular function maximization has a long history. For example, it has been known since
the 70s that the greedy algorithm yields an e/(e − 1) ≈ 1.582 approximation for monotone
submodular maximization subject to a cardinality constraint [NWF78]. This is optimal among
polytime algorithms with value oracle access [NW78], or assuming standard complexity-theoretic
conjectures [Fei98, DS14, Man20]. The same problem for non-monotone submodular functions is
harder; it is hard to approximate to within a 2.037 factor [GV11]. Much work has been dedicated
to improving the achievable approximation [LMNS10, Von13, GV11, FNS11, BFNS14, EN16,
BF19, GRST10]; the best currently stands at 2.597 [BF19].

Closer to our work is the study of submodular maximization subject to matching constraints.
For this problem, the greedy algorithm has long been known to be 3-approximate for monotone
functions [FNW78]. Improved approximations have since been obtained [LSV10, LMNS09,
GRST10, FNSW11], with the current best being (2 + ε) and (4 + ε) for monotone and non-
monotone MSM respectively [FNSW11]. The papers above studied rich families of constraints
(e.g. matroid intersection, matchoids, exchange systems), some of which were motivated explicitly
by matching constraints (see [FNSW11]). Beyond theoretical interest, the MSM problem also
has great practical appeal, since many natural objectives exhibit diminishing returns behavior.
Applications across different fields include: machine translation [LB11], Internet advertising
[DSSX19, KMZ18], combinatorial auctions more broadly [Von08, LLN06, CCPV11], and any
matching problem where the goal is a submodular notion of utility such as diversity [AGHI09,
ADF17].

The proliferation of big-data applications such as those mentioned above has spurred a surge of
interest in algorithms for the regime where the input is too large to even store in local memory.
To this end, it is common to formulate problems in the streaming model. Here the input is
presented element-by-element to an algorithm that is restricted to use Õ(S) memory, where S is

117

the maximum size of any feasible solution. We study MSM in this model.

For our problem when the objective is linear, a line of work [FKM+05, McG05, ELSW18,
CS14, PS19, GW19] has shown that a (2 + ε)-approximation is possible in the streaming model
[PS19, GW19]. Meanwhile, for submodular objectives under cardinality constraints (which are a
special case of MSM in complete bipartite graphs), a separate line of work [BMKK14, KMZ+19,
AEF+20, CGQ15, FKK18, MJK18] has culminated in the same (2 + ε) approximation ratio,
for both monotone and non-monotone functions (the latter taking exponential time, as is to be
expected from the lower bound of [GV11]); moreover, this (2+ε) bound was recently proven to be
tight [FNSZ20, NTM+18, AEF+20]. On the other hand, for fully general MSM, the gap between
known upper and lower bounds remain frustratingly large. [CK15] gave a 7.75-approximate
algorithm for MSM with monotone functions. For non-monotone functions, [CGQ15] gave a
(12 + ε)-approximate algorithm, later improved by [FKK18] to 5 + 2

√
6 ≈ 9.899. The only

known lower bound for monotone MSM is e
e−1
≈ 1.582 for streaming or polytime algorithms,

implied respectively by [Kap13] and [Fei98, NW78]. For non-monotone functions, [GV11]
implies a hardness of 2.037. Closing these gaps, especially from the algorithmic side, seems to
require new ideas.

7.1.1 Results

We present a number of improved results for streaming maximum submodular matching (MSM)
and related problems.

Our first result is an improvement on the 7.75 approximation of [CK15] for monotone MSM.

Theorem 7.1.1. There exists a deterministic quasilinear-time streaming MSM algorithm for
monotone functions which is 3 + 2

√
2 ≈ 5.828 approximate.

Our algorithm extends in various ways: First, it yields the same approximation ratio for submodular
b-matchings, where each node v can be matched bv times, improving on the previous best
8-approximations [CGQ15, FKK18]. For the special case of linear functions (MWM), our
algorithm—with appropriate parameters—recovers the (2 + ε)-approximate algorithm of [PS19].
For weighted b-matching (MWBM), a slight modification of our algorithm yields a (3 + ε)-
approximate algorithm, improving on the previous best (4 + ε)-approximation [CS14].1

Next, we improve on the 5 + 2
√

6 ≈ 9.899 approximation of [FKK18] for non-monotone MSM.

Theorem 7.1.2. There exists a randomized linear-time streaming MSM algorithm for non-
monotone functions which is 4 + 2

√
3 ≈ 7.464 approximate.

Our non-monotone MSM algorithm’s approximation ratio is better than the previous state-of-the-
art 7.75-approximate monotone MSM algorithm [CK15]. Moreover, when applied to monotone
functions, the algorithm of Theorem 7.1.2 yields the same approximation ratio as the deterministic
algorithm of Theorem 7.1.1.

We turn to proving hardness for monotone MSM. As stated before, the previous best lower
bounds for this problem were e

e−1
≈ 1.582. These lower bounds applied to either space-bounded

[Kap13] or time-bounded algorithms [NW78, Fei98]. We show that the problem becomes harder
for algorithms which are both space bounded and time bounded. This answers an open problem

1Independently, Mohsen Ghaffari (private communication) obtained the same (3 + ε)-approximate for MWBM.

118

posed in the Bertinoro Workshop on Sublinear Algorithms 2014 [MSM], at least for time bounded
algorithms.2

Theorem 7.1.3. No polytime streaming MSM algorithm for monotone functions is better than
1.914 approximate.

Finally, to demonstrate that our techniques have the potential for wider applicability, we also use
them to provide an alternative and unified proof of the results of [CK15] and [FKK18] for MSM,
in Section 7.9.

7.1.2 Techniques and Overview

Our starting point is the breakthrough result of [PS19] for a special case of our problem—
maximum weight matching (MWM). They gave a (2 + ε)-approximate streaming algorithm by
extending the local-ratio technique [BBF+01]. Subsequently, [GW19] simplified and slightly
improved the analysis of [PS19], by re-interpreting their algorithm in terms of the primal-dual
method.3 The primal-dual method is ubiquitous in the context of approximating linear objectives.
We show that this method is also useful in the context of streaming submodular optimization,
where to the best of our knowledge, it has not yet been used. For our primal-dual analysis, we rely
on the concave-closure extension for submodular functions which has a “configuration LP”-like
formulation. In particular, using this extension, we find that a natural generalization of the MWM
algorithm of [PS19] (described in Section 7.3) yields improved bounds for monotone MSM and
its generalization to b-matchings. Our primal-dual analysis is robust in the sense that it allows for
extensions and generalizations, as we now outline.

Our approach in a nutshell (Sections 7.3 and 7.4). Our approach is to keep monotone dual
solutions (initially zero), and whenever an edge arrives, discard it if its dual constraint is already
satisfied. Edges whose dual constraint is not satisfied are added to a stack S, and relevant dual
variables are increased, so as to satisfy their dual constraint. Finally, we unwind the stack S,
constructing a matching M greedily. The intuition here is that the latter edge in the stack incident
on a common edge have higher marginal gain than earlier such edges in the stack. More formally,
we show that this matching M has value at least some constant times the dual objective cost.
Weak LP duality and the choice of LP imply that f(M) ≥ 1

α
· f(S ∪ OPT) for some α > 1,

which implies our algorithm is α-approximate for monotone MSM.

Extension 1 (Section 7.5). Extending our approach, which gives f(M) ≥ 1
α
·f(S∪OPT), to non-

monotone functions f seems challenging, since for such functions f(S ∪OPT) can be arbitrarily
smaller than f(OPT). To overcome this challenge, we note that our dual updates over-satisfy
dual constraints of edges in S. We can therefore afford to randomly discard edges whose dual is
not satisfied on arrival (and not add them to S), resulting in these edges’ dual constraints holding
in expectation. This allows us to argue, via a generalization of the randomized primal-dual method
of [DJK13] (on which we elaborate in Section 7.2), that E[f(M)] ≥ 1

α
· E[f(S ∪ OPT)]. As S

contains each element with probability at most some q, a classic lemma of [BFNS14] allows us to

2We note briefly that such a bound does not follow from space lower bounds for cardinality constrained submodular
maximization [FNSZ20, NTM+18] (a special case of our setting, with a complete bipartite graph on n and k nodes),
since a bound for that problem cannot be superlinear in n.

3An equivalence between the local-ratio and primal-dual methods was established in [BR05], though it does not
capture the extension of the local ratio method in [PS19].

119

show that E[f(S ∪OPT)] ≥ (1− q) · f(OPT), from which we get our results for non-monotone
MSM.4 Given the wide success of the randomized-primal dual method of [DJK13] in recent
years [HKT+18, HTWZ19, HPT+19, FHTZ20, HZ20, HTWZ20, GKKP17, TWZ20, HZZ20],
we believe that our extension of this method in the context of submodular optimization will likely
find other applications.

Extension 2 (Section 7.6). For maximum weight b-matching (MWBM), the dual updates when
adding an edge to the stack are not high enough to satisfy this edge’s dual constraint. However,
since we do cover each edge outside the stack S, weak duality implies that a maximum-weight
b-matching M in the stack S has value at least as high as f(M) ≥ 1

2+ε
· f(OPT \S), and trivially

at least as high as f(M) ≥ f(OPT ∩ S). Combining these lower bounds on f(M) imply our
improved (3 + ε) approximation ratio for MWBM. This general approach seems fairly general,
and could find uses for other sub-additive objectives subject to downward-closed constraints.

Unifying Prior Work (Section 7.9). To demonstrate the usefulness of our primal-dual analysis,
we also show that this (randomized) primal-dual approach gives an alternative, unified way to
analyze the MSM algorithms of [CK15, FKK18].

Lower bound (Section 7.7). Our lower bound instance makes use of two sources of hardness:
computational hardness under ETH ([Fei98, DS14]) and information-theoretic hardness resulting
form the algorithm not knowing the contents or order of the stream in advance ([GKK12]). In
particular, our proof embeds a submodular optimization problem (specifically, SETCOVER) in
parts of the linear instance of [GKK12], and hence exploits the submodularity in the MSM
objective. Interestingly, our lower bound of 1.914 is higher than any convex combination of the
previous hardness results we make use of, both of which imply a lower bound no higher than
e/(e− 1).

7.2 Preliminaries

The maximum submodular matching (MSM) problem is defined by a non-negative submodular
function f : 2E → R≥0, where E is the edge-set of some n-node graph G = (V,E), and feasible
sets are matchings in G. The more general maximum submodular b-matching (MSBM) problem
has as feasible sets subgraphs in which the degree of each vertex v does not exceed bv, for some
input vector~b. Our objective is to design algorithms with low approximation ratio α ≥ 1, that is
algorithms producing solutions M such that E[f(M)] ≥ 1

α
· f(OPT) for the smallest possible

value of α, where OPT is an optimal solution.

For streaming MSM, edges of E are presented one at a time, and we are tasked with computing
a matching in G at the end of the stream, using little memory. In particular, we give algorithms
using space within the output-sensitive bound of Õ(Mmax), where Mmax is the maximum size of a
b-matching (compared to the entire graph size, which can be Ω(n2)). We note that for matchings,
this is a finer requirement than the usual Õ(n) space bound, since Mmax = O(n). We note
also that for monotone objectives, an optimal b-matching is maximal, and so Mmax ≤ 2|OPT |.

4Incidentally, for monotone functions, for which E[f(M)] ≥ 1
α ·E[f(S ∪OPT)] ≥ 1

α · f(OPT), this algorithm
is α approximate. This is somewhat surprising, as this algorithm runs an α-approximate monotone algorithm (and this
analysis is tight, by Section 7.10) on a random q-fraction of the input, suggesting an α/q approximation. Nonetheless,
we show that for q not too small in terms of α, we retain the same approximation ratio even after this sub-sampling.

120

Consequently, such space is a trivial lower bound for outputting constant-approximate solutions.

On a technical note, we will only allow the algorithm to query the value oracle for f on subsets
currently stored in memory. We assume the range of f is polynomially bounded. More precisely,
we assume that fmax/fmin = nO(1) (these max and min marginals are defined below). This implies
in particular that we can store a value fS(e) using O(log n) bits.

Useful Notation Throughout this chapter we will rely on the following notation. First, we
denote by e(1), e(2), . . . , the edges in the stream, in order. For edges e = e(i), e′ = e(j), we write
e < e′ if and only if i < j, i.e., if e arrived before e′. Similarly to [CGQ15, FKK18], we will
also use f(e : S) := fS∩{e′<e}(e) as shorthand for the marginal gain from adding e to the set
of elements which arrived before e in S. One simple yet useful property of this notation is that∑

e∈S f(e : S) = f(S) ([CGQ15, Lemma 1].) Other properties of this notation we will make
use of, both easy consequences of submodularity, are f(e : S) ≤ fS(e), as well as monotonicity
of f(e : S) in S, i.e., f(e : A) ≥ f(e : B) for A ⊆ B. Finally, for any edge e, we denote by
N(e) := {e′ | e′ ∩ e 6= ∅} the set of neighboring edges of e.

7.2.1 The Primal-Dual Method in Our Setting

As discussed in Section 7.1.2, the main workhorse of our algorithms is the primal-dual method.
In this method, we consider some linear program (LP) relaxation, and its dual LP. We then design
an algorithm which computes a (primal) solution of value P , and a feasible solution of value D,
and show that P ≥ 1

α
·D, which implies an approximation ratio of α, by weak duality.

For linear objectives, the first step of the primal-dual method—obtaining an LP relaxation—is
often direct: write some integer linear program for the problem and drop the integrality constraints.
For submodular objective functions the first step of defining a relaxation usually requires extending
f to real vectors. For this, we use the concave closure (recall the definition from Section 2.2).
To define an LP relaxation for submodular maximization of some function g subject to some
linear constraints A~x ≤ ~c, we simply consider max

{
g+(~x)

∣∣ A~x ≤ ~c}. For MSBM, we obtain
the primal and dual programs given below.

Primal(P)

max
∑
T⊆E

αT · g(T)

subject to

∀T ⊆ E :
∑
T3e

αT = xe∑
T⊆E

αT = 1

∀v ∈ V :
∑
e3v

xe ≤ bv

∀e ∈ E, T ⊆ E : xe, αT ≥ 0

Dual(D)

min µ+
∑
v∈V

bv · φv

subject to

∀T ⊆ E : µ+
∑
e∈T

λe ≥ g(T)

∀e ∈ E :
∑
v∈e

φv ≥ λe

∀v ∈ V : φv ≥ 0

121

7.2.2 Non-Monotone MSM: the Randomized Primal-Dual Method

To go from monotone to non-monotone function maximization, we make use of our dual updates
resulting in dual solutions which over-satisfy (some) dual constraints. This allows us to randomly
sub-sample edges with probability q when deciding whether to insert them into S, and still
have a dual solution which is feasible in expectation over the choice of S. This is akin to the
randomized primal-dual method of [DJK13], who introduced this technique in the context of
maximum cardinality and weighted matching. However, unlike in [DJK13] (and subsequent
work [HKT+18, HTWZ19, HPT+19, FHTZ20, HZ20, HTWZ20, GKKP17, TWZ20, HZZ20]),
for our problem the LP is not fixed. Specifically, we consider a different submodular function
in our LP based on S, denoted by gS(T) := f(T ∪ S). This results in random primal and dual
LPs, depending on the random set S. We show that our (randomized) dual solution is feasible for
the obtained (randomized) dual LP in expectation over S. Consequently, our expected solution’s
value is at least as high as some multiple of an expected solution to the dual LP, implying

ES[f(M)] ≥ 1

α
· ES[D] ≥ 1

α
· ES[f(S ∪OPT)]. (7.2.1)

Equation (7.2.1) retrieves our bound for monotone functions, for which ES[f(S ∪ OPT)] ≥
f(OPT). To obtain bounds for non-monotone functions, we show that ES[f(S ∪ OPT)] ≥
(1− q) · f(OPT), by relying on the following lemma, due to [BFNS14, Lemma 2.2].

Lemma 7.2.1 ([BFNS14]). Let h : 2N → R≥0 be a non-negative submodular function, and let B
be a random subset of N containing every element of N with probability at most q (not necessarily
independently), then E[h(B)] ≥ (1− q) · h(∅).

7.3 Our Basic Algorithm

In this section we describe our monotone submodular b-matching algorithm, which we will use
with slight modifications and different parameter choices in coming sections.

The algorithm maintains a stack of edges S, initially empty, as well as vertex potentials ~φ ∈ R|V |.
To avoid storing zero-valued potentials (increasing space to Õ(n), rather than Õ(Mmax)), we
implicitly represent these by keeping a mapping from vertices with non-zero potentials to their
potentials, by using e.g., a hash table or balanced binary search tree. When an edge e arrives, we
compare the marginal value of this arriving edge with respect to the stack to the sum of vertex
potentials of the edge’s endpoints times a slack parameter C. If C ·

∑
v∈e φv is larger, we continue

to the next edge. Otherwise, with probability q we add the edge to the stack and increment the
endpoint vertex potentials. At the end of the stream, we construct a b-matching greedily by
unwinding the stack in reverse order. The pseudocode is given in Algorithm 14.

Algorithm 14 clearly outputs a feasible b-matching. In subsequent sections we analyze this
algorithm for various values of the parameters C and q. Before doing so, we note that this
algorithm when run with C = 1 + Ω(1) is indeed a streaming algorithm, i.e., its space usage is as
follows.

Lemma 7.3.1. For any constant ε > 0, Algorithm 14 run with C = 1 + ε uses Õ(Mmax) space.

122

Algorithm 14 The MSbM Algorithm

Initialization
1: S ← emptystack
2: ∀v ∈ V : φ

(0)
v ← 0 (implicitly)

In Stream
3: for t ∈ {1, . . . , |E|} do
4: e← e(t), tth edge in stream.
5: for each v ∈ V , set φ(t)

v ← φ
(t−1)
v .

6: if C ·
∑

v∈e φ
(t−1)
v ≥ f(e : S) then

7: Skip edge e and continue.
8: else
9: with probability q do

10: S.push(e)
11: for v ∈ e do
12: wev ←

f(e:S)−
∑
v∈e φ

(t−1)
v

bv
.

13: for v ∈ e do
14: φ

(t)
v ← φ

(t−1)
v + wev.

Post-Processing
15: M ← ∅
16: while S 6= emptystack do
17: e← S.pop()
18: if |M∩N(e)| < bv for all v ∈ e then

19: M ←M ∪ {e}
20: return M

The proof relies on each vertex v only having Õ(bv) edges in the stack, since every edge incident
on vertex v inserted to the stack increases φv by a multiplicative factor of (C − 1)/bv, while the
minimum and maximum non-zero values which φv can take are polynomially bounded in each
other, due to f being polynomially bounded. Since this bound holds in particular for vertices of
a minimum vertex cover, the bound follows due to minimum vertex covers having size at most
twice that of maximal b-matchings in the same graph. See Section 7.11 for the complete proof.

We further note that Algorithm 14 runs in time (quasi)linear in |E|, times evaluation time of f .

Lemma 7.3.2. A randomized (deterministic) implementation of Algorithm 14 requires O(1)
(O(log n)) operations and O(1) function evaluations per arrival, followed by Õ(Mmax) time
post-processing. Using Õ(n) space, the deterministic time per arrival can be decreased to O(1),
by storing all φv.

7.4 Monotone MSbM

In this section we will consider a deterministic instantiation of Algorithm 14 (specifically, we will
set q = 1) in the context of monotone submodular b-matching.

To argue about the approximation ratio, we will fit a dual solution to this algorithm. Define the
auxiliary submodular functions gS : 2E → R+ to be gS(T) := f(S ∪ T). We will work with the
dual LP (D) for the function gS , and consider the following dual solution.

µ := f(S) = gS(∅),
φv := C · φ(|E|)

v

123

λe :=

{
f(e : S) e 6∈ S
0 e ∈ S.

We start by showing that the above is indeed dual feasible.

Lemma 7.4.1. The dual solution (µ, ~φ,~λ) is feasible for the LP (D) with function gS .

Proof. To see that the first set of constraints is satisfied, note that by submodularity of f∑
e∈T

λe =
∑
e∈T\S

f(e : S) ≥
∑
e∈T\S

fS(e) ≥ fS(T \ S) = f(S ∪ T)− f(S) = gS(T)− µ.

For the second set of constraints, note that an edge e = e(t) is not added to the stack if and only if
the check at Line 6 fails. Therefore, since φ(t)

v values increase monotonically with t, we have∑
v∈e

φv = C ·
∑
v∈e

φ(|E|)
v ≥ C ·

∑
v∈e

φ(t−1)
v ≥ f(e : S) = λe.

It remains to relate the value of the solution M to the cost of this dual. We first prove an auxiliary
relationship that will be useful:

Lemma 7.4.2. The b-matching M output by Algorithm 14 satisfies

f(M) ≥ 1

2
·
∑
e∈S

∑
v∈e

bv · wev.

Proof. We first note that for any edge e = e(t) and v ∈ e, since φ(t−1)
v =

∑
e′3v,e′<ewe, we have

that
f(e : S) = bv · wev +

∑
u∈e

φ(t−1)
u ≥ bv · wev + φ(t−1)

v = bv · wev +
∑
e′3v
e′<e

we′v.

Combined with submodularity of f , the above yields the following lower bound on f(M),

f(M) =
∑
e∈M

f(e : M) ≥
∑
e∈M

f(e : S) ≥
∑
e∈M

∑
v∈e

(
bv · wev +

∑
e′3v
e′<e

we′v
)
.

On the other hand, the greedy manner in which we construct M implies that any edge e′ ∈ S \M
must have at least one endpoint v with bv edges e > e′ in M . Consequently, the term we′v
for such e and v is summed bv times in the above lower bound for f(M). On the other hand,
bv · wev = bu · weu for e = (u, v), by definition. From the above we obtain our desired inequality.

f(M) ≥
∑
e∈M

∑
v∈e

bv · wev +
1

2
·
∑

e∈S\M

∑
v∈e

bv · wev ≥
1

2
·
∑
e∈S

∑
v∈e

bv · wev.

We can now bound the two terms in the dual objective separately with respect to the primal, using
the following two corollaries of Lemma 7.4.2.

Lemma 7.4.3. The b-matching M output by Algorithm 14 satisfies f(M) ≥ 1
2C

∑
v∈V bv · φv.

124

Proof. Since φv = C · φ(|E|)
v , and wev = φ

(t)
v − φ(t−1)

v for all v ∈ e = e(t), Lemma 7.4.2 implies
that

f(M) ≥ 1

2
·
∑
e∈S

∑
v∈e

bv ·wev =
1

2
·
∑
v∈V

|E|∑
t=1

bv ·
(
φ(t)
v − φ(t−1)

v

)
=

1

2
·
∑
v∈V

bv ·φ(|E|)
v =

1

2C
·
∑
v∈V

bv ·φv.

Lemma 7.4.4. The b-matching M output by Algorithm 14 satisfies f(M) ≥
(
1− 1

C

)
µ.

Proof. We note that we > 0 for an edge e = e(t) if and only if f(e : S) ≥ C ·
∑

v∈e φ
(t−1)
v . Hence,

bv · wev = f(e : S)−
∑
v∈e

φ(t−1)
v ≥

(
1− 1

C

)
· f(e : S).

Combining the above with Lemma 7.4.2, and again recalling that for e = (u, v), we have that
bv · wev = bu · weu, by definition, we obtain the desired inequality.

f(M) ≥ 1

2
·
∑
e∈S

∑
v∈e

bv · wev ≥
(

1− 1

C

)∑
e∈S

f(e : S) =

(
1− 1

C

)
f(S).

Combining the above two corollaries and Lemma 7.4.1 with LP duality, we can now analyze the
algorithm’s approximation ratio.

Theorem 7.4.5. Algorithm 14 run with q = 1 and C on a monotone MSBM instance outputs a
b-matching M of value (

2C +
C

C − 1

)
· f(M) ≥ f(OPT).

This is optimized by taking C = 1 + 1√
2
, which yields a 3 + 2

√
2 ≈ 5.828 approximation.

Proof. By weak LP duality and Lemma 7.4.1, together with monotonicity of f , we have that

C ·
∑
v

bv · φv + µ ≥ max
T

gS(T) = max
T

f(S ∪ T) ≥ f(S ∪ OPT) ≥ f(OPT).

Combining Lemma 7.4.3 and Lemma 7.4.4 and rearranging, we get the desired inequality,(
2C +

C

C − 1

)
· f(M) ≥ C ·

∑
v

bv · φv + µ ≥ f(OPT).

In Section 7.10 we show that our analysis of Algorithm 14 is tight.

We note that our analysis of this section required monotonicity, as we lower bounded f(M) by (a
multiple of) f(S ∪OPT) ≥ f(OPT), where the last step crucially relies on monotonicity. In the
next section, we show how the use of randomness (namely, setting q 6= 1) allows us to obtain new
results for non-monotone MSM.

125

7.5 Non-Monotone MSM

In this section we consider MSM (so, bv = 1 for all v in this section), for non-monotone functions.

To extend our results to non-monotone MSM, we make use of the freedom to choose q 6∈ {0, 1},
resulting in a randomized algorithm. This will allow us to lower bound ES[f(S ∪OPT)] in terms
of f(OPT). But first, we show that for appropriately chosen q, the output matching M has high
value compared to ES[f(S ∪ OPT)]. The analysis of this fact will follow the same outline of
Section 7.4, relying on LP duality, but with a twist.

For our dual fitting, we use the same dual solution as in Section 7.4. However, this time this
dual solution will only be feasible in expectation, in the following sense. Since we now have
q 6∈ {0, 1}, Algorithm 14 is now a randomized algorithm, S is a random set, gS is a random
submodular function, and thus (D) is a random LP. Let E[(D)] denote this LP, which is (D) with
the submodular function g(T) := ES[gS(T)]. We now show that our dual solution’s expectation
is feasible for E[(D)].

Lemma 7.5.1. For q ∈ [1/(2C+1), 1/2], the expected dual solution (E[µ],E[~φ],E[~λ]) is feasible
for the expected LP E[(D)].

Proof. The first set of constraints is satisfied for any realization of the randomness. Indeed, as in
the proof of Lemma 7.4.1, for any realization of S, by submodularity of f , we have∑

e∈T

λe =
∑
e∈T\S

f(e : S) ≥
∑
e∈T\S

fS(e) ≥ fS(T \ S) = f(S ∪ T)− f(S) = gS(T)− µ.

Consequently, taking expectation over S, we have that indeed, ES[µ]+
∑

e∈T ES[λe] ≥ ES[gS(T)].
We now tun to proving the second set of constraints, which will only hold in expectation.

Fix an edge e = e(t), and define the event Ae := [f(e : S) ≤ C ·
∑

v∈V φ
(t−1)
v]. Then, by definition

of Ae and monotonicity of φ(t)
v in t, we have that

E

[∑
v∈e

φv

∣∣∣∣∣ Ae
]
≥ E

[
C ·
∑
v∈e

φ(t−1)
v

∣∣∣∣∣ Ae
]
≥ E[f(e : S) | Ae] = E[λe | Ae]. (7.5.1)

We now prove the same inequality holds when conditioning on the complement, Ae.

Fix a realization of the randomness R for which Ae holds. Then, e = e(t) fails the test in Line 6,
and so with probability q, we have

∑
v∈e φ

(t)
v =

∑
v∈e(φ

(t−1)
v +we) = 2 · f(e : S)−

∑
v∈e φ

(t−1)
v ,

and with probability (1− q), we have
∑

v∈e φ
(t)
v =

∑
v∈e φ

(t−1)
v . Hence, in this case, as q ≤ 1

2
, we

have

E

[∑
v∈e

φ(t)
v

∣∣∣∣∣ R
]

= 2q · f(e : S) + (1− 2q) ·
∑
v∈e

φ(t−1)
v ≥ 2q · f(e : S).

Now, since φv ≥ C · φ(t), and q ≥ 1/(2C + 1) and since λe is set to f(e : S) if e is not added to
S (with probability 1− q) and set to zero otherwise, the above implies that

E

[∑
v∈e

φv

∣∣∣∣∣ R
]
≥ 2qC · f(e : S) ≥ (1− q) · f(e : S) = E[λe | R].

126

By the law of total expectation, taken over all R ⊆ Ae, we have

E

[∑
v∈e

φv

∣∣∣∣∣ Ae
]
≥ E

[
λe
∣∣ Ae]. (7.5.2)

Combining inequalities (7.5.1) and (7.5.2) with the law of total expectation gives the desired
inequality,

E

[∑
v∈e

φv

]
≥ E[λe].

To bound the performance of this section’s randomized variant of Algorithm 14, we can reuse
corollaries 7.4.3 and 7.4.4, since these follow from Lemma 7.4.1, which holds for every realization
of the random choices of the algorithm. We now use these corollaries, LP duality and Lemma 7.5.1,
together with Lemma 7.2.1, to analyze this algorithm.

Theorem 7.5.2. Algorithm 14 run with q = 1/(2C+1) and C on a non-monotone MSM instance
outputs a matching M of value (

4C2 − 1

2C − 2

)
· f(M) ≥ f(OPT).

This is optimized by taking C = 1 +
√

3
2

, resulting in an approximation ratio of 4 + 2
√

3 ≈ 7.464.
Moreover, the same algorithm is 2C + C/(C − 1) approximate for monotone MSM.

Proof. First, by Lemma 7.4.3 and Lemma 7.4.4, for every realization of the algorithm, we have(
2C +

C

C − 1

)
· f(M) ≥

∑
v

φv + µ,

and thus this relationship holds in expectation as well.(
2C +

C

C − 1

)
· E[f(M)] ≥ E

[∑
v

φv + µ

]
. (7.5.3)

On the other hand, by Lemma 7.5.1, the expected dual LP solution is feasible for E[(D)]. There-
fore, by weak LP duality, we have

E

[∑
v

φv + µ

]
≥ max

T
E[g(T)] = max

T
E[f(S ∪ T)] ≥ E[f(S ∪ OPT)]. (7.5.4)

The result for monotone MSM follows from equations (7.5.3) and (7.5.4), together with mono-
tonicity implying E[f(S ∪ OPT)] ≥ f(OPT).

For non-monotone MSM, let us define the additional auxiliary function h : 2E → R+, with
h(T) := f(OPT ∪ T). Now note that by our sampling procedure, S is a random subset of E
containing every edge with probability at most q. Hence, by Lemma 7.2.1, we have

E[f(S ∪ OPT)] = E[h(S)] ≥ (1− q) · h(∅) = (1− q) · f(OPT). (7.5.5)

Combining equations (7.5.3), (7.5.4) and (7.5.5), together with our choice of q = 1/(2C + 1), the
desired inequality follows by rearranging terms.

Having explored the use of Algorithm 14 for submodular matchings, we now turn to analyzing
this algorithm in the context of streaming linear objectives.

127

7.6 Linear Objectives

In this section we address the use of Algorithm 14 to matching and b-matching with linear
objectives, i.e., MWM and MWBM, using a deterministic variant, with q = 1.

For MWM, this algorithm with C = 1+ε is essentially the algorithm of [PS19], and so it retrieves
the state-of-the-art (2 + ε)-approximation for this problem, previously analyzed in [PS19, GW19].
We therefore focus on MWBM, for which a simple modification of Algorithm 14 yields a 3 + ε
approximation, improving upon the previous best 4 + ε approximation due to [CS14].

The modification to Algorithm 14 which we consider is a natural one: instead of computing
M greedily, we simply compute an optimal MWBM M in the subgraph induced by S, using a
polytime linear-space offline algorithm (e.g., [Ans87, Gab18]). Trivially, the b-matching M has
weight at least

w(M) ≥ w(OPT ∩ S). (7.6.1)

Moreover, this b-matching has weight no lower than the greedily-constructed b-matching of
lines 15-20. We use LP duality to show that this modified algorithm with C = 1 + ε outputs a
b-matching M of weight at least w(M) ≥ 1

2+ε
· w(OPT \ S).

Lemma 7.6.1. Let M be a MWBM in the stack S obtained by running Algorithm 14 with
C = 1 + ε/2 and q = 1 until Line 15. Then, we have w(M) ≥ 1

2+ε
· w(OPT \ S).

Proof. Consider the matching M ′ obtained by greedily unwinding the stack, as in Algorithm 14.
Clearly, w(M) ≥ w(M ′). So, by Lemma 7.4.3, we have w(M) ≥ 1

2+ε
·
∑

v∈V φv, for φv =

C ·φ(|E|)
v . To relate

∑
v∈V φv to w(OPT), we show that the dual solution (0, ~φ, ~w) is dual feasible

for the LP (D) with function w.

The first set of constraints are trivially satisfied, due to linearity of w, as 0 +
∑

e∈T we = w(T).

For the second set of constraints, note that an edge e = e(t) is not added to the stack if and only if
the check at Line 6 fails. Therefore, since φ(t)

v values increase monotonically with t, we have∑
v∈e

φv = C ·
∑
v∈e

φ(|E|)
v ≥ C ·

∑
v∈e

φ(t−1)
v ≥ f(e : S) = we.

Therefore, by weak LP duality, we have w(M) ≥ 0 + 1
2+ε
·
∑

v∈V φv ≥
1

2+ε
· w(OPT).

We are now ready to analyze the approximation ratio of this MWBM algorithm.

Theorem 7.6.2. For any ε ≥ 0, Algorithm 14 run with C = 1 + ε/2 and q = 1 until Line 15,
followed by a linear-space offline MWBM algorithm run on S to compute a solution M is a
(3 + ε)-approximate streaming MWBM algorithm.

Proof. To see that this is a streaming algorithm, we recall that |S| = Õ(
∑

v bv), by Lemma 7.3.1.
Since we compute M by running an offline linear-space algorithm on the subgraph induced by S,
therefore using O(|S|) space for this last step, the desired space bound follows.

To analyze the algorithm’s approximation ratio, let α ∈ [0, 1] be the weighted fraction of OPT in
S. That is, w(OPT ∩ S) = α · w(OPT), and by linearity, w(OPT \ S) = (1− α) · w(OPT).
Therefore, by Equation (7.6.1) and Lemma 7.6.1 we have the following.

w(M) ≥ w(OPT ∩ S) = α · w(OPT).

128

w(M) ≥ 1

2 + ε
· w(OPT \ S) =

1− α
2 + ε

· w(OPT).

We thus find that the approximation ratio of this algorithm is at most 1/min{α, 1−α
2+ε
} ≤ 3+ε.

Remark. We note that this approach—dual covering constraints for elements outside of the
algorithm’s memory S, and solving the problem optimally for S—is rather general. In particular,
it applies to matching under any sub-additive (not just submodular) set function f , for which
f(OPT) ≤ f(OPT \S) + f(OPT ∩S). Moreover, this approach extends beyond matchings, to
any downward-closed constraints, for which OPT \ S and OPT ∩ S are both feasible solutions.
So, it seems like this approach could find applications to streaming algorithms for other objectives
and constraints, provided dual feasibility can be guaranteed using a dual solution of value bounded
by that of the output solution.

7.7 Lower Bound for MSM

Previous work shows that beating a e
e−1
≈ 1.582 approximation for MSM in the streaming model

is impossible for quasilinear space bounded algorithms [Kap13], or polytime bounded algorithms
[Fei98, DS14, Man20]. In this section, we show that assuming the exponential time hypothesis
(ETH), whereby NP 6⊆ TIME(2o(n)) [IP01], beating 1.914 is impossible for any algorithm that is
both space and time bounded. In particular, we will rely on seminal hardness of approximation
results SETCOVER from [DS14]. Recall:

Definition 7.7.1. A SETCOVER instance consists of a set system (U ,S), with S ⊆ 2U . The goal
is to pick the smallest number k of sets S1, . . . , Sk ∈ S such that

∣∣∣⋃i∈[k] Si

∣∣∣ = |U|. We use K to
denote the size of the minimal cover for the instance (U ,S), and N = |U| + |S| to denote the
description size.

Lemma 7.7.2 (Extension of Corollary 1.6 of [DS14]). Assuming ETH, every algorithm achieving
an approximation ratio (1 − α) ln |U| for SET COVER runs in time strictly greater than 2N

γ·α

for some γ > 0. Furthermore, this holds even under the assumptions that |S| ≤ K1/(γα) and
|U| ≤ |S|1/(γα).

See Section 7.12 for a proof that the hardness holds even under the extra assumptions. To describe
the instance, we will also use some extremal graph theory results from [GKK12].

Definition 7.7.3. An α-Ruzsa-Szemerédi graph (α-RS graph) is a bipartite graph G = (P,Q,E)
with |P | = |Q| = n that is a union of induced matchings of size exactly αn.

Theorem 7.7.4 (Lemma 53 of [GKK12]). For any constant ε > 0, there exists a family of
balanced bipartite (1/2− ε)-RS graphs with n1+Ω(1/ log logn) edges.

In what follows we will show a randomized reduction from SETCOVER to streaming MSM.
Specifically, we will show that if there is a polytime streaming algorithm for MSM achieving
ratio better than 1.914, then there is an algorithm for SETCOVER violating Lemma 7.7.2. We
proceed to describing our reduction.

The Reduction. The input is a SETCOVER instance (U ,S) for which the minimal cover contains
K sets. Fix n = 2k

1/d for a degree d to be determined later.

129

P Q

Qi
P ′iPiQ′i

P ′Q′

Figure 7.1: Illustration of lower bound instance. Red edges represent the edges of the distinguished matching Mr in
E1, purple edges represent other edges in E1, green edges represent edges of E2. The red and purple edges together
form the (1/2− ε)-RS graph G0, subsampled.

We create an underlying bipartite graph G = (L,R,E) with n poly log n vertices as follows. The
left/right vertex sets are partitioned into L = P t P ′, R = Q tQ′. We let |P | = |Q| = 2n, and
we let |P ′| = |Q′| = n · |S|/K.

The edge set E arrives in two phases. In phase 1, all the edge of a set E1 arrive, in phase 2 the
edges of E2 arrive. To define E1, let G0 be a fixed (1/2− ε)-RS graph with m = Ω

(
n1+1/ log logn

)
edges between P and Q, and let this graph be the union of the matchings M1, . . . ,Mt. Let M ′

i be a
random subset of Mi of size (1/2− δ)n for a parameter ε < δ < 1/4 and let E1 = M ′

1 ∪ . . .∪M ′
t .

Choose one index r ∈ [k] uniformly at random, and call M ′
r the distinguished matching. Note

that the index r is unknown to the algorithm.

Define E2 as follows. Let P1 t P2 t . . . t Pn/K and Q1 tQ2 t . . . tQn/K be partitions of the
the vertices of P and Q respectively not matched by Mr into subsets of size K. Similarly, let
P ′1 tP ′2 t . . .tP ′n/K and Q′1 tQ′2 t . . .tQ′n/K be partitions of P ′ and Q′ into subsets of size |S|.
Let Fi be the edges of the complete bipartite graph between Pi and Q′i, and let Gi be the edges of
the complete bipartite graph between Qi and P ′i . Finally, set E2 =

⋃
i Fi ∪Gi. See Figure 7.1.

It remains to describe the submodular function f . First, define the set function f1(E) = |E ∩ E1|.
Next, we define the function f2 which is parametrized by the SETCOVER instance. We identify
each set of vertices P ′i and Q′i with a disjoint copy of S. For every edge e ∈ E2, let φ(e) denote
the set with which the endpoint of e in P ′ ∪Q′ is associated. Now, for some parameter η > 0 to
be determined later, we define

f2(E) :=
ηK

|U|
·

∣∣∣∣∣⋃
e∈E

φ(e)

∣∣∣∣∣ .
Finally, set f := f1 + f2. Note that f is submodular since it the sum of a scaled coverage function
and a linear function. On a technical note, since we assume that |U| is polynomially bounded in
|S|, we can represent the values of this function with poly log n bits.

130

Some intuition. Intuitively, we can imagine that all edges of E1 are worth 1. We imagine that
each edge of E2 is a set in one of the copies of the instance (S,U), and we let the value of all
edges selected in the second phase be the coverage of all the associated sets (scaled by ηK/|U|).
First we we will argue that the algorithm can output almost none of the edges of M ′

r, since it after
phase 1 it has no information as to which matching is the distinguished one. Hence the majority of
the edges it uses from phase 1 must be from E1\M ′

r. However, each edge the algorithm chooses
from E1\M ′

r precludes it from taking between 1 and 2 edges of E2. Furthermore, maximizing the
value of edges of E2 amounts to solving a hard MAX K-COVERAGE instance. The coverage is
scaled by the parameter η, and as a result, the algorithm is incentivized to take some k := cK
edges from each of the bipartite graphs (Pi, Q

′
i) (and (Qi, P

′
i)) of E2 and the remaining edges

from E1\M ′
r. Meanwhile, OPT can take the distinguished matching edges M ′

r as well as the edges
of E2 maximizing the coverage instance. Our bound will follow by setting η to maximize the ratio
between these.

To start, we show that no streaming algorithm can “remember” more than a o(1) fraction of the
edges of the distinguished matching Mr. Since phase 1 of our construction is identical to the
one in Appendix H of [GKK12] which shows a 3/2 semi-streaming lower bound for max weight
matching., we can reuse their result here.

Lemma 7.7.5 (Appendix H.1 of [GKK12]). For any constants γ, δ ∈ (0, 1/4), let A be an
algorithm that at the end of phase 1, with constant probability, outputs at least γn of the the edges
of M ′

r. Then A uses Ω(E1) ≥ n1+Ω(1/ log logn) bits of space.

We reproduce a version of the proof in Section 7.12 for completeness. With this, we are finally
ready to prove the main theorem of the section.

Theorem 7.7.6. Assuming ETH, there exists a distribution over MSM instances such that any
deterministic algorithm achieving an 1.914 approximation must use either n1+Ω(1/ log logn) space
or Ω(2(logn)10

) time.

Proof. Our proof is a randomized polytime reduction from SETCOVER to streaming MSM. We
will show that if there is a randomized streaming algorithm achieving ratio better than 1.914 for
MSM, then there is an algorithm for SETCOVER achieving approximation ratio (1−α) ln(|U|) for
constant α > 0 that only requires polynomial extra overheard. We then argue that Lemma 7.7.2
implies that the streaming MSM algorithm must run in super polynomial time, assuming ETH.

Fix a deterministic algorithm A for streaming MSM. Now, given an instance of SETCOVER

(U ,S) with minimum cover size K and description size N = |U|+ |S|, create a random instance
of streaming MSM according to the reduction described in this section. For each bipartite graph
(Pi, Q

′
i) (or (Qi, P

′
i)), if the algorithm A chooses cK edges from this graph, it can select at most

2(1 − c)K edges from E1 that are adjacent to Pi (or Qi). Suppose WLOG that it can always
achieve the 2(1− c)k bound. In this case we can also assume WLOG the algorithm chooses the
same number c ·K of edges from each such graph, and furthermore that it selects the same sets in
the set system (S,U). Otherwise it can locally improve its solution by copying the solution for
the best index i.

Suppose this solution achieves coverage of (1− e−c + γ) · |U|. Since the matchings M1, . . . ,Mt

are induced, and by Lemma 7.7.5 w.h.p. the algorithm can only output o(n) edges of M ′
r after

phase 1, the algorithm can only select o(n) edges not incident to some Pi or Qi. Thus the total

131

value achieved by the algorithm is at most:[
2(1− e−c + γ) · η ·K + 2(1− c) ·K

]
· n
K

+ o(n)

≤ 2(1− e−c + γ) · ηn+ 2(1− c) · n+ o(n)

≤ (2η − 2 ln(η) + 2γ) · n+ o(n),

where the last step follows since the expression is maximized at c = ln η. On the other hand, the
optimal solution can select the distinguished matching edge M ′

r, as well as K edges adjacent to
each set Pi corresponding to the minimum SETCOVER solution. Thus the total value of OPT is at
least:

(1− δ + 2η) · n.

Thus the ratio between the maximum value achievable by the algorithm and the optimal value is
bounded by:

1 + 2η − δ
2η − 2 ln(η) + 2γ + o(1)

.

Finally, we set η = 2.09 and let δ → 0. If this ratio converges to a value strictly below 1.914, then
we can conclude that γ = Ω(1) and γ > 0.

We have shown that A can be used to pick cK sets with coverage (1− e−c + γ) · |U|. To finish the
proof, we now show that this can be used to recover an approximation algorithmB for SETCOVER.
For convenience, set constant γ′ such that (1 − e−c−γ′) := (1 − e−c + γ). Then, guess K, and
repeat algorithm A recursively dln |U|/(c + γ′)e ≤ ln |U|/(c + γ′) + 1 times, each time on the
residual uncovered set system. Each call to A covers (1 − e−c−γ′) of the elements remaining,
so after this number of iterations, the fraction of uncovered elements is less than 1/|U|, i.e. all
elements are covered. Since each iteration costs c ·K, the total number of sets picked here is at
most

c

(
ln |U|
c+ γ′

+ 1

)
·K =

(
c

c+ γ′
+

c

ln |U|

)
· ln |U| ·K.

Defining the constant α = γ′/(c + γ′), this is a (1 − α − o(1)) ln |U| approximation to the
SETCOVER instance. Furthermore, if A runs in time T then B runs in time poly(N) · T (where
N = |U|+ |S|).
To conclude, if T < 2N

∆ for a constant ∆ < γ · α, then B runs faster than 2N
γα , contradicting

Lemma 7.7.2. Thus the algorithmAmust run in time at least 2N
γ·α ≥ 2|S|

γ·α ≥ 2(logn)d·γ·α . Setting
d = 10/(γ · α), this running time is 2(logn)10 , which is superpolynomial in n.

Theorem 7.1.3 therefore follows from Theorem 7.7.6 and Yao’s minimax principle [Yao77].

7.8 Conclusion

In this chapter we present a number of improved bounds for streaming submodular (b-)matching.
Our work suggests a number of natural follow-up directions.

The first is to tighten (and ideally close) the gap between upper and lower bounds for the problems
studied in this chapter. More ideas may be needed in order to resolve the optimal approximation
ratio for these problems.

132

On the techniques side, it would be interesting to see whether the primal-dual method can be used
for further applications in streaming submodular algorithms, or to further unify the analysis of
prior work. More broadly, it would be interesting to apply our extension of the randomized primal
dual method of [DJK13] to other problems.

Finally, we point to a possible connection between our streaming matching algorithms, and
dynamic matching algorithms. Algorithm 14 when applied to monotone b-matching problems
stores in its stack a bounded-degree subgraph with Õ(Mmax) = Õ(|OPT |) edges. Such size-
optimal constant-approximate matching sparsifiers have proven particularly useful in the dynamic
matching literature. See [Waj20] for a discussion, and [ACC+18, GP13, PS16, BHI18, BS15,
BS16] for more applications of such dynamic matching sparsifiers. Is there a fast dynamic
algorithm which maintains a sparisifier similar to that of Algorithm 14? This would result in
improved dynamic weighted matching algorithms, and possibly would result in the first dynamic
submodular matching algorithm.

7.9 Explaining Prior Work using LP Duality

In this section we further demonstrate the generality of our (randomized) primal-dual analysis,
showing that it provides fairly simple alternative analyses of the algorithms of [CK15, FKK18],
giving one unified analysis for these algorithms and ours. To keep things simple, we focus only on
MSM, though [CK15, FKK18] show that their algorithms also work more broadly for k-matchoid
and k-set system constraints.

In [CK15], Chakrabarti and Kale presented a reduction from MSM to MWM, by showing how to
use a subclass of MWM algorithms to solve MSM. We now introduce the algorithm of [CK15]
instantiated with the MWM algorithm of [McG05]. The algorithm is a natural and elegant one:
when an edge e arrives, we consider its marginal gain with respect to the current matching. If this
marginal gain is higher than some slack parameter C times the marginal gains of the currently
blocking edges e′ ∈ N(e) ∩M , we preempt those edges and add e to the matching.

In anticipation of our analysis of the algorithm of [FKK18] in Section 7.9.2, we generalize the
algorithm’s description and allow the algorithm to preempt with some probability q ∈ [0, 1]. The
full pseudo-code is given in Algorithm 15.

This algorithm only ever adds an edge e to M upon its arrival. After adding an edge to M , this
edge can be preempted, i.e., removed from M , after which it is never added back to M . Thus
we note that this algorithm is not only a streaming algorithm, but also a so-called preemptive
algorithm: it only stores a single matching in memory and therefore trivially requires Õ(n) space.

For convenience, we let M (t) denote the matching M at time t, and let S :=
⋃
tM

(t) denote the
set of edges ever added to M . For an edge e let B(t)(e) :=

∑
e′∈N(e)∩M(t) f(e′ : M (t)). We will

also denote by P := S \M the set of preempted edges.

7.9.1 The Framework of [CK15], Applied to the Algorithm of [McG05]

In this section we analyze the deterministic algorithm obtained by applying the framework of
[CK15] to the MWM algorithm of [McG05], corresponding to Algorithm 15 run with q = 1.

133

Algorithm 15 The MSM Algorithm of [CK15] and [FKK18]

Initialization
1: M ← ∅

In Stream
2: for t ∈ {1, . . . , |E|} do
3: e← e(t), tth edge in stream.
4: B(e)←

∑
e′∈N(e)∩M f(e′ : M).

5: if f(e : M) ≤ C ·B(e) then
6: Skip edge e and continue.
7: else
8: with probability q do
9: M ← (M \N(e)) ∪ {e}.

10: return M

To argue about the approximation ratio, we will again fit a dual solution to this algorithm. Define
the auxiliary submodular functions gS : 2E → R+ to be gS(T) := f(S ∪ T). Similarly to our
analysis of Algorithm 14, we define the following dual.

µ := f(S) = gS(∅),
φv := C ·max{f(e : M (t)) | t ∈ [|E|], v ∈ e ∈M (t)},

λe :=

{
f(e : S) e 6∈ S
0 e ∈ S.

Note the difference here in the setting of φv from the algorithms of Sections 7.4 and 7.5. We start
by showing that this is a dual feasible solution to the LP (D) for the function gS .

Lemma 7.9.1. The dual solution (~λ, ~φ, µ) is feasible for the LP (D) with function gS .

Proof. To see that the first set of constraints are satisfied, note that by submodularity of f ,∑
e∈T

λe =
∑
e∈T\S

f(e : S) ≥
∑
e∈T\S

fS(e) ≥ fS(T \ S) = f(S ∪ T)− f(S) = gS(T)− µ.

For the second set of constraints, we note that if e = e(t) 6∈ S, then by the test in Line 5 and
submodularity, we have that

λe = f(e : S) ≤ f(e : M (t−1)) ≤ C ·B(t−1)(e) ≤
∑
v∈e

φv.

It remains to relate the value of the solution M to the cost of this dual. For this, we introduce the
following useful notation. For any edge e ∈ S, we define the weight of e to be

we :=

{
f(e : M) e ∈M
f(e : M (t)) e ∈M (t−1) \M (t) ⊆ P.

In words, the weight of an edge in the matching is f(e : M), and the weight of a preempted
edge is frozen to its last value before the edge was preempted. One simple consequence of the
definition of the weights we is the following relationship to f(M).

134

Observation 7.9.2. f(M) =
∑

e∈M f(e : M) =
∑

e∈M we = w(M).

We now show that the preempted edges’ weight is bounded in terms of the weight of M .

Lemma 7.9.3. The weights of P and M satisfy w(P) ≤ w(M) · 1
C−1

.

Proof. For any edge e, we define the following set of preempted edges which are preempted in
favor ofe or in favor of an edge (recursively) preempted due to e.5 First, for an edge e = e(t),
we let the set P 1(e) := N(e) ∩M (t−1) denote the edges preempted when e is added to M . For
any i > 1, we let P i(e) := P 1(P i−1(e)) be the set of edges preempted by an edge with a trail of
preemptions of length i− 1 from e. By Line 6, we have that any edge e ∈ S has weight at least
we ≥ C · P 1(e). By induction, this implies that we ≥ C · w(P (i−1)(e)) ≥ Ci · w(P i(e)). Now,
since each preempted edge e′ ∈ P belongs to precisely one set P i(e) for some i ≥ 1 and e ∈M ,
we find that indeed,

w(P) =
∑
e∈M

∑
i≥1

w(P i(e)) ≤
∑
e∈M

∑
i≥1

1

Ci
· we = w(M) ·

(
1

C
+

1

C2
+ . . .

)
= w(M) · 1

C − 1
.

Using Lemma 7.9.3, we can now relate the value of the primal solution M to the cost of the our
dual solution, µ+

∑
v φv. We start by bounding µ in terms of f(M).

Lemma 7.9.4. The matching M output by Algorithm 15 satisfies f(M) ≥
(
1− 1

C

)
· µ.

Proof. By submodularity of f , Lemma 7.9.3, and Observation 7.9.2 we obtain the desired
inequality,

µ = f(S) = f(M∪P) ≤ f(M)+
∑
e∈P

f(e : M) = w(M)+w(P) ≤
(

1 +
1

C − 1

)
·f(M).

We next bound
∑

v φv in terms of f(M).

Lemma 7.9.5. The matching M output by Algorithm 15 run with C > 1 satisfies

f(M) ≥ 1

2C + C/(C − 1)
·
∑
v∈V

φv.

Proof. Fix a vertex v and edge e ∈ M (t−1) \M (t) ⊆ P preempted at time t in favor of edge
e′ = e(t) 3 v. For this edge e, by monotonicty in t′ of f(e′ : M (t′)), the test of Line 5, non-
negativity of f(e′′ : M (t−1)) for any edge e′′ ∈M (t−1) and C > 1 we have that

we′ ≥ f(e′ : M (t−1)) ≥ C ·B(t−1)(e′) ≥ C · f(e : M (t−1)) = C · we > we.

Consequently, again relying on monotonicity in t′ of f(e′ : M (t′)), we have that for any edge
e ∈ P , there is at most one vertex v ∈ e such that we = f(e : M (t−1)) is equal to φv = max{f(e′ :
M (t′)) | v ∈ e′ ∈M (t′)} . Edges e ∈M , on the other hand, clearly have we = f(e : M) equal to
φv = max{f(e′ : M (t−1)) | v ∈ e′ ∈ M (t−1) \M (t)} for at most two vertices v ∈ e. Combined
with Lemma 7.9.3 and Observation 7.9.2, this yields the desired inequality,

∑
v∈V

φv ≤ C ·

(
2
∑
e∈M

we +
∑
e∈P

we

)
≤
(

2C +
C

C − 1

)
·w(M) =

(
2C +

C

C − 1

)
· f(M).

5In [FKM+05, McG05], these sets are referred to by the somewhat morbid term “trail of the dead”.

135

Equipped with the above lemmas, we can now analyze Algorithm 15’s approximation ratio.

Theorem 7.9.6. Algorithm 15 run with C > 1 and q = 1 on a monotone MSM instance outputs
a matching M of value (

2C +
2C

C − 1

)
· f(M) ≥ f(OPT).

This is optimized by taking C = 2, resulting in an approximation ratio of 8.

Proof. By weak LP duality and Lemma 7.9.1, together with monotonicity of f , we have that

C ·
∑
v

φv + µ ≥ max
T

gS(T) = max
T

f(S ∪ T) ≥ f(S ∪ OPT) ≥ f(OPT).

Combining Lemma 7.9.5 and f(M) = µ by definition and rearranging, we get the desired
inequality, (

2C +
2C

C − 1

)
· f(M) ≥ C ·

∑
v

φv + µ ≥ f(OPT).

As with our algorithm of Section 7.4, our analysis of Algorithm 15 relied on monotonicity,
crucially using f(S ∪OPT) ≥ f(OPT). To extend this algorithm to non-monotone MSM, we
again appeal to Lemma 7.2.1, setting q = 1

2C+1
. This is precisely the algorithm of [FKK18],

which we analyze in the following section.

7.9.2 The Algorithm of [FKK18]

In [FKK18], Feldman et al. showed how to generalize the algorithm of [CK15] to non-monotone
function maximization. Here we show an analysis of their algorithm in our primal dual framework.
Our proof is an extension of the one in Section 7.9.1 in a way that is analogous to how Section 7.5
extends Section 7.4.

We reuse the same dual from Section 7.9.1, only this time, both our dual object and the function
gS are random variables. The proof of expected dual feasibility for this variant of the algorithm of
Section 7.9.1 is analogous to that of Lemma 7.5.1, so we only outline the differences here.

We start with expected feasibility.

Lemma 7.9.7. The dual solution (E[~λ],E[~φ],E[µ]) is feasible for the expected LP E[(D)].

Proof (Sketch). The first set of constraints is satisfied for any random realization. Indeed, as in
the proof of Lemma 7.9.1, for any realization of S, by submodularity of f , we have∑

e∈T

λe =
∑
e∈T\S

f(e : S) ≥
∑
e∈T\S

fS(e) ≥ fS(T \ S) = f(S ∪ T)− f(S) = gS(T)− µ.

Consequently, taking expectation over S, we have that indeed, ES[µ]+
∑

e∈T ES[λe] ≥ ES[gS(T)].

For the second set of constraints, the proof is nearly identical to that of Lemma 7.5.1, where we
show that

E

[∑
v∈e

φv

]
≥ E[λe].

136

This is proved by taking total probability over the event Ae := [f(e : S) ≤ C ·
∑

v∈V φ
(t−1)
v] and

its complement. The key inequality to prove here is that for any realization of randomness R for
which Ae holds, we have that

E

[∑
v∈e

φ(t)
v

∣∣∣∣∣ R
]

= 2q · f(e : S) + (1− 2q) ·
∑
v∈e

φ(t−1)
v ≥ 2q · f(e : S).

And indeed, conditioned on R, the edge e = e(t) fails the test in Line 5, and so with probability
q, we have

∑
v∈e φ

(t)
v = 2 · f(e : S). To see this, note that if e is added to the matching, then for

both v ∈ e, by definition φ(t)
v must be at least f(e : S). Hence, in this case

E

[∑
v∈e

φ(t)
v

∣∣∣∣∣ R
]
≥ 2q · f(e : S).

The proof then proceeds as that of Lemma 7.5.1.

To relate the value of the solution M to the cost of the dual, we can define weights as in
Section 7.9.1 and reuse lemmas 7.9.3, 7.9.4, and 7.9.5, which hold for every realization of the
random choices of the algorithm. From here, following our template, we can use these along with
LP duality, Lemma 7.9.7 and Lemma 7.2.1, to analyze this algorithm.

Theorem 7.9.8. Algorithm 15 run with q = 1/(2C+1) and C on a non-monotone MSM instance
outputs a matching M of value(

2C2 + C

C − 1

)
· f(M) ≥ f(OPT).

This is optimized by taking C = 1 +
√

3
2

, resulting in an approximation ratio of 5 + 2
√

6 ≈ 9.899.
Moreover, the same algorithm is 2C + 2C/(C − 1) approximate for monotone MSM, yielding an
approximation ratio of 8 for C = 2.

7.10 Tight instance for Algorithm 14

In this section we show that there exists a family of instances of MSM instances parametrized by C
for which Algorithm 14 with parameter C > 1 yields an approximation factor of 2C+C/(C− 1).

Lemma 7.10.1. The approximation ratio of Algorithm 14 with C > 1 and q = 1 for monotone
MSM is at least 2C + C

C−1
.

Proof. Define the graph G as follows. The vertex set V (G) consists of {xi, yi}i∈[0,n]. For
convenience, for every i ∈ [1, n] we define the edges di = (x0, xi) and ei = (xi, yi). Then the
edge set E(G) consists of the edges {di}ni=1 ∪ {ei}ni=0.

To define the (monotone) submodular function, we first define an auxiliary weight function
w : E(G)→ R≥0. The weights are:

w(di) = Ci−1 (n ≥ i ≥ 1)
w(e1) = 1 + C − ε

137

x0

...

y0

x1

x2

x2

xn

y1

y2

y2

yn

Figure 7.2: Tight Example for Algorithm 14

w(ei) = Ci − ε (n ≥ i ≥ 2)
w(e0) = Cn − ε

Now the submodular function is:

f(T) := w(T ∩ {e0}) +
n∑
i=0

min(w(T ∩ {di, ei}), w(ei))

Since weights are non-negative, this function is monotone. Submodularity follows from presere-
vation of subdmodularity under linear combinations (and in particular sums), and min{w(S), X}
being submodular for any linear function w.

The stream reveals the edges d1, . . . , dn in order, and subsequently reveals e0, e1, . . . , en in order.
For a run of Algorithm 14 with this choice of C and q = 1, several claims hold inductively:

(a) On the arrival of edge di, we have φx0 = Ci−2 (except for the arrival of d1, at which point
φ0 = 0) and φxi = 0.

(b) The algorithm takes every edge di into the stack.

(c) After di is taken into the stack, we have φx0 = Ci−1 and φxi = Ci−1 +Ci−2 (except for φx1

which is set to 1).

(d) The algorithm does not take ei into the stack.

Let Λt be the statement that these claims holds for time t. By inspection Λ1 holds, now consider
some time i > 1. Claim (a) follows directly from claim (c) of Λi−1. Claim (b) follows from
(a) since fS(di) = Ci−1 = C · φ0 when di arrives. Claim (c) is a consequence of how the
algorithm increases the potentials φ when taking edges into the stack. Claim (d) holds since
fS(ei) = w(ei)− w(di) = Ci − Ci−1 − ε < C · φxi .
From the above, we find that Algorithm 14 with parameter C as above and q = 1 will have all
edges d1, . . . , dn in its stack by the end, resulting in it outputting the matching consisting of the
single edge dn. The value of this edge (and hence this matching) is Cn−1, while on the other hand
OPT can take the edges {ei}ni=0, which have value

n∑
i=0

w(ei) = Cn +
n∑
i=0

Ci − ε(n+ 1)→ Cn−1

(
2C +

C

C − 1

)
. (as n→∞ and ε→ 0)

so long as C > 1. Hence c(OPT)/c(ALG)→ 2C + C/(C − 1). The lemma follows.

138

7.11 Space Bound of Algorithm 14

In this section we bound the space and time complexities of Algorithm 14. We start by bounding
its space usage, as restated in the following lemma.

Lemma 7.3.1. For any constant ε > 0, Algorithm 14 run with C = 1 + ε uses Õ(Mmax) space.

First, we prove the following simpler lemma.

Lemma 7.11.1. Each vertex v ∈ V has at most Õ(bv) edges in the stack S.

Proof. If an edge e 3 v is added to S at time t, then by the test in Line 6, f(e : S) ≥ (1 + ε) ·∑
u∈e φ

(t−1)
u . Consequently, and since φ values are easily seen to always be positive, we have

φ(t)
v − φ(t−1)

v =
f(e : S)−

∑
u∈e φ

(t−1)
u

bv

≥
ε ·
∑

u∈e φ
(t−1)
u

bv
≥ ε · φ(t−1)

v

bv
.

Thus, adding this edge e 3 v to S results in φ(t)
v ≥ φ

(t−1)
v · (1 + ε/bv). Moreover, if e is the first

edge of v added to S, then we have

φ(t)
v =

f(e : S)−
∑

u∈e φ
(t−1)
u

bv
≥ ε

1 + ε
· f(e : S)

bv

≥ ε

1 + ε
· fmin

bv
.

Hence, if v had k edges added to the stack by time t,

φ(t)
v ≥ (ε/(1 + ε)) · (fmin/bv) · (1 + ε/bv)

k−1. (7.11.1)

On the other hand, since f is polynomially bounded, we have that for some constant d

φ(t)
v ≤

∑
e3v

fSe(e)/bv ≤ nd · (fmin/bv). (7.11.2)

Combining equations (7.11.1) and (7.11.2) and simplifying, we find that (1 + ε/bv)
k−1 ≤ nd ·

(1 + ε)/ε. Taking out logarithms and simplifying further, we find that

k ≤ 1 +
d log n+ log(1 + ε) + log(1/ε)

log(1 + ε/bv)
= O((bv/ε) · (log n+ log(1/ε))) = Õ(bv).

That is, the number of edges of v in the stack is at most Õ(bv).

Proof of Lemma 7.3.1. Consider a maximum cardinality b-matching M (i.e., |M | = Mmax).
Denote by dv the degree of a vertex v in G. Then, the set U of saturated vertices v ∈ V in M , i.e.,
those with min{bv, dv} edges in M , is a vertex cover. To see this, we note that no edge e = (u, v)
can have both endpoints not saturated by M , as the converse would imply that M ∪ {e} is a
feasible b-matching, contradicting maximality of M . Now, since each edge of M has at most two
saturated endpoints, we have that

∑
u∈U min{bu, du} ≤ 2|M |. On the other hand, since U is a

vertex cover, the number of edges in S is upper bounded by the number of edges of vertices in U

139

in S. But each vertex u ∈ U trivially has at most du edges in S. Combined with Lemma 7.11.1,
we find that the number of edges in S is at most

|S| = Õ

(∑
u∈U

min{bu, du}

)
= Õ(|M |).

Finally, since each edge added to S causes at most two nodes to have non-zero φ value, and since
each such value can be specified using Õ(1) bits, by the assumption of f being poly-bounded, the
space to store all non-zero φ values is at most Õ(|S|) = Õ(|M |) = Õ(Mmax).

Finally, we briefly analyze the algorithm’s running time.

Lemma 7.3.2. A randomized (deterministic) implementation of Algorithm 14 requires O(1)
(O(log n)) operations and O(1) function evaluations per arrival, followed by Õ(Mmax) time
post-processing. Using Õ(n) space, the deterministic time per arrival can be decreased to O(1),
by storing all φv.

Proof. The algorithm clearly requires a constant number of evaluations of φv and f for each edge
arrival. The difference between deterministic and randomized implementations is due to the data
structures used to maintain the mapping from v to φv (if non zero). Finally, the preprocessing
time follows directly from our upper bound on |S| and the post-processing stage clearly taking
time linear in |S|.

7.12 Deferred Proofs of Section 7.7

Lemma 7.7.2 (Extension of Corollary 1.6 of [DS14]). Assuming ETH, every algorithm achieving
an approximation ratio (1 − α) ln |U| for SET COVER runs in time strictly greater than 2N

γ·α

for some γ > 0. Furthermore, this holds even under the assumptions that |S| ≤ K1/(γα) and
|U| ≤ |S|1/(γα).

Proof. The first statement is precisely Corollary 1.6 of [DS14].

For the extra assumptions, if K < |S|γα then the brute force algorithm that checks all subsets
of size K runs in time |S|K < 2|S|

γα log |S| ≤ 2N
γα . If |S| < |U|γα , then one can brute force

over all sub collections of S in time 2|S| ≤ 2|U|
γα ≤ 2N

γα . Both running times contradict
Lemma 7.7.2.

Lemma 7.7.5 (Appendix H.1 of [GKK12]). For any constants γ, δ ∈ (0, 1/4), let A be an
algorithm that at the end of phase 1, with constant probability, outputs at least γn of the the edges
of M ′

r. Then A uses Ω(E1) ≥ n1+Ω(1/ log logn) bits of space.

Proof. Let A be an algorithm that outputs γn of the edges of M ′
r at the end of phase 1 that uses

fewer than s = n poly log n bits. We will show that γ = o(1).

Let G be the set of possible first phase graphs. Then

|G| =
(
n/2

δn

)t
= 2γm

140

for some γ > 0. Let φ : G → {0, 1}s be the function that takes an input graph G to the state of
the algorithm A after running A on G. Let Γ(G) = {H | φ(G) = φ(H)}, that is the set of graphs
inducing the same internal state for A at the end of phase 1.

Define Ψ(G) =
⋂
H∈Γ(G) E(H). Note that for any input graph G, the algorithm A can output an

edge e if and only if e ∈ Ψ(G). Also, for any G let t′ be the number of matchings in the RS graph
G0 for which Ψ(G) contains at least γn edges. Since algorithm A outputs γn edges of M ′

r, the
number of graphs in Γ(G) is bounded by(

(1/2− γ)n

δn

)t′(
n/2

δn

)t−t′
=

(
2−Ω(γn)

(
n/2

δn

))t′ (
n/2

δn

)t−t′
= 2−Ω(t′γn)2γm. (∗)

On the other hand, since the first phase graph G is chosen uniformly at random, by a counting
argument, with probability at least 1− o(1) we have that |Γ(G)| ≥ 2(γ−o(1))m. Conditioning on
this happening, we also know that t′ ≥ Ω(t) since the input graph is uniformly chosen within
Γ(G), and the algorithm succeeds with constant probability. These two facts together with (∗)
imply that γ = o(1).

141

142

Chapter 8

Conclusion and Open Questions

In thesis, we give algorithms for several important of instances of submodular optimization under
uncertainty. Our results generalize, refine, and improve a number previous methods. We hope
the reader is convinced that the intersection of submodular optimization and algorithms under
uncertainty is a rich and still burgeoning area. In particular, we believe that it serves as an excellent
sandbox in which to explore fundamental algorithmic ideas.

Many interesting questions in the area remain. Below, we collect some of the outstanding open
problems from this thesis.

Online Algorithms. Is possible to extend the LEARNORCOVER technique to give an O(logmn)
competitive algorithm for covering IPs with box constraints? Beyond that, can one improve the
adversarial order bounds for the more general SUBMODULARCOVER problem? Another question
is whether the result for NONMETRICFACILITYLOCATION extends to GROUPSTEINERTREE.
In particular, can one get an O(log3 n) competitive algorithm when the terminals are revealed in
random order? Finally, we show an O(log(mn)/α) competitive ratio for α-SAMPLESETCOVER,
but what is the right dependence on α? We conjecture that O(log(mn) log(1/α)) is possible.

Can our O(log2 k) competitive ratio for block-caching in the eviction cost model be improved
to O(log k) to match the lower bound from classical paging? Note that even for the special case
of generalized caching, the first result of [BBN12b] achieved competitive ratio O(log2 k). The
subsequent improvement due to [ACER19] required non-trivial ideas which seem difficult to
adapt to the more general block-aware caching problem. For the fetching cost model, is there
an algorithm matching the lower bound of β + log k, or can the lower bound be strengthened to
match the trivial β log k upper bound? Finally, are there constant-approximation offline algorithms
for block-caching in either the fetching or eviction cost models?

Dynamic Algorithms. Is it possible to remove the log(cmax/cmin) in the recourse bound of
Theorem 6.3.1? Are there instances where this cost is incurred, or this just an analysis artifact?
Another interesting orthogonal question is whether there is a fully-dynamic algorithms for SUB-
MODULARCOVER with fast update time (as opposed to just recourse). The naive implementation
of our local search requires polynomial time, since it must greedily search for local moves, as
well as preform bubble sort between any two such moves. Since known algorithms for dynamic
SETCOVER with update time bounds ([GKKP17]) explicitly maintain an assignment of elements
to sets, it is conceivable that one may need more than black box access to a value oracle. This
question is interesting even for special cases of SUBMODULARCOVER such as partial cover, or

143

the SIMULTANEOUSSOURCELOCATION problem we discuss in Chapter 1.

Streaming Algorithms. Can one tighten (and ideally close) the gap between upper and lower
bounds for Streaming MSM? On the techniques side, it would be interesting to see whether the
primal-dual method can be used for further applications in streaming submodular algorithms, or
to further unify the analysis of prior work. More broadly, it would be interesting to apply our
extension of the randomized primal dual method of [DJK13] to other problems. Is there a fast
dynamic algorithm which maintains a sparisifier similar to that of Algorithm 14? This would
result in improved dynamic weighted matching algorithms, and possibly would result in the first
dynamic submodular matching algorithm.

144

Bibliography

[AAA+06] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. A
general approach to online network optimization problems. ACM Trans. Algorithms,
2(4):640–660, 2006. 2.5, 2

[AAA+09] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The
online set cover problem. SIAM J. Comput., 39(2):361–370, 2009. 2.5, 1, 3.1, 3.1.1,
3.5, 4.1.1, 4.7.1, 4.12, 5.1

[AAG+19] Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Panigrahi, and
Barna Saha. Dynamic set cover: improved algorithms and lower bounds. In Moses
Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 114–125. ACM, 2019. 6.1.3

[AAK99] Susanne Albers, Sanjeev Arora, and Sanjeev Khanna. Page replacement for general
caching problems. In Robert Endre Tarjan and Tandy J. Warnow, editors, Proceed-
ings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 17-19
January 1999, Baltimore, Maryland, USA, pages 31–40. ACM/SIAM, 1999. 5.1

[AAK19] Arpit Agarwal, Sepehr Assadi, and Sanjeev Khanna. Stochastic submodular cover
with limited adaptivity. In Timothy M. Chan, editor, Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pages 323–342. SIAM, 2019. 3.1.2

[ACC+18] Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. Dynamic
matching: Reducing integral algorithms to approximately-maximal fractional al-
gorithms. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and
Donald Sannella, editors, 45th International Colloquium on Automata, Languages,
and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 7:1–7:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018. 7.8

[ACER19] Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. An O(log k)-
competitive algorithm for generalized caching. ACM Trans. Algorithms, 15(1):6:1–
6:18, 2019. 5.1, 5.1.1, 5.5, 8

[ACN00] Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of
randomized paging algorithms. Theor. Comput. Sci., 234(1-2):203–218, 2000. 5.1

[AD15] Shipra Agrawal and Nikhil R. Devanur. Fast algorithms for online stochastic convex
programming. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,

145

January 4-6, 2015, pages 1405–1424. SIAM, 2015. 4.1.3

[ADF17] Faez Ahmed, John P. Dickerson, and Mark D. Fuge. Diverse weighted bipartite
b-matching. In Carles Sierra, editor, Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017, pages 35–41. ijcai.org, 2017. 1, 7.1

[AEF+20] Naor Alaluf, Alina Ene, Moran Feldman, Huy L. Nguyen, and Andrew Suh. Optimal
streaming algorithms for submodular maximization with cardinality constraints.
In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11,
2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages
6:1–6:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. 7.1

[AGG+09] Konstantin Andreev, Charles Garrod, Daniel Golovin, Bruce M. Maggs, and Adam
Meyerson. Simultaneous source location. ACM Trans. Algorithms, 6(1):16:1–16:17,
2009. 1, 1.1.1, 3.1

[AGHI09] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. Diversi-
fying search results. In Ricardo Baeza-Yates, Paolo Boldi, Berthier A. Ribeiro-Neto,
and Berkant Barla Cambazoglu, editors, Proceedings of the Second International
Conference on Web Search and Web Data Mining, WSDM 2009, Barcelona, Spain,
February 9-11, 2009, pages 5–14. ACM, 2009. 1, 7.1

[AGTG21] C. J. Argue, Anupam Gupta, Ziye Tang, and Guru Guruganesh. Chasing convex
bodies with linear competitive ratio. J. ACM, 68(5):32:1–32:10, 2021. 6.1.3

[AGZ99] Matthew Andrews, Michel X. Goemans, and Lisa Zhang. Improved bounds for
on-line load balancing. Algorithmica, 23(4):278–301, 1999. 6.1.3

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta-algorithm and applications. Theory Comput., 8(1):121–164, 2012.
4.1.3

[AJ21a] Susanne Albers and Maximilian Janke. Scheduling in the random-order model.
Algorithmica, 83(9):2803–2832, 2021. 4.1.3

[AJ21b] Susanne Albers and Maximilian Janke. Scheduling in the secretary model. In
Mikolaj Bojanczyk and Chandra Chekuri, editors, 41st IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2021, December 15-17, 2021, Virtual Conference, volume 213 of LIPIcs, pages
6:1–6:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 4.1.3

[AKL21] Susanne Albers, Arindam Khan, and Leon Ladewig. Improved online algorithms
for knapsack and GAP in the random order model. Algorithmica, 83(6):1750–1785,
2021. 4.1.3

[Ans87] Richard P. Anstee. A polynomial algorithm for b-matchings: An alternative ap-
proach. Inf. Process. Lett., 24(3):153–157, 1987. 7.6

[AWY14] Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. A dynamic near-optimal algorithm
for online linear programming. Oper. Res., 62(4):876–890, 2014. 4.1.3

[Bac13] Francis R. Bach. Learning with submodular functions: A convex optimization
perspective. Found. Trends Mach. Learn., 6(2-3):145–373, 2013. 6.1.3, 6.4.1, 2

146

[BBF+01] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch
Schieber. A unified approach to approximating resource allocation and scheduling.
J. ACM, 48(5):1069–1090, 2001. 7.1.2

[BBK99] Avrim Blum, Carl Burch, and Adam Kalai. Finely-competitive paging. In 40th
Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, pages 450–458. IEEE Computer Society, 1999. 5.1

[BBN12a] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized
algorithm for weighted paging. J. ACM, 59(4):19:1–19:24, 2012. 5.1, 5.1.1

[BBN12b] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Randomized competitive algo-
rithms for generalized caching. SIAM J. Comput., 41(2):391–414, 2012. 1.1.3, 5.1,
5.1, 5.1.1, 5.5, 8

[BCH17] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic
fully dynamic approximate vertex cover and fractional matching in O(1) amortized
update time. In Friedrich Eisenbrand and Jochen Könemann, editors, Integer
Programming and Combinatorial Optimization - 19th International Conference,
IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings, volume 10328
of Lecture Notes in Computer Science, pages 86–98. Springer, 2017. 6.1.3

[BCL+18] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander
Madry. k-server via multiscale entropic regularization. In Ilias Diakonikolas, David
Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA,
June 25-29, 2018, pages 3–16. ACM, 2018. 5.1

[BCN14a] Niv Buchbinder, Shahar Chen, and Joseph Naor. Competitive algorithms for re-
stricted caching and matroid caching. In Andreas S. Schulz and Dorothea Wagner,
editors, Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw,
Poland, September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes in
Computer Science, pages 209–221. Springer, 2014. 3.1.2

[BCN14b] Niv Buchbinder, Shahar Chen, and Joseph Naor. Competitive analysis via regu-
larization. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pages 436–444. SIAM, 2014. 5.1

[BF18] Niv Buchbinder and Moran Feldman. Submodular functions maximization problems.
In Teofilo F. Gonzalez, editor, Handbook of Approximation Algorithms and Meta-
heuristics, Second Edition, Volume 1: Methologies and Traditional Applications,
pages 753–788. Chapman and Hall/CRC, 2018. 2.4

[BF19] Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a
nonsymmetric technique. Math. Oper. Res., 44(3):988–1005, 2019. 7.1

[BFNS14] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular
maximization with cardinality constraints. In Chandra Chekuri, editor, Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2014, Portland, Oregon, USA, January 5-7, 2014, pages 1433–1452. SIAM, 2014.
7.1, 7.1.2, 7.2.2, 7.2.1

[BFT96] Avrim Blum, Merrick L Furst, and Andrew Tomkins. What to do with your free

147

time: Algorithms for infrequent requests and randomized weighted caching. 1996.
5.1

[BGHM20] Nathan Beckmann, Phillip B. Gibbons, Bernhard Haeupler, and Charles McGuffey.
Writeback-aware caching. In Bruce M. Maggs, editor, 1st Symposium on Algorithmic
Principles of Computer Systems, APOCS 2020, Salt Lake City, UT, USA, January 8,
2020, pages 1–15. SIAM, 2020. 5.1, 5.1

[BGM21] Nathan Beckmann, Phillip B. Gibbons, and Charles McGuffey. Block-granularity-
aware caching. In Kunal Agrawal and Yossi Azar, editors, SPAA ’21: 33rd ACM
Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, 6-8
July, 2021, pages 414–416. ACM, 2021. 5.1, 1, 5.1, 5.1.1, 5.1.1, 5.1.1, 3, 5.4, 5.4.2,
5.4.3, 5.5

[BGMN19] Niv Buchbinder, Anupam Gupta, Marco Molinaro, and Joseph (Seffi) Naor. k-
servers with a smile: Online algorithms via projections. In Timothy M. Chan, editor,
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 98–116. SIAM,
2019. 4.12

[BHI18] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic
fully dynamic data structures for vertex cover and matching. SIAM J. Comput.,
47(3):859–887, 2018. 6.1.3, 7.8

[BHN19] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. A new deter-
ministic algorithm for dynamic set cover. In David Zuckerman, editor, 60th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, pages 406–423. IEEE Computer Society,
2019. 6.1.3

[BHNW21] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Xiaowei Wu.
Dynamic set cover: Improved amortized and worst-case update time. In Dániel Marx,
editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2537–2549. SIAM,
2021. 6.1.3

[BK19] Sayan Bhattacharya and Janardhan Kulkarni. Deterministically maintaining a
(2 + ε)-approximate minimum vertex cover in O(1/ε2) amortized update time.
In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 1872–1885. SIAM, 2019. 6.1.3

[BLSZ14] Bartlomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna Zych. Online
bipartite matching in offline time. In 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014,
pages 384–393. IEEE Computer Society, 2014. 6.1.3

[BMKB13] Maximilian Beinhofer, Jörg Müller, Andreas Krause, and Wolfram Burgard. Robust
landmark selection for mobile robot navigation. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Tokyo, Japan, November 3-7, 2013,
pages 3637–2643. IEEE, 2013. 1.1.1

[BMKK14] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas

148

Krause. Streaming submodular maximization: massive data summarization on the
fly. In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid
Ghani, editors, The 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014,
pages 671–680. ACM, 2014. 7.1

[BN09a] Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via a
primal-dual approach. Found. Trends Theor. Comput. Sci., 3(2-3):93–263, 2009. 5.1

[BN09b] Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and
packing. Math. Oper. Res., 34(2):270–286, 2009. 2.5, 1, 3.2.1, 3.2.3, 3.3.1, 3.3.2,
3.4, 3.4.2, 3.4.2, 4.1.1, 4.7.2, 4.1, 4.7.3, 4.7.2, 4.12, 4.12, 4.12

[BNT21] Nikhil Bansal, Joseph (Seffi) Naor, and Ohad Talmon. Efficient online weighted
multi-level paging. In Kunal Agrawal and Yossi Azar, editors, SPAA ’21: 33rd ACM
Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, 6-8
July, 2021, pages 94–104. ACM, 2021. 5.1, 5.1

[BR05] Reuven Bar-Yehuda and Dror Rawitz. On the equivalence between the primal-dual
schema and the local ratio technique. SIAM J. Discret. Math., 19(3):762–797, 2005.
3

[BS15] Aaron Bernstein and Cliff Stein. Fully dynamic matching in bipartite graphs. In
Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann,
editors, Automata, Languages, and Programming - 42nd International Colloquium,
ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of
Lecture Notes in Computer Science, pages 167–179. Springer, 2015. 7.8

[BS16] Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approx-
imation ratios. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pages 692–711. SIAM, 2016. 7.8

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Found. Trends
Mach. Learn., 8(3-4):231–357, 2015. 4.12

[CCPV11] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a
monotone submodular function subject to a matroid constraint. SIAM J. Comput.,
40(6):1740–1766, 2011. 1, 7.1

[CDKL09] Kamalika Chaudhuri, Constantinos Daskalakis, Robert D. Kleinberg, and Henry Lin.
Online bipartite perfect matching with augmentations. In INFOCOM 2009. 28th
IEEE International Conference on Computer Communications, Joint Conference
of the IEEE Computer and Communications Societies, 19-25 April 2009, Rio de
Janeiro, Brazil, pages 1044–1052. IEEE, 2009. 6.1.3

[CGQ15] Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming algorithms for
submodular function maximization. In Magnús M. Halldórsson, Kazuo Iwama,
Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and
Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July
6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science,
pages 318–330. Springer, 2015. 7.1, 7.1.1, 7.2

[CHP+19] Vincent Cohen-Addad, Niklas Hjuler, Nikos Parotsidis, David Saulpic, and Chris

149

Schwiegelshohn. Fully dynamic consistent facility location. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages 3250–3260, 2019. 6.1.3

[Chv79] Vasek Chvátal. A greedy heuristic for the set-covering problem. Math. Oper. Res.,
4(3):233–235, 1979. 2.5

[CK15] Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming:
matchings, matroids, and more. Math. Program., 154(1-2):225–247, 2015. 7.1,
7.1.1, 7.1.1, 7.1.1, 7.1.2, 7.9, 7.9.1, 15, 7.9.2

[CL91] Marek Chrobak and Lawrence L. Larmore. An optimal on-line algorithm for
k-servers on trees. SIAM J. Comput., 20(1):144–148, 1991. 5.1

[CLNT22] Christian Coester, Roie Levin, Joseph (Seffi) Naor, and Ohad Talmon. Competitive
algorithms for block-aware caching. In Kunal Agrawal and I-Ting Angelina Lee,
editors, SPAA ’22: 34th ACM Symposium on Parallelism in Algorithms and Archi-
tectures, Philadelphia, PA, USA, July 11 - 14, 2022, pages 161–172. ACM, 2022.
1.1.3

[CM18] Micah Corah and Nathan Michael. Distributed submodular maximization on parti-
tion matroids for planning on large sensor networks. In 57th IEEE Conference on
Decision and Control, CDC 2018, Miami, FL, USA, December 17-19, 2018, pages
6792–6799. IEEE, 2018. 6.1.3

[CRT06] Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. Stable signal recovery
from incomplete and inaccurate measurements. Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical
Sciences, 59(8):1207–1223, 2006. 6.1.2

[CS14] Michael S. Crouch and Daniel M. Stubbs. Improved streaming algorithms for
weighted matching, via unweighted matching. In Klaus Jansen, José D. P. Rolim,
Nikhil R. Devanur, and Cristopher Moore, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2014, September 4-6, 2014, Barcelona, Spain, volume 28 of LIPIcs, pages 96–104.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014. 7.1, 7.1.1, 7.6

[CVZ14] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maxi-
mization via the multilinear relaxation and contention resolution schemes. SIAM J.
Comput., 43(6):1831–1879, 2014. 4.9

[CWJ18] Yang Chen, Jie Wu, and Bo Ji. Virtual network function deployment in tree-
structured networks. In 2018 IEEE 26th International Conference on Network
Protocols, ICNP 2018, Cambridge, UK, September 25-27, 2018, pages 132–142.
IEEE Computer Society, 2018. 1, 1.1.1

[DEH+18] Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and
Saeed Seddighin. Greedy algorithms for online survivable network design. In
Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella,
editors, 45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages

150

152:1–152:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. 4.1.3

[DHK16] Amol Deshpande, Lisa Hellerstein, and Devorah Kletenik. Approximation algo-
rithms for stochastic submodular set cover with applications to boolean function
evaluation and min-knapsack. ACM Trans. Algorithms, 12(3):42:1–42:28, 2016.
3.1.2

[DIMV14] Erik D. Demaine, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. On streaming
and communication complexity of the set cover problem. In Fabian Kuhn, editor,
Distributed Computing - 28th International Symposium, DISC 2014, Austin, TX,
USA, October 12-15, 2014. Proceedings, volume 8784 of Lecture Notes in Computer
Science, pages 484–498. Springer, 2014. 4.1.1

[DJK13] Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. Randomized primal-dual
analysis of RANKING for online bipartite matching. In Sanjeev Khanna, editor,
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages
101–107. SIAM, 2013. 7.1.2, 7.2.2, 7.8, 8

[DS14] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In David B.
Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 624–633. ACM, 2014. 2.4, 2.5, 7.1, 7.1.2, 7.7,
7.7.2, 7.7.2, 7.12

[DSSX19] John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu.
Balancing relevance and diversity in online bipartite matching via submodularity. In
The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 1877–1884.
AAAI Press, 2019. 7.1

[EKM21] Hossein Esfandiari, Amin Karbasi, and Vahab S. Mirrokni. Adaptivity in adaptive
submodularity. In Mikhail Belkin and Samory Kpotufe, editors, Conference on
Learning Theory, COLT 2021, 15-19 August 2021, Boulder, Colorado, USA, volume
134 of Proceedings of Machine Learning Research, pages 1823–1846. PMLR, 2021.
3.1.2

[EL14] Leah Epstein and Asaf Levin. Robust algorithms for preemptive scheduling. Algo-
rithmica, 69(1):26–57, 2014. 6.1.3

[ELSW18] Leah Epstein, Asaf Levin, Danny Segev, and Oren Weimann. Improved bounds for
randomized preemptive online matching. Inf. Comput., 259(1):31–40, 2018. 7.1

[EMR18] Guy Even, Moti Medina, and Dror Rawitz. Online generalized caching with varying
weights and costs. In Christian Scheideler and Jeremy T. Fineman, editors, Pro-
ceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures,
SPAA 2018, Vienna, Austria, July 16-18, 2018, pages 205–212. ACM, 2018. 5.1

[EN16] Alina Ene and Huy L. Nguyen. Constrained submodular maximization: Beyond 1/e.
In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New
Jersey, USA, pages 248–257. IEEE Computer Society, 2016. 7.1

151

[ER16] Yuval Emek and Adi Rosén. Semi-streaming set cover. ACM Trans. Algorithms,
13(1):6:1–6:22, 2016. 4.1.1

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652,
1998. 2.5, 7.1, 7.1.1, 7.1.2, 7.7

[FH05] Stephan Foldes and Peter L. Hammer. Submodularity, supermodularity, and higher-
order monotonicities of pseudo-boolean functions. Math. Oper. Res., 30(2):453–461,
2005. 2.2, 2.2.3, 6.1.1, 6.1.2, 6.1.3

[FHTZ20] Matthew Fahrbach, Zhiyi Huang, Runzhou Tao, and Morteza Zadimoghaddam.
Edge-weighted online bipartite matching. In Sandy Irani, editor, 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 412–423. IEEE, 2020. 7.1.2, 7.2.2

[FKK18] Moran Feldman, Amin Karbasi, and Ehsan Kazemi. Do less, get more: Streaming
submodular maximization with subsampling. In Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pages 730–740, 2018. 7.1, 7.1.1, 7.1.1, 7.1.2, 7.2, 7.9, 15,
7.9.1, 7.9.2

[FKL+91] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic
Sleator, and Neal E. Young. Competitive paging algorithms. J. Algorithms,
12(4):685–699, 1991. 5.1

[FKM+05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. On graph problems in a semi-streaming model. Theor. Comput. Sci.,
348(2-3):207–216, 2005. 7.1, 5

[FNS11] Moran Feldman, Joseph Naor, and Roy Schwartz. A unified continuous greedy
algorithm for submodular maximization. In Rafail Ostrovsky, editor, IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs,
CA, USA, October 22-25, 2011, pages 570–579. IEEE Computer Society, 2011. 7.1

[FNSW11] Moran Feldman, Joseph Naor, Roy Schwartz, and Justin Ward. Improved approxi-
mations for k-exchange systems - (extended abstract). In Camil Demetrescu and
Magnús M. Halldórsson, editors, Algorithms - ESA 2011 - 19th Annual European
Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings, volume
6942 of Lecture Notes in Computer Science, pages 784–798. Springer, 2011. 7.1

[FNSZ20] Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. The
one-way communication complexity of submodular maximization with applications
to streaming and robustness. In Konstantin Makarychev, Yury Makarychev, Madhur
Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020, pages 1363–1374. ACM, 2020. 7.1, 2

[FNW78] Marshall L. Fisher, George L. Nemhauser, and Laurence A. Wolsey. An analysis of
approximations for maximizing submodular set functions—II, pages 73–87. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1978. 2.4, 7.1

[Fuj99] Toshihiro Fujito. On approximation of the submodular set cover problem. Oper.

152

Res. Lett., 25(4):169–174, 1999. 2.4

[Gab18] Harold N. Gabow. Data structures for weighted matching and extensions to b-
matching and f -factors. ACM Trans. Algorithms, 14(3):39:1–39:80, 2018. 7.6

[GB11] Andrew Guillory and Jeff A. Bilmes. Online submodular set cover, ranking, and
repeated active learning. In John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett,
Fernando C. N. Pereira, and Kilian Q. Weinberger, editors, Advances in Neural
Information Processing Systems 24: 25th Annual Conference on Neural Information
Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011,
Granada, Spain, pages 1107–1115, 2011. 3.1.2

[GBLV13] Amit Goyal, Francesco Bonchi, Laks V. S. Lakshmanan, and Suresh Venkatasub-
ramanian. On minimizing budget and time in influence propagation over social
networks. Soc. Netw. Anal. Min., 3(2):179–192, 2013. 1, 1.1.1

[GGK16] Albert Gu, Anupam Gupta, and Amit Kumar. The power of deferral: Maintaining a
constant-competitive steiner tree online. SIAM J. Comput., 45(1):1–28, 2016. 6.1.3,
6.7.1

[GGL+13] Fabrizio Grandoni, Anupam Gupta, Stefano Leonardi, Pauli Miettinen, Piotr
Sankowski, and Mohit Singh. Set covering with our eyes closed. SIAM J. Comput.,
42(3):808–830, 2013. 4.1.3, 4.11

[GGN21] Rohan Ghuge, Anupam Gupta, and Viswanath Nagarajan. The power of adaptivity
for stochastic submodular cover. In Marina Meila and Tong Zhang, editors, Pro-
ceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pages 3702–3712. PMLR, 2021. 3.1.2

[GHKL16] Nathaniel Grammel, Lisa Hellerstein, Devorah Kletenik, and Patrick Lin. Scenario
submodular cover. In Klaus Jansen and Monaldo Mastrolilli, editors, Approxima-
tion and Online Algorithms - 14th International Workshop, WAOA 2016, Aarhus,
Denmark, August 25-26, 2016, Revised Selected Papers, volume 10138 of Lecture
Notes in Computer Science, pages 116–128. Springer, 2016. 3.1.2

[GK11] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applica-
tions in active learning and stochastic optimization. J. Artif. Intell. Res., 42:427–486,
2011. 3.1.2

[GK14] Anupam Gupta and Amit Kumar. Online steiner tree with deletions. In Chandra
Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 455–467. SIAM, 2014. 6.1.3, 6.7.2, 6.7.2

[GKK12] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and
streaming complexity of maximum bipartite matching. In Yuval Rabani, editor,
Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 468–485. SIAM,
2012. 7.1.2, 7.7, 7.7.4, 7.7, 7.7.5, 7.7.5

[GKKP17] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi.
Online and dynamic algorithms for set cover. In Hamed Hatami, Pierre McKenzie,
and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium

153

on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 537–550. ACM, 2017. 6.1, 6.1.2, 6.1.3, 6.5, 6.6, 6.8, 7.1.2, 7.2.2, 8

[GKKP19] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi.
Elastic caching. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019, pages 143–156. SIAM, 2019. 5.1

[GKKV95] Edward F. Grove, Ming-Yang Kao, P. Krishnan, and Jeffrey Scott Vitter. Online
perfect matching and mobile computing. In Selim G. Akl, Frank K. H. A. Dehne,
Jörg-Rüdiger Sack, and Nicola Santoro, editors, Algorithms and Data Structures,
4th International Workshop, WADS ’95, Kingston, Ontario, Canada, August 16-
18, 1995, Proceedings, volume 955 of Lecture Notes in Computer Science, pages
194–205. Springer, 1995. 6.1.3

[GKL21] Anupam Gupta, Gregory Kehne, and Roie Levin. Random order online set cover is
as easy as offline. In 62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1253–1264.
IEEE, 2021. 1.1.2

[GKLX20] Xiangyu Guo, Janardhan Kulkarni, Shi Li, and Jiayi Xian. On the facility location
problem in online and dynamic models. In Jaroslaw Byrka and Raghu Meka, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference,
volume 176 of LIPIcs, pages 42:1–42:23. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. 6.1.3

[GKP20] Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Caching with time win-
dows. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam
Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26,
2020, pages 1125–1138. ACM, 2020. 5.1

[GKS14] Anupam Gupta, Amit Kumar, and Cliff Stein. Maintaining assignments online:
Matching, scheduling, and flows. In Chandra Chekuri, editor, Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 468–479. SIAM, 2014. 6.1.3

[GL20a] Anupam Gupta and Roie Levin. Fully-dynamic submodular cover with bounded
recourse. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages
1147–1157. IEEE, 2020. 1.1.4

[GL20b] Anupam Gupta and Roie Levin. The online submodular cover problem. In Shuchi
Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1525–1537.
SIAM, 2020. 1.1.1

[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms
and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics.
Springer, 1988. 2.2

[GM16] Anupam Gupta and Marco Molinaro. How the experts algorithm can help solve lps

154

online. Math. Oper. Res., 41(4):1404–1431, 2016. 4.1.3

[GN14] Anupam Gupta and Viswanath Nagarajan. Approximating sparse covering integer
programs online. Math. Oper. Res., 39(4):998–1011, 2014. 2.5

[GP13] Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013,
26-29 October, 2013, Berkeley, CA, USA, pages 548–557. IEEE Computer Society,
2013. 7.8

[GRST10] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained
non-monotone submodular maximization: Offline and secretary algorithms. In
Amin Saberi, editor, Internet and Network Economics - 6th International Workshop,
WINE 2010, Stanford, CA, USA, December 13-17, 2010. Proceedings, volume 6484
of Lecture Notes in Computer Science, pages 246–257. Springer, 2010. 7.1

[GS20] Anupam Gupta and Sahil Singla. Random-order models. In Tim Roughgarden,
editor, Beyond the Worst-Case Analysis of Algorithms, pages 234–258. Cambridge
University Press, 2020. 4.1.3, 4.11

[GTW14] Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage
optimization for matroids and matchings. In Javier Esparza, Pierre Fraigniaud, Thore
Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming
- 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11,
2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science,
pages 563–575. Springer, 2014. 3.1.2

[GV11] Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated
annealing. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California,
USA, January 23-25, 2011, pages 1098–1116. SIAM, 2011. 7.1

[GW19] Mohsen Ghaffari and David Wajc. Simplified and space-optimal semi-streaming
(2+epsilon)-approximate matching. In Jeremy T. Fineman and Michael Mitzen-
macher, editors, 2nd Symposium on Simplicity in Algorithms, SOSA 2019, January
8-9, 2019, San Diego, CA, USA, volume 69 of OASIcs, pages 13:1–13:8. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 7.1, 7.1.2, 7.6

[HGDS14] Syed Hasan, Sergey Gorinsky, Constantine Dovrolis, and Ramesh K. Sitaraman.
Trade-offs in optimizing the cache deployments of cdns. In 2014 IEEE Conference
on Computer Communications, INFOCOM 2014, Toronto, Canada, April 27 - May
2, 2014, pages 460–468. IEEE, 2014. 5.1

[HIMV16] Sariel Har-Peled, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. Towards tight
bounds for the streaming set cover problem. In Tova Milo and Wang-Chiew Tan,
editors, Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 371–383. ACM, 2016. 4.1.1

[HK18] Lisa Hellerstein and Devorah Kletenik. Revisiting the approximation bound for
stochastic submodular cover. J. Artif. Intell. Res., 63:265–279, 2018. 3.1.2

[HKT+18] Zhiyi Huang, Ning Kang, Zhihao Gavin Tang, Xiaowei Wu, Yuhao Zhang, and
Xue Zhu. How to match when all vertices arrive online. In Ilias Diakonikolas,

155

David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018, pages 17–29. ACM, 2018. 7.1.2, 7.2.2

[HNO08] Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and streaming
entropy via approximation theory. In 49th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA,
pages 489–498. IEEE Computer Society, 2008. 6.1.2

[Hoc82] Dorit S. Hochbaum. Approximation algorithms for the set covering and vertex cover
problems. SIAM J. Comput., 11(3):555–556, 1982. 2.4

[HPT+19] Zhiyi Huang, Binghui Peng, Zhihao Gavin Tang, Runzhou Tao, Xiaowei Wu, and
Yuhao Zhang. Tight competitive ratios of classic matching algorithms in the fully
online model. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019, pages 2875–2886. SIAM, 2019. 7.1.2, 7.2.2

[HTWZ19] Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. Online vertex-
weighted bipartite matching: Beating 1-1/e with random arrivals. ACM Trans.
Algorithms, 15(3):38:1–38:15, 2019. 7.1.2, 7.2.2

[HTWZ20] Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. Fully online
matching II: beating ranking and water-filling. In Sandy Irani, editor, 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC,
USA, November 16-19, 2020, pages 1380–1391. IEEE, 2020. 7.1.2, 7.2.2

[HZ20] Zhiyi Huang and Qiankun Zhang. Online primal dual meets online matching with
stochastic rewards: configuration LP to the rescue. In Konstantin Makarychev,
Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors,
Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1153–1164. ACM, 2020.
7.1.2, 7.2.2

[HZZ20] Zhiyi Huang, Qiankun Zhang, and Yuhao Zhang. Adwords in a panorama. In Sandy
Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1416–1426. IEEE,
2020. 7.1.2, 7.2.2

[IIOW10] Tomoko Izumi, Taisuke Izumi, Hirotaka Ono, and Koichi Wada. Approximability
and inapproximability of the minimum certificate dispersal problem. Theor. Comput.
Sci., 411(31-33):2773–2783, 2010. 1, 1.1.1

[IKBA21] Rishabh K. Iyer, Ninad Khargoankar, Jeff A. Bilmes, and Himanshu Asanani.
Submodular combinatorial information measures with applications in machine
learning. In Vitaly Feldman, Katrina Ligett, and Sivan Sabato, editors, Algorithmic
Learning Theory, 16-19 March 2021, Virtual Conference, Worldwide, volume 132
of Proceedings of Machine Learning Research, pages 722–754. PMLR, 2021. 2.3,
6.1.3

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput.
Syst. Sci., 62(2):367–375, 2001. 7.7

[Ira96] Sandy Irani. Competitive analysis of paging: A survey. In Proc. of the Dagstuhl

156

Seminar on Online Algorithms, 1996. 5.1

[Ira02a] Sandy Irani. Page replacement with multi-size pages and applications to web
caching. Algorithmica, 33(3):384–409, 2002. 5.1

[Ira02b] Sandy Irani. Randomized weighted caching with two page weights. Algorithmica,
32(4):624–640, 2002. 5.1

[IW91] Makoto Imase and Bernard M. Waxman. Dynamic steiner tree problem. SIAM J.
Discret. Math., 4(3):369–384, 1991. 6.1.3, 6.7.2, 6.7.3

[Jak05] Aleks Jakulin. Machine learning based on attribute interactions. PhD thesis,
University of Ljubljana, Ljubljana, Slovenia, 2005. 6.1.2

[JCMP17] Stefan Jorgensen, Robert H. Chen, Mark B. Milam, and Marco Pavone. The risk-
sensitive coverage problem: Multi-robot routing under uncertainty with service
level and survival constraints. In 56th IEEE Annual Conference on Decision and
Control, CDC 2017, Melbourne, Australia, December 12-15, 2017, pages 925–932.
IEEE, 2017. 1.1.1

[Joh74] David S. Johnson. Approximation algorithms for combinatorial problems. J.
Comput. Syst. Sci., 9(3):256–278, 1974. 2.5

[Kap13] Michael Kapralov. Better bounds for matchings in the streaming model. In Sanjeev
Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8,
2013, pages 1679–1697. SIAM, 2013. 7.1, 7.1.1, 7.7

[KMGG07] Andreas Krause, H. Brendan McMahan, Carlos Guestrin, and Anupam Gupta.
Selecting observations against adversarial objectives. In John C. Platt, Daphne
Koller, Yoram Singer, and Sam T. Roweis, editors, Advances in Neural Information
Processing Systems 20, Proceedings of the Twenty-First Annual Conference on
Neural Information Processing Systems, Vancouver, British Columbia, Canada,
December 3-6, 2007, pages 777–784. Curran Associates, Inc., 2007. 1.1.1

[KMZ18] Nitish Korula, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Online submod-
ular welfare maximization: Greedy beats 1/2 in random order. SIAM J. Comput.,
47(3):1056–1086, 2018. 7.1

[KMZ+19] Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, and
Amin Karbasi. Submodular streaming in all its glory: Tight approximation, mini-
mum memory and low adaptive complexity. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, vol-
ume 97 of Proceedings of Machine Learning Research, pages 3311–3320. PMLR,
2019. 7.1

[KN17] Guy Kortsarz and Zeev Nutov. Approximating source location and star survivable
network problems. Theor. Comput. Sci., 674:32–42, 2017. 1, 1.1.1

[KNR20] Haim Kaplan, David Naori, and Danny Raz. Competitive analysis with a sample
and the secretary problem. In Shuchi Chawla, editor, Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 2082–2095. SIAM, 2020. 1

157

[KNR22] Haim Kaplan, David Naori, and Danny Raz. Online weighted matching with a
sample. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022
ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference /
Alexandria, VA, USA, January 9 - 12, 2022, pages 1247–1272. SIAM, 2022. 1

[Kor04] Simon Korman. On the use of randomization in the online set cover problem.
Master’s thesis, Weizmann Institute of Science, Rehovot, Israel, 2004. 1.1.4, 2.5, 1,
4.1.2, 4.1.3, 4.7.3, 4.11

[KRTV18] Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. Primal
beats dual on online packing lps in the random-order model. SIAM J. Comput.,
47(5):1939–1964, 2018. 4.1.3

[LB11] Hui Lin and Jeff A. Bilmes. Word alignment via submodular maximization over
matroids. In The 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, Proceedings of the Conference, 19-24
June, 2011, Portland, Oregon, USA - Short Papers, pages 170–175. The Association
for Computer Linguistics, 2011. 1, 7.1

[LCL+16] Zhipeng Liu, Andrew Clark, Phillip Lee, Linda Bushnell, Daniel S. Kirschen, and
Radha Poovendran. Mingen: Minimal generator set selection for small signal
stability in power systems: A submodular framework. In 55th IEEE Conference
on Decision and Control, CDC 2016, Las Vegas, NV, USA, December 12-14, 2016,
pages 4122–4129. IEEE, 2016. 1.1.1

[LG16] Grigorios Loukides and Robert Gwadera. Limiting the diffusion of information by
a selective pagerank-preserving approach. In 2016 IEEE International Conference
on Data Science and Advanced Analytics, DSAA 2016, Montreal, QC, Canada,
October 17-19, 2016, pages 90–99. IEEE, 2016. 1, 1.1.1

[LLN06] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with
decreasing marginal utilities. Games Econ. Behav., 55(2):270–296, 2006. 1, 7.1

[LMNS09] Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-
monotone submodular maximization under matroid and knapsack constraints. In
Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009,
pages 323–332. ACM, 2009. 7.1

[LMNS10] Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Maxi-
mizing nonmonotone submodular functions under matroid or knapsack constraints.
SIAM J. Discret. Math., 23(4):2053–2078, 2010. 7.1

[LOP+15] Jakub Lacki, Jakub Ocwieja, Marcin Pilipczuk, Piotr Sankowski, and Anna Zych.
The power of dynamic distance oracles: Efficient dynamic algorithms for the steiner
tree. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 11–20. ACM, 2015. 6.1.3, 6.7.2

[Lov75] László Lovász. On the ratio of optimal integral and fractional covers. Discret. Math.,
13(4):383–390, 1975. 2.5

[LPS13] Seungjoon Lee, Manish Purohit, and Barna Saha. Firewall placement in cloud data
centers. In Guy M. Lohman, editor, ACM Symposium on Cloud Computing, SOCC

158

’13, Santa Clara, CA, USA, October 1-3, 2013, pages 52:1–52:2. ACM, 2013. 1,
1.1.1

[LRS18] Tamás Lukovszki, Matthias Rost, and Stefan Schmid. Approximate and incremental
network function placement. J. Parallel Distributed Comput., 120:159–169, 2018.
1, 1.1.1

[LSV10] Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over
multiple matroids via generalized exchange properties. Math. Oper. Res., 35(4):795–
806, 2010. 7.1

[LV21] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine
learned advice. J. ACM, 68(4):24:1–24:25, 2021. 5.1

[LW21] Roie Levin and David Wajc. Streaming submodular matching meets the primal-dual
method. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021,
pages 1914–1933. SIAM, 2021. 1.1.5

[Man20] Pasin Manurangsi. Tight running time lower bounds for strong inapproximability of
maximum k-coverage, unique set cover and related problems (via t-wise agreement
testing theorem). In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, pages 62–81. SIAM, 2020. 7.1, 7.7

[McG05] Andrew McGregor. Finding graph matchings in data streams. In Chandra Chekuri,
Klaus Jansen, José D. P. Rolim, and Luca Trevisan, editors, Approximation, Ran-
domization and Combinatorial Optimization, Algorithms and Techniques, 8th Inter-
national Workshop on Approximation Algorithms for Combinatorial Optimization
Problems, APPROX 2005 and 9th InternationalWorkshop on Randomization and
Computation, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005, Proceed-
ings, volume 3624 of Lecture Notes in Computer Science, pages 170–181. Springer,
2005. 7.1, 7.9, 7.9.1, 5

[Mey01] Adam Meyerson. Online facility location. In 42nd Annual Symposium on Founda-
tions of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada,
USA, pages 426–431. IEEE Computer Society, 2001. 4.1.3

[MJK18] Baharan Mirzasoleiman, Stefanie Jegelka, and Andreas Krause. Streaming non-
monotone submodular maximization: Personalized video summarization on the fly.
In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 1379–1386. AAAI Press, 2018. 7.1

[MKSK13] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Dis-
tributed submodular maximization: Identifying representative elements in massive
data. In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages

159

2049–2057, 2013. 1

[MMP01] Adam Meyerson, Kamesh Munagala, and Serge A. Plotkin. Designing networks
incrementally. In 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 406–415. IEEE
Computer Society, 2001. 4.1.3

[Mol17] Marco Molinaro. Online and random-order load balancing simultaneously. In
Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 1638–1650. SIAM, 2017. 4.1.3

[MR14] Marco Molinaro and R. Ravi. The geometry of online packing linear programs.
Math. Oper. Res., 39(1):46–59, 2014. 4.1.3

[MS91] Lyle A. McGeoch and Daniel Dominic Sleator. A strongly competitive randomized
paging algorithm. Algorithmica, 6(6):816–825, 1991. 5.1

[MSM] Bertinoro workshop 2014, problem 63. https://sublinear.info/index.
php?title=Open_Problems:63. Accessed: 2020-06-20. 7.1.1

[MW16] Armeline Dembo Mafuta and Tom Walingo. Spatial relay node placement in
wireless sensor networks. In IEEE 83rd Vehicular Technology Conference, VTC
Spring 2016, Nanjing, China, May 15-18, 2016, pages 1–5. IEEE, 2016. 1, 1.1.1

[NTM+18] Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan Mitrovic, Amir Zandieh, Aidasa-
dat Mousavifar, and Ola Svensson. Beyond 1/2-approximation for submodular
maximization on massive data streams. In Jennifer G. Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pages 3826–3835. PMLR, 2018.
7.1, 2

[NW78] George L. Nemhauser and Laurence A. Wolsey. Best algorithms for approximating
the maximum of a submodular set function. Math. Oper. Res., 3(3):177–188, 1978.
7.1, 7.1.1

[NWF78] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis
of approximations for maximizing submodular set functions - I. Math. Program.,
14(1):265–294, 1978. 2.4, 7.1

[Pit85] Leonard Brian Pitt. A simple probabilistic approximation algorithm for vertex cover.
Yale University, Department of Computer Science, 1985. 6.5

[PS16] David Peleg and Shay Solomon. Dynamic (1 + ε)-approximate matchings: A
density-sensitive approach. In Robert Krauthgamer, editor, Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016, pages 712–729. SIAM, 2016. 7.8

[PS19] Ami Paz and Gregory Schwartzman. A (2+ε)-approximation for maximum weight
matching in the semi-streaming model. ACM Trans. Algorithms, 15(2):18:1–18:15,
2019. 7.1, 7.1.1, 7.1.2, 3, 7.6

[PW93] Steven J. Phillips and Jeffery R. Westbrook. Online load balancing and network flow.
In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings

160

https://sublinear.info/index.php?title=Open_Problems:63
https://sublinear.info/index.php?title=Open_Problems:63

of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18,
1993, San Diego, CA, USA, pages 402–411. ACM, 1993. 6.1.3

[RP15] Mohammad Amin Rahimian and Victor M. Preciado. Detection and isolation of
failures in directed networks of LTI systems. IEEE Trans. Control. Netw. Syst.,
2(2):183–192, 2015. 1, 1.1.1

[RS97] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and
a sub-constant error-probability PCP characterization of NP. In Frank Thomson
Leighton and Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages
475–484. ACM, 1997. 4.7.3

[SBLL20] Zhenyu Song, Daniel S. Berger, Kai Li, and Wyatt Lloyd. Learning relaxed belady
for content distribution network caching. In Ranjita Bhagwan and George Porter,
editors, 17th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020, pages 529–544.
USENIX Association, 2020. 5.1

[Sel20] Mark Sellke. Chasing convex bodies optimally. In Shuchi Chawla, editor, Proceed-
ings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt
Lake City, UT, USA, January 5-8, 2020, pages 1509–1518. SIAM, 2020. 6.1.3

[SG08] Matthew J. Streeter and Daniel Golovin. An online algorithm for maximizing sub-
modular functions. In Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon
Bottou, editors, Advances in Neural Information Processing Systems 21, Proceed-
ings of the Twenty-Second Annual Conference on Neural Information Processing
Systems, Vancouver, British Columbia, Canada, December 8-11, 2008, pages 1577–
1584. Curran Associates, Inc., 2008. 3.1.2

[SG09] Barna Saha and Lise Getoor. On maximum coverage in the streaming model &
application to multi-topic blog-watch. In Proceedings of the SIAM International
Conference on Data Mining, SDM 2009, April 30 - May 2, 2009, Sparks, Nevada,
USA, pages 697–708. SIAM, 2009. 4.1.1

[SS14] Yevgeny Seldin and Aleksandrs Slivkins. One practical algorithm for both stochastic
and adversarial bandits. In Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, volume 32 of
JMLR Workshop and Conference Proceedings, pages 1287–1295. JMLR.org, 2014.
6.1.2

[SSS09] Peter Sanders, Naveen Sivadasan, and Martin Skutella. Online scheduling with
bounded migration. Math. Oper. Res., 34(2):481–498, 2009. 6.1.3

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list
update and paging rules. Commun. ACM, 28(2):202–208, 1985. 5.1

[SV10] Martin Skutella and José Verschae. A robust PTAS for machine covering and
packing. In Mark de Berg and Ulrich Meyer, editors, Algorithms - ESA 2010, 18th
Annual European Symposium, Liverpool, UK, September 6-8, 2010. Proceedings,
Part I, volume 6346 of Lecture Notes in Computer Science, pages 36–47. Springer,
2010. 6.1.3

[Svi04] Maxim Sviridenko. A note on maximizing a submodular set function subject to a

161

knapsack constraint. Oper. Res. Lett., 32(1):41–43, 2004. 2.4

[TRPJ16] Vasileios Tzoumas, Mohammad Amin Rahimian, George J. Pappas, and Ali Jad-
babaie. Minimal actuator placement with bounds on control effort. IEEE Trans.
Control. Netw. Syst., 3(1):67–78, 2016. 1.1.1

[Tsa88] Constantino Tsallis. Possible generalization of Boltzmann-Gibbs statistics. Journal
of statistical physics, 52(1-2):479–487, 1988. 6.1.2

[TWPD17] Guangmo Tong, Weili Wu, Panos M. Pardalos, and Ding-Zhu Du. On positive-
influence target-domination. Optim. Lett., 11(2):419–427, 2017. 1, 1.1.1

[TWZ20] Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. Towards a better understanding
of randomized greedy matching. In Konstantin Makarychev, Yury Makarychev,
Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020,
Chicago, IL, USA, June 22-26, 2020, pages 1097–1110. ACM, 2020. 7.1.2, 7.2.2

[Von07] Jan Vondrák. Submodularity in combinatorial optimization. PhD thesis, Charles
University, Prague, Czech Republic, 2007. 2.2, 2.2, 3.1.1, 3.2.2, 3.2.2, 3.4, 3.4.1

[Von08] Jan Vondrák. Optimal approximation for the submodular welfare problem in the
value oracle model. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, Victoria, British Columbia, Canada, May
17-20, 2008, pages 67–74. ACM, 2008. 1, 7.1

[Von13] Jan Vondrák. Symmetry and approximability of submodular maximization problems.
SIAM J. Comput., 42(1):265–304, 2013. 7.1

[Waj20] David Wajc. Rounding dynamic matchings against an adaptive adversary. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and
Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages
194–207. ACM, 2020. 7.8

[WCZW15] Pan Wu, Guihai Chen, Xiaojun Zhu, and Xiaobing Wu. Minimizing receivers under
link coverage model for device-free surveillance. Comput. Commun., 63:53–64,
2015. 1, 1.1.1

[Wes00] Jeffery R. Westbrook. Load balancing for response time. J. Algorithms, 35(1):1–16,
2000. 6.1.3

[WMWP15] Zengfu Wang, William Moran, Xuezhi Wang, and Quan Pan. An accelerated
continuous greedy algorithm for maximizing strong submodular functions. J. Comb.
Optim., 30(4):1107–1124, 2015. 6.1.3

[Wol82] Laurence A. Wolsey. An analysis of the greedy algorithm for the submodular set
covering problem. Comb., 2(4):385–393, 1982. 1, 2.4, 2.4.1, 2.4, 3.1.1, 6.2.2, 6.3.2

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation Algo-
rithms. Cambridge University Press, 2011. 2.5

[WWLP13] Zengfu Wang, Xuezhi Wang, Yan Liang, and Quan Pan. Weapon target assignment
leveraging strong submodularity. In IEEE International Conference on Information
and Automation, ICIA 2013, Yinchuan, China, August 26-28, 2013, pages 74–79.
IEEE, 2013. 6.1.3

162

[Yao77] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of
complexity (extended abstract). In 18th Annual Symposium on Foundations of
Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977,
pages 222–227. IEEE Computer Society, 1977. 7.7

[YCDW15] Ying Yang, Li Chen, Wenxiang Dong, and Weidong Wang. Active base station set
optimization for minimal energy consumption in green cellular networks. IEEE
Trans. Veh. Technol., 64(11):5340–5349, 2015. 1.1.1

[You91] Neal E. Young. On-line caching as cache size varies. In Alok Aggarwal, editor,
Proceedings of the Second Annual ACM/SIGACT-SIAM Symposium on Discrete
Algorithms, 28-30 January 1991, San Francisco, California, USA, pages 241–250.
ACM/SIAM, 1991. 5.1

[You94] Neal E. Young. The k-server dual and loose competitiveness for paging. Algorith-
mica, 11(6):525–541, 1994. 5.1

[You02] Neal E. Young. On-line file caching. Algorithmica, 33(3):371–383, 2002. 5.1

[ZPW+17] Zhenzhe Zheng, Yanqing Peng, Fan Wu, Shaojie Tang, and Guihai Chen. Trading
data in the crowd: Profit-driven data acquisition for mobile crowdsensing. IEEE J.
Sel. Areas Commun., 35(2):486–501, 2017. 1, 1.1.1

163

	1 Introduction
	1.1 Overview
	1.1.1 Online Submodular Cover
	1.1.2 Random Order Set Cover
	1.1.3 Block-Aware Caching
	1.1.4 Fully-Dynamic Submodular Cover
	1.1.5 Streaming Submodular Matching

	2 Background and Preliminaries
	2.1 Basic Notation and Facts
	2.2 Submodular Set Functions
	2.3 Mutual Coverage.
	2.4 SubmodularCover
	2.5 SetCover and OnlineSetCover
	2.6 Online and Dynamic Models for SubmodularCover

	I Online Algorithms
	3 Online Submodular Cover
	3.1 Introduction
	3.1.1 Results and Techniques
	3.1.2 Related Work

	3.2 An O(logm log(T f(N) / fmin)) competitive algorithm
	3.2.1 An LP for SubmodularCover
	3.2.2 Rounding Fractional Solutions
	3.2.3 The Analysis

	3.3 An O(logm log(T fmax/ fmin)) competitive algorithm
	3.3.1 A Stronger Formulation
	3.3.2 The Improved Analysis

	3.4 Polynomial Runtime
	3.4.1 Finding Violated Constraints
	3.4.2 Implementing the Algorithm Efficiently

	3.5 Conclusion
	3.6 Deferred Proofs
	3.6.1 Necessity of Time-Monotonicity
	3.6.2 Mutual Coverage is not Submodular

	4 Random Order Set Cover
	4.1 Introduction
	4.1.1 Results
	4.1.2 Techniques and Overview
	4.1.3 Related Work

	4.2 Warmup: An Exponential Time Algorithm for Unit Costs
	4.3 A Polynomial-Time Algorithm for General Costs
	4.4 Covering Integer Programs
	4.5 Non- Metric Facility Location
	4.6 SetCover with a Sample
	4.7 Lower Bounds
	4.7.1 Lower Bounds for ROSetCover
	4.7.2 Performance of [BN09b] in Random Order
	4.7.3 Lower Bounds for Extensions

	4.8 Conclusion
	4.9 Deferred Proofs
	4.10 Pseudocode
	4.10.1 The Exponential-Time SetCover Algorithm
	4.10.2 The SetCover Algorithm for Unit Costs

	4.11 Discussion of Claim in [GGL+13]
	4.12 Connections to Other Algorithms

	5 Block-Aware Caching
	5.1 Introduction
	5.1.1 Results and Techniques

	5.2 Model and Preliminaries
	5.2.1 Problem Definition

	5.3 Eviction Cost
	5.3.1 SubmodularCover LP Formulation
	5.3.2 A k-Competitive Deterministic Online Algorithm
	5.3.3 An O(logk)-Competitive Monotone-Incremental Algorithm
	5.3.4 An O(logk)-Competitive Online Randomized Rounding Scheme

	5.4 Fetching Cost
	5.4.1 Bicriteria Online Rounding Algorithm
	5.4.2 Lower Bounds for Randomized Algorithms

	5.5 Conclusion
	5.6 Deferred Proofs
	5.7 The Natural LP has () Integrality Gap

	II Dynamic Algorithms
	6 Fully-Dynamic Submodular Cover
	6.1 Introduction
	6.1.1 Our Results
	6.1.2 Techniques and Overview
	6.1.3 Related Work

	6.2 Unit Cost SubmodularCover
	6.2.1 The Algorithm
	6.2.2 Bounding the Cost
	6.2.3 Bounding the Recourse

	6.3 General Cost SubmodularCover
	6.3.1 The Algorithm
	6.3.2 Bounding the Cost
	6.3.3 Bounding the Recourse

	6.4 Improved bounds for 3-increasing functions
	6.4.1 Higher Order Monotonicity of Boolean Functions
	6.4.2 The Algorithm
	6.4.3 Bounding the Cost
	6.4.4 Bounding the Recourse

	6.5 Algorithm for r-bounded instances
	6.6 Combiner Algorithm
	6.7 Further Applications
	6.7.1 Online Metric Minimum Spanning Tree
	6.7.2 Fully-Dynamic Metric Minimum Steiner Tree

	6.8 Conclusion
	6.9 Bounds using the Shannon entropy potential

	III Streaming Algorithms
	7 Streaming Submodular Matching
	7.1 Introduction
	7.1.1 Results
	7.1.2 Techniques and Overview

	7.2 Preliminaries
	7.2.1 The Primal-Dual Method in Our Setting
	7.2.2 Non-Monotone MSM: the Randomized Primal-Dual Method

	7.3 Our Basic Algorithm
	7.4 Monotone MSbM
	7.5 Non-Monotone MSM
	7.6 Linear Objectives
	7.7 Lower Bound for MSM
	7.8 Conclusion
	7.9 Explaining Prior Work using LP Duality
	7.9.1 The Framework of [CK15], Applied to the Algorithm of [McG05]
	7.9.2 The Algorithm of [FKK18]

	7.10 Tight instance for alg:MSbM
	7.11 Space Bound of alg:MSbM
	7.12 Deferred Proofs of sec:MSM-lb

	8 Conclusion and Open Questions
	Bibliography

