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Abstract

Queueing delays are ubiquitous in many domains, including computer systems, service
systems, communication networks, supply chains, and transportation. Queueing and
scheduling theory provide a rigorous basis for understanding how to reduce delays with
scheduling, including evaluating policy performance and guiding policy design. Unfor-
tunately, state-of-the-art theory fails to address many practical concerns. For example,
scheduling theory seldom treats nontrivial preemption limitations, and there is very little
theory for scheduling in multiserver queues.

We present two new, broadly applicable tools that greatly expand the reach of schedul-
ing theory, using each to solve multiple open problems. The �rst tool, called “SOAP”, is a
new unifying theory of scheduling in single-server queues, speci�cally the M/G/1 model.
SOAP characterizes the delay distribution of a broad space of policies, most of which have
never been analyzed before. Such policies include the Gittins index policy, which minimizes
mean delay in low-information settings, and many policies with preemption limitations.
The second tool, called “WINE”, is a new queueing identity that complements Little’s law.
WINE enables a new method of analyzing complex queueing systems by relating them
to simpler systems. This results in the �rst delay bounds for SRPT (shortest remaining
processing time) and the Gittins index policy in multiserver queues, speci�cally the M/G/k
model.
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Chapter 1

Introduction

Queueing delays occur in any system where multiple entities contend for a shared but
limited resource. The main way we measure the performance of such queueing systems is
via the delay jobs experience, with lower delay generally being more desirable. Queueing
systems occur in a plethora of domains, including computing, service operations, trans-
portation, and healthcare. This thesis is in the �eld of queueing theory, which studies
queueing systems in the abstract in an attempt to gain insights that apply across multiple
domains. We call the entities contending for the limited resource jobs, and we suppose the
resource they need is service provided by a server.

How can system designers reduce the queueing delay jobs experience? The most
obvious approach is to acquire more or faster servers, but this may be costly. Another
idea is to reduce the amount of service each job needs, e.g. by inventing a more e�cient
algorithm, but such innovation is not always possible. This thesis focuses on a third
approach: scheduling, namely altering the strategy by which we allocate resources to
clients. Scheduling is appealing in that it is virtually free, and it can be done with the
resources and know-how one already has.

Smart scheduling can indeed signi�cantly reduce queueing delays, but �guring out
which scheduling policy is the “smart” one can be tricky. It is not always clear how
changing a queueing system’s scheduling policy will impact delays. Scheduling design thus
requires guidance from analysis and evaluation of scheduling policies, whether theoretical
or empirical. Experiments, both real-world and in simulation, can be very helpful for
comparing a handful of policies. But the space of possible scheduling policies is vast. The
only way to gain insight all at once into the entire space of policies, or at least large subsets
thereof, is by developing the theory of scheduling in queues, the subject of this thesis.

Given the challenge and potential impact of smart scheduling, it should come as no
surprise that queueing theorists have been studying scheduling for more than half a century.
Why, then, do we need more scheduling theory? The issue is (and has always been, and
will always be) that the scheduling theory we have does not adequately match scheduling
practice. Some examples of areas where scheduling theory is lacking are the following:

• Scheduling under uncertainty, particularly regarding how much service a job needs.
• Scheduling with multiple servers.
• Scheduling with practical preemption constraints, meaning restrictions on the server’s

ability to switch from serving one job to serving another.
We would like to develop scheduling theory for these and other practical concerns. However,
each of these concerns makes theoretically analyzing and optimizing scheduling policies,
an already di�cult endeavor, even more complicated.

This thesis contributes two new queueing-theoretic tools, which we apply to study
scheduling with concerns like uncertainty, multiple servers, and preemption constrains.

3



4 Chapter 1 Introduction

The two tools are called SOAP and WINE. In addition to developing these tools, we apply
them to prove numerous theorems that were previously intractable.

SOAP is a unifying theory of single-server scheduling. SOAP provides a universal analysis
of a broad set of scheduling policies, thereby greatly expanding the set of policies we can
analyze theoretically. We use SOAP to study scheduling under uncertainty and scheduling
with practical preemption constraints. Chapter 3 gives an overview of SOAP and its
applications, which together constitute Part II of this thesis.

WINE is a new queueing identity that synergizes with Little’s law, another famous
queueing identity [84]. WINE enables a method of analyzing complex systems by relating
them to similar but much simpler systems. Most notably, we use WINE to analyze schedul-
ing policies for multiserver systems, which are notoriously complicated, by relating them
to analogous policies in single-server systems, which are much simpler. Chapter 4 gives
an overview of WINE and its applications, which together constitute Part III of this thesis.

The rest of this chapter is structured as follows:
• (§ 1.1) We give some basic scheduling theory background, describing the scope of

our work and the types of questions scheduling theory can answer.
• (§ 1.2) We discuss questions related to uncertainty, multiple servers, and preemption

constraints that existing scheduling theory falls short of answering.
• (§ 1.3) We explain how SOAP and WINE enable us to answer many of these previously

intractable questions.
• (§ 1.4) We give a chapter-by-chapter overview of the rest of the thesis.

1.1 What Is Scheduling Theory?

Scheduling is a vast �eld. This thesis is focused on scheduling in certain types of queueing
systems, which we brie�y describe below (§ 1.1.1). We then give a taste of the sorts of
questions that one can answer with scheduling theory (§ 1.1.2).

1.1.1 Scope: Scheduling in Stochastic �eueing Models
In order to theoretically study queueing systems, we need to mathematically model them.
There are a wide variety of possible modeling choices, re�ecting the fact that there are a
wide variety of queueing systems in practice. The queueing models we study in this thesis
work in the following way:

• Jobs arrive to the system over time. We assume arrivals occur according to a stochastic
process,1 as opposed to considering worst-case arrival sequences.

• A server can serve one job at a time.
• A single central queue holds jobs that are waiting for service.
• Each job has an amount of work, called its size, to be done by the server.

1Speci�cally, we focus throughout on M/G arrival processes. See Chapter 5 for a full description of the
queueing model.
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serverqueue Job Detail

size
age

remaining work

Figure 1.1. Single-server queueing model we use throughout this thesis. Jobs of varying sizes
arrive over time according to a stochastic process. During service, a job’s age increases and its
remaining work decreases (red arrow). Once a job completes, meaning once its remaining work
reaches zero, it exits the system.

• A server does work at a constant rate, so while a job is in service, its remaining work
decreases at a constant rate. We can therefore think of work as being measured in
units of time.

Figure 1.1 illustrates these concepts in the context of a single-server queueing system.
How do we evaluate the performance of a queueing model? The main metric we

consider in this work is response time, a.k.a delay or latency. A job’s response time is the
amount of time the job spends in the system, meaning the amount of time between its
arrival and the moment its remaining work reaches zero. We generally want jobs to have
low response times.

Jobs arrive stochastically over time, with di�erent jobs experiencing di�erent response
times. This means the system has a response time distribution, which we denote by ) . We
therefore evaluate performance using this response time distribution, looking at metrics
like mean response time E[) ] and the response time tail P[) > C] for various thresholds C .

There are many factors that a�ect a system’s response time distribution. The factor
we focus on in this thesis is the system’s scheduling policy, which decides which jobs to
serve at every moment in time. We consider other factors, like the number of servers or
the statistics of the stochastic arrival process, to be �xed and out of our control.

1.1.2 �estions We Can Answer with �eueing-Theoretic
Analysis

There is a single question at the core of much of the queueing-theoretic work on scheduling:

How does a system’s scheduling policy a�ect jobs’ response times?

In this section, we give a taste of some speci�c instances of this question that scheduling
theory can give insight into. For concreteness, we focus for now on a setting where

• the scheduler has knowledge of each job’s size, and thus knowledge of each job’s
remaining work;

• there is a single server; and



6 Chapter 1 Introduction

• the scheduler may freely preempt jobs, meaning interrupt one job to start serving
another, with no overhead.

Given that we generally want low response times, a natural objective is to minimize
mean response time E[) ]. The scheduling policy that accomplishes this is Shortest Re-
maining Processing Time (SRPT), the policy that always serves the job of least remaining
work [116]. The intuition for SRPT’s optimality for E[) ] is that by working on the job of
least remaining work, the next job completion happens as soon as possible, thus reducing
the total amount of waiting that happens across all jobs.

SRPT is appealing in that it minimizes mean response time E[) ], but minimizing E[) ]
is far from the only concern system designers have in practice. There are several questions
we might want to answer about SRPT before deploying it.

• There are policies that are simpler than SRPT, such as First-Come, First-Served (FCFS),
which is the default scheduling policy of most systems. Is the E[) ] di�erence between
SRPT and FCFS worth the trouble of implementing SRPT?

• In addition to improving the average job’s experience, we would like to avoid jobs
having especially large response times. That is, we want to make sure SRPT does
not harm the tail P[) > C] for large thresholds C . How does SRPT perform in terms
of response time tail?

• SRPT prioritizes small jobs, but this means large jobs might experience longer
response times than they would under a policy that did not take into account job
sizes. Is SRPT unfair to large jobs?

Fortunately, queueing theory can give us insight into each of these questions. The key
ingredient is the queueing-theoretic analysis of SRPT, which was done by Schrage and
Miller [117] in 1966. This analysis gives a detailed characterization of SRPT’s response
time distribution ) in terms of the stochastic arrival process. While the analysis of SRPT
does not by itself answer all of the questions above, it lays a theoretical foundation for
studying them. Indeed, follow-up work on SRPT has continued into the 2000s, applying
the analysis of Schrage and Miller [117] to better understand SRPT’s mean response time
[13, 14, 83, 146], response time tail [101, 103, 104], and fairness properties [15, 143–145].

1.2 Where Existing Scheduling Theory Falls Short

As we discuss in our review of prior work (Ch. 2), SRPT is far from the only policy that
has been queueing-theoretically analyzed. Nevertheless, the set of scheduling policies we
can analyze is in many ways limited, and several practical concerns remain outside the
reach of existing scheduling theory. We review three such concerns below. For each, we
ask multiple open questions, all of which we make progress on or solve in this thesis, as
indicated by forward references.



1.2 Where Existing Scheduling Theory Falls Short 7

size: known
age: known

remaining work:
known

(a) Job with known size, and thus known re-
maining work.

size: uncertain
age: known

remaining work:
uncertain

(b) Job with uncertain size, and thus uncertain
remaining work.

Figure 1.2. Known vs. uncertain job sizes.

1.2.1 Scheduling under Uncertainty
SRPT requires knowing each job’s exact size to implement. But it is often the case in
practice that job sizes are uncertain, meaning we do not know how much service a job
will need to complete, as illustrated in Figure 1.2. Uncertainty can mean having no size
information at all, having good but imperfect estimates of each job’s size, or something in
between, like very noisy size estimates.

How should one schedule in light of job size uncertainty? This question has been
studied, and there is a policy, called the Gittins policy, that is known to minimize mean
response time E[) ] in preemptive single-server queueing systems when job sizes are
uncertain [44]. But, as discussed in Section 1.1.2, minimizing E[) ] is not the only design
goal one might have, and there are number of questions about Gittins that remain open.

• (Chs. 10 and 11) Gittins is a complicated policy that requires some potentially inten-
sive computation. Is the E[) ] reduction Gittins provides worth the implementation
complexity, or do simpler alternatives su�ce?

• (Ch. 16) One way we might simplify Gittins is to accept approximations in its
underlying computations. Would such approximation signi�cantly degrade E[) ]?

• (Ch. 13) How does Gittins perform in terms of response time tail P[) > C]?
Unfortunately, unlike SRPT, Gittins has never been queueing-theoretically analyzed, mak-
ing it di�cult to study these questions.

1.2.2 Scheduling in Multiserver Systems
The vast majority of existing analyses of scheduling policies are for single-server queueing
systems. But multiserver queueing systems are ubiquitous. For instance, in computing,
multiserver systems occur at every scale, from the multiple CPU cores in a mobile device’s
to the thousands of machines in a data center.

How should we schedule in multiserver systems? Unfortunately, queueing theory
has relatively little to say about multiserver systems. This is because even the very sim-
plest scheduling policies, like FCFS, become intractable to exactly analyze in multiserver
queueing models, like the one shown in Figure 1.3.

As an example of the sort of question we might hope to answer, suppose we want to
minimize mean response time E[) ] in a setting with known job sizes and unrestricted
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(a) Single-server system. (b) Multiserver system.

Figure 1.3. Single-server vs. multiserver queueing systems.

preemption. In a single-server setting, SRPT is optimal. In a multiserver setting, it is known
that SRPT is not perfectly optimal,2 but beyond that, we know very little about SRPT’s
response time. Is SRPT nearly optimal for E[) ] in multiserver systems, or is another policy
much better (Ch. 17)? Unfortunately, unlike single-server SRPT, multiserver SRPT has
never been queueing-theoretically analyzed.

We can of course ask an analogous question for the setting of uncertain job sizes. Is a
multiserver version of Gittins nearly optimal for E[) ] in multiserver systems (Ch. 17)?
Given that there is no analysis of Gittins in single-server systems, let alone multiserver
systems, scheduling theory is even further from answering this question.

1.2.3 Scheduling with Practical Preemption Constraints

Most queueing-theoretic analyses of scheduling policies take one of two extreme stances
on preemption.

• Some work considers the fully nonpreemptible case, where once a job begins service,
it must stay in service until it completes.

• Other work considers the fully preemptible case, where jobs may be interrupted at
any time with no overhead or loss of work. For example, the single-server analysis
of SRPT [117] considers this case.

But many systems in practice lie between these two extremes. It might be that jobs are only
sometimes preemptible, as illustrated in Figure 1.4, or preemption may incur an overhead.

How should we schedule in light of practical preemption constraints? This is a very
broad question, because there are many possible preemption practicalities. Some more
concrete examples are the following:

• (Ch. 9) In many some settings, jobs can only preempted at certain checkpoints.
An example is scheduling packet �ows in a network, where it is undesirable to
stop transmission in the middle of a packet. Frequent checkpoints permit �exible

2SRPT’s suboptimality for E[) ] in multiserver systems follows from prior work [81], but the details are
somewhat subtle. We discuss this further in our review of prior work in Chapter 2.
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(a) Simple preemption constraints: preemption
is either always allowed or never allowed.

job starts job completes

preemption
allowed

preemption
allowed

preemption
not allowed

preemption
not allowed

(b) Complex preemption constraints: preemp-
tion is sometimes but not always allowed.

Figure 1.4. Simple vs. complex preemption constraints.

preemption, but checkpoints may incur an overhead, e.g. a packet header. How do
we balance the tradeo� between preemption �exibility and avoiding overhead?

• (Ch. 9) In network switches and other computing contexts, it is often the case that
scheduling policies must be designed to work with only a limited number of priority
levels [57, 96]. This precludes perfectly implementing SRPT, which uses a continuum
of priority levels. How should we adapt SRPT to �t into a small number of priority
levels? How many levels do we need for good mean response time?

• (Ch. 16) In the fully preemptible setting with uncertain job sizes, the Gittins policy
is known to minimize mean response. Can we generalize Gittins and its optimality
proof to settings with preemption constraints?

1.3 Two New Theoretical Tools: SOAP and WINE

The main contribution of this thesis is introducing two new queueing-theoretic tools,
SOAP (§ 1.3.1) and WINE (§ 1.3.2), which we can use to at least begin to answer all of the
questions mentioned throughout Section 1.2.

1.3.1 SOAP: Unifying Theory of Single-Server Scheduling
SOAP consists of two new contributions.

• (Ch. 6) SOAP policies: a newly identi�ed broad class of scheduling policies.
• (Ch. 7) SOAP analysis: a universal formula that characterizes the response time

distribution of a single-server system using any given SOAP policy.
SOAP stands for Scheduled Ordered by Age-based Priority, a phrase which brie�y describes
the class of SOAP policies.

SOAP policies include a signi�cant fraction of policies that have previously been
analyzed in single-server systems, such as FCFS and SRPT. But SOAP policies also includes
an in�nite array of policies that have never previously analyzed, such as Gittins. The SOAP
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analysis thus uni�es many previous queueing-theoretic analyses while also generalizing
them far beyond what they could previously handle.

We use SOAP to answer numerous questions about scheduling in single-server systems.
For instance, Gittins is a SOAP policy, so we can use the SOAP analysis as a basis for
answer questions about Gittins. These include understanding Gittins’s response time tail
(Ch. 13) and determining when we can achieve near-optimal performance with simpler
alternative policies (Chs. 10 and 11). For example, we show that in systems with noisy size
estimates, if the noise is not too large, one can get near-optimal mean response time with
very simple policies (Ch. 12).

SOAP policies also include many policies that operate under preemption limitations,
so we can apply the SOAP analysis to answer questions about such policies (Ch. 9). These
include policies that use only a limited number of priority levels and policies that only
preempt jobs at certain checkpoints. For example, we characterize how the spacing between
checkpoints can a�ect the response time tail (Ch. 13).

1.3.2 WINE: New �eueing Identity

WINE is a new queueing identity that comes in many “�avors”. Its simplest �avor gives
a formula for the number of jobs in a queueing system, which we denote by # . WINE
expresses # in terms of a quantity which is related to system work, the total remaining
work of all jobs in the system (Ch. 15). Crucially, WINE holds in any queueing system,
whether single-server or multiserver. WINE stands for Work Integral Number Equality, a
phrase which brie�y describes the identity.

Why might we want to know the number of jobs # in a queueing system? In some
systems, we might directly care about analyzing or optimizing metrics related to # , e.g. to
ensure adequate bu�er size. But even if we only care about response time ) , understand-
ing # still helps. Another queueing identity, Little’s law [84], states that E[) ] and E[# ]
are directly proportional, so minimizing E[) ] and minimizing E[# ] are equivalent goals.

WINE relates the number of jobs # , and therefore also mean response time E[) ], to
system work. Why is this a useful relationship? It turns out that this is a crucial step
for analyzing multiserver systems. Determining E[) ] for multiserver systems is very
challenging, even under simple scheduling policies like FCFS [73, 82], and using more
complex policies like SRPT and Gittins only increases the challenge. But it turns out that
analyzing system work in multiserver systems is more tractable. We derive new bounds
on system work (Ch. 8), which we use to give the �rst analyses of SRPT and Gittins in
multiserver systems.

While our main motivation for developing WINE is analyzing multiserver systems,
WINE also proves useful in single-server settings (Ch. 16). For example, we use WINE to
show that approximately computed Gittins still has approximately optimal mean response
time. This approximation result, in addition to being an interesting result in its own right,
turns out to itself have multiple applications throughout this thesis (Chs. 12 and 13).
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1.4 Organization of This Thesis

We give a chapter-by-chapter summary of this thesis below. If in doubt, we recommend
that most readers start with Chapters 3 and 4, which give overviews of SOAP and WINE.

1.4.1 Parts I and IV: Motivation, Context, and Main Ideas
• Chapter 1, the chapter you are reading now, gives a high-level description of the

problems this thesis aims to solve.
• Chapter 2 reviews prior work. It also explains the relationship between the work

presented in this thesis and my prior publications on that work.
• Chapter 3 gives an overview of SOAP, explaining the problem SOAP solves, one

of the key ideas behind how SOAP works, and the impact SOAP has in terms of
questions it helps us answer.

• Chapter 4 gives an analogous overview of WINE.
• Chapter 18 concludes by summarizing the problems solved in this thesis and dis-

cussing future directions.

1.4.2 Part II: SOAP and Its Applications
• Chapter 5 describes the queueing model we work with throughout Part II.
• Chapter 6 de�nes the class of SOAP policies.
• Chapter 7 carries out the SOAP analysis. The end result is a generic formula that

works for any SOAP policy.
• Chapter 9 numerically applies the SOAP analysis to answer questions about schedul-

ing in systems with practical preemption limitations. These limitations include
having a limited number of priority levels and being restricted to preempt only at
certain checkpoints.

• Chapter 10 numerically applies the SOAP analysis to investigate scheduling under
uncertainty. The speci�c question we focus on is whether we can achieve near-
optimal mean response time with policies that are simpler than the theoretically
optimal but complex Gittins policy.

• Chapter 11 theoretically applies the SOAP analysis to prove that a newly proposed
policy achieves mean response time within a constant factor of optimal, despite
being much simpler than Gittins.

• Chapter 12 theoretically applies the SOAP analysis to investigate how to design
policies that are robust to job size estimation errors. The policies we propose can make
use of high-quality job size estimates when they are available, and their performance
degrades gracefully as estimate quality decreases.

• Chapter 13 theoretically applies the SOAP analysis to analyze the response time
tail P[) > C] of SOAP policies for large thresholds C . One of our results is that Gittins,
in addition to optimizing mean response time, sometimes also optimizes the response
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time tail’s asymptotic decay.
For brevity, while we give the full technical details for the development of SOAP itself,

the chapters with theoretical applications summarize results and key ideas, with full proofs
outsourced to my prior publications.

1.4.3 Part III: WINE and Its Applications
• Chapter 14 describes the queueing model we work with throughout Part III, which

is somewhat more general than the model we use in Part II. We also generalize the
Gittins policy to work in this more general model.

• Chapter 15 presents the WINE queueing identity.
• Chapter 16 applies WINE to solve problems in single-server scheduling. One of

the main results is that Gittins’s performance degrades gracefully if its underlying
computations are approximated.

• Chapter 17 applies WINE to analyze SRPT and Gittins in multiserver systems, proving
bounds on their mean response times. The bounds are tight enough to imply that both
policies, which are optimal in single-server systems, are in some sense near-optimal
in multiserver systems.



Chapter 2

Prior Work

The two tools introduced in this thesis, SOAP and WINE, build on an extensive literature
of prior work in queueing theory and related �elds. Most of this work �ts into one of the
following categories.

• (§ 2.1) Analyzing scheduling policies in the M/G/1. SOAP builds on this line of work,
unifying and generalizing a signi�cant portion of it.

• (§ 2.2) De�ning and proving optimality of di�erent versions of the Gittins policy,
which optimally solves several scheduling problems in the M/G/1. Unifying and
generalizing this line of work is one of the key steps in developing WINE.

• (Ch. 2) Work on central-queue multiserver systems, and in particular the M/G/k.
Most of this assumes First-Come, First-Served (FCFS) scheduling, but there is some
work on other scheduling policies. We apply WINE to contribute new results to this
line of work.

There are also a number of other topics which are either related to individual chapters or
are more tangentially related (§ 2.4). We conclude the chapter by clarifying the relationship
between this thesis and the publications of mine that it builds upon (§ 2.5).

2.1 Scheduling in the M/G/1

The M/G/1 is one of the canonical single-server queueing models [67], and there is an
extensive body of queueing theory literature that analyzes scheduling policies in the
M/G/1. See Cox and Smith [28] and Conway et al. [27] for in�uential early treatments of
the subject, and see Harchol-Balter [55, Part VII] for a modern overview.

This section begins by giving a history of analyzing scheduling policies in the M/G/1
(§ 2.1.1). We then review several ways these analyses have been applied (§§ 2.1.2–2.1.4).
Finally, we describe how SOAP builds upon this prior work, pointing out some important
precursors to its unifying analysis (§ 2.1.5).

A few of the results mentioned throughout apply to models more general than the
M/G/1, but for simplicity of exposition, we discuss only their implications for the M/G/1.

2.1.1 A Brief History of M/G/1 Scheduling

Static Priority

The �rst analyses of the M/G/1 are the seminal works of Pollaczek [108, 109] and Khint-
chine [70] in the early 1930s. Both results are for First-Come, First-Served (FCFS), which is
one of the simplest scheduling policies.

13
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From the perspective of this thesis, FCFS is a policy where all jobs always have the same
static priority, with ties within a priority broken by arrival order. One can imagine other
ways of breaking ties, which results in other scheduling policies. These include Last-Come,
First-Served (LCFS) [134], Random Order of Service (ROS) [72, 134], Preemptive Last-Come,
First-Served (PLCFS) [65, 100], and Processor Sharing [66, 74, 112, 153, 154], which were
analyzed in the 1960s and 1970s. Some of these policies, particularly PS, are signi�cantly
more complicated to analyze than FCFS.

The 1950s and 1960s saw the �rst analyses of scheduling policies where di�erent jobs
have di�erent priorities. This includes the Nonpreemptive Priority (NP-Prio) [68, 69, 135]
and Preemptive Priority (P-Prio) [89, 135] policies, depending on whether a job is preempted
if a new job of higher priority arrives during its service. While both NP-Prio and P-Prio
assign di�erent jobs di�erent priorities, we can still view them as static priority policies,
because a job’s priority does not change after it arrives.

Dynamic Priority

The 1960s also saw the �rst analyses of scheduling policies with dynamic priorities, where
a job’s priority can change after it arrives. The two most notable examples are the following

• Shortest Remaining Processing Time (SRPT), analyzed by Schrage and Miller [117] in
1966. SRPT preemptively serves the job of least remaining work. SRPT is signi�cant
in that it minimizes mean response time [116].

• Least Attained Service (LAS), analyzed by Schrage [115] in 1967. LAS preemptively
serves the job of least age, meaning the job that has been served the least so far. This
can result in sharing the server equally between multiple jobs if there is a tie for
least age.

Both of these policies have dynamic priority in that a job’s priority changes during service.
Under SRPT, a job’s priority gets better as its age increases, while under LAS, a job’s
priority gets worst as its age increases.

A number of other policies where a job’s priority varies during service have been
analyzed since the analyses of SRPT and LAS [48, 49, 74, 75, 105, 146]. All of these are in
the class of policies analyzed by SOAP, so we cover them in Section 2.1.5 when discussing
precursors to SOAP.

The past decade has seen progress on analyzing scheduling policies with a di�erent
type of dynamic priority called accumulating priority, where a job’s priority improves over
time even if it is not in service. Stanford et al. [131] analyze Nonpreemptive Accumulating
Priority (NP-Acc-Prio), and Fajardo and Drekic [38] analyze Preemptive Accumulating
Priority (P-Acc-Prio). These developments are complementary to SOAP, as both policies
fall outside the class of policies SOAP can analyze.

How Does Analyzing a Policy Help?

In the above discussion, analyzing a scheduling policy in the M/G/1 means characterizing
its response time distribution, typically through a Laplace-Stieltjes transform. In many



2.1 Scheduling in the M/G/1 15

cases, conditional response time distributions are also characterized, such as the response
time distribution of jobs of a given size. However, these characterizations are often given
in an implicit form, which makes them just the �rst step to gaining insight into scheduling
design. In the following sections, we review several ways in which the analyses above
have been applied to answer questions about scheduling design.

2.1.2 Heavy-Tra�ic Scaling of Mean Response Time
A famous fact in queueing theory is that the mean response time of an M/G/1 under FCFS
increases as a function of the system’s load (a.k.a. utilization), a parameter d ∈ [0, 1)
describing how busy the system is. One interpretation is that d is the fraction of time
that the server is busy, which must be less than 1 to ensure stability. For a �xed job size
distribution, FCFS’s mean response time E[)FCFS] scales as

E[)FCFS] = Θ

(
1

1 − d

)
in the d → 1 limit, which is known as the heavy-tra�c regime. The same scaling applies
to several other policies, such as LCFS, ROS, PLCFS, and PS.

The above state of a�airs prompts a question: is it possible to schedule in a way that
improves upon the Θ

( 1
1−d

)
scaling? A natural place to start is SRPT, which minimizes

mean response time [116]. Bansal [13] gives the �rst result on the heavy-tra�c scaling of
SRPT, showing that for exponential job sizes,

E[)SRPT] = Θ

(
1

(1 − d) log 1
1−d

)
< >

(
1

1 − d

)
.

Further work shows similar results for general size distributions with in�nite support
[14, 83].

Heavy-tra�c analysis of mean response time under other scheduling policies with
dynamic priorities is relatively scarce. We are aware of only two instances: Kamphorst
and Zwart [64] and predecessors [14, 102] characterize the heavy-tra�c scaling of LAS,
and Bansal et al. [16] characterize the heavy-tra�c scaling of a policy called Randomized
Multi-Level Feedback (RMLF) [17, 63].

We have used SOAP to obtain new heavy-tra�c analyses in the M/G/1 [119], though
we do not cover these results in this thesis.

2.1.3 Asymptotic Response Time Tail
The response time characterizations of Section 2.1.1 do not usually yield nice formulas
for the response time tail P[) > C]. As such, queueing theorists turn to a more tractable
problem: analyzing the asymptotic response time tail, namely the behavior of P[) > C] in
the C →∞ limit. We refer the reader to Boxma and Zwart [23] for a survey of this topic,
reviewing just the main takeaways below.
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Heavy-Tailed Size Distributions

When the job size distribution is heavy-tailed, meaning (roughly speaking) Pareto-like,
Núñez-Queija [101] shows that SRPT, LAS, and PS are all tail-optimal [101, 103], meaning
P[) > C] decays as quickly as possible in a big-Θ sense in the C → ∞ limit. In contrast,
FCFS is tail-pessimal [20, 25], meaning P[) > C] decays as slowly as possible.

We use SOAP to provide a simple su�cient condition which implies tail optimality
in the heavy-tailed case, which greatly expands the set of policies that are known to be
tail-optimal (Ch. 13). Most notably, we show that the Gittins policy satis�es the condition,
so it is tail-optimal.

Light-Tailed Size Distributions

The situation for light-tailed job sizes is essentially the reverse of the heavy-tailed case:
FCFS is tail-optimal [23, 133], while SRPT, LAS, and PS are all tail-pessimal [102, 103].
Wierman and Zwart [149] show that this is inevitable: policies can be tail-optimal for
either heavy-tailed or light-tailed job size distributions, but not both.

Wierman and Zwart [149] also conjecture that FCFS is tail-optimal not just in a big-Θ
sense, but that the leading constant is also optimal. However, Grosof et al. [53] show that
the leading constant can be improved. The policy they use to do so, called Nudge, is not
a SOAP policy, and our results suggest that no SOAP policy can match Nudge’s leading
constant (Ch. 13).

2.1.4 Fairness
It is known that SRPT minimizes mean response time [116]. However, because SRPT
prioritizes small jobs, there is a concern that SRPT might treat large jobs unfairly. This
gives rise to the study of several fairness metrics [15, 143–145], which attempt to quantify
the degree to which a scheduling policy pays adequate attention to jobs of all sizes. One
result is that for the purposes of mean response time, SRPT is, perhaps surprisingly, often
as fair as PS [144], which due to its symmetry is a common benchmark for fairness.

One could in principle use the SOAP analysis as a basis for proving results about
fairness, but we have not yet done so.

2.1.5 Precursors to SOAP
SOAP (Chs. 3, 6, and 7) greatly expands the set of scheduling policies we can analyze in
the M/G/1. Roughly speaking, SOAP can analyze any policy where a job’s priority varies
during service, but stays the same as long as the job is not in service, a class we call SOAP
policies. There are two ways in which SOAP is notable:

• The class of SOAP policies is very broad and includes many relatively complex
scheduling policies.

• SOAP gives a universal analysis that applies to all SOAP policies at once.
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With that said, SOAP is neither the �rst analysis of a relatively complex scheduling policy,
nor is it the �rst universal analysis of an entire class of scheduling policies. This section
reviews precursors to SOAP in both of these categories.

Analyzing Increasingly Complex Scheduling Policies

The �rst analyses of policies with dynamic priorities were for relatively simple policies,
namely SRPT and LAS [115, 117]. These initial analyses use a technique called the tagged
job approach, which analyzes response time by following a generic “tagged” job in its
journey through the system.

Queueing theorists were quick to recognize that the tagged job approach could be used
for a wide variety of scheduling policies, many more complex than SRPT and LAS. To
name just a few, the tagged job approach has been used to analyze

• a version of SRPT with preemption checkpoints [48],
• versions of LAS with limited priority levels [86, 115],
• a version of P-Prio that uses SRPT within each class [49],
• policies that use noisy job size estimates instead of exact job sizes [36, 92], and
• special cases of the Gittins policy [105].

All of these analyses follow a similar strategy, though the details are di�erent in each case.
It turns out that these similarities are not coincidental: all of the above policies are SOAP
policies. The SOAP analysis thus uni�es all of the above analyses.

The MLPS Class

There are two signi�cant classes of policies that have been analyzed prior to SOAP in a
uni�ed way. The �rst of these is the Multi-Level Processor Sharing (MLPS) class, introduced
and analyzed by Kleinrock and Muntz [75]. MLPS consists of policies that combine FCFS,
LAS, and PS in the following way. We partition R≥0 into a number of intervals called
levels, with the 8th level denoted by [08, 08+1). Jobs are prioritized by the level their age is
in, with lower levels having better priority. This means that much like LAS, a job’s priority
generally gets worse as its age increases. However, each level 8 uses one of FCFS, LAS, or
PS to analyze jobs within that level. The analysis of MLPS is generic in the sense that with
a single analysis, it gives the mean or Laplace-Stieltjes transform of response time in terms
of the level boundaries 08 and the policy used in each level. See Kleinrock [74, § 4.7] for a
comprehensive account.

SOAP contains all MLPS policies that use only FCFS or LAS within each level. However,
the MLPS analysis of Kleinrock and Muntz [75] requires a restriction on the job size
distribution when a level uses PS. As such, SOAP strictly generalizes the MLPS analysis
for the case for fully general job size distributions.
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The SMART Class

The second signi�cant class of policies analyzed prior to SOAP in a uni�ed way is the
SMAll Response Times (SMART) class, introduced and analyzed by Wierman et al. [146].
Roughly speaking, SMART includes policies that, like SRPT, prioritize smaller jobs over
larger jobs, with a job’s priority possibly getting better during service. Among the results
of Wierman et al. [146] is that all SMART policies have mean response time within a factor
of 2 of SRPT.

SOAP contains only a subset of SMART policies. However, the SMART analysis of
Wierman et al. [146] gives only bounds on response time. As such, for most of the subset
of SMART that SOAP includes, SOAP gives the �rst exact response time analysis.

We note that Wierman and Nuyens [147] introduce and analyze an extension to the
SMART class called Y-SMART, which includes policies that use inexact job size estimates.
Unfortunately, the response time bounds obtained for Y-SMART are signi�cantly looser
than the corresponding bounds for SMART. SOAP can be used to compute exact response
time results for many Y-SMART policies.

2.2 The Gi�ins Policy in �eues

The Gittins policy [44], named after its principal inventor [45], is a policy that minimizes
mean response time in the M/G/1 queue when job sizes are unknown. Actually, Gittins is
somewhat more general than this: for a wide variety of M/G/1 models, Gittins minimizes the
mean total holding cost of jobs in the system, where each job may have a di�erent holding
cost. This is because Gittins is not really a single policy but rather a policy construction:
given a stochastic model of what the scheduler knows about each job and a holding cost
function, we can construct a version of Gittins that minimizes mean holding cost. By
Little’s law [84], minimizing mean response time corresponds to the case where all jobs
have the same constant holding cost.

We note that versions of the Gittins policy have also been used extensively outside of
queueing. See Gittins et al. [44] for a recent treatment of the topic.

2.2.1 Analyzing Gi�ins’s Response Time

There has been some work on characterizing properties of Gittins [3, 4], but aside from
some special cases [105, 141], the actual mean response time or mean holding cost achieved
by Gittins is not known, let alone other properties of Gittins’s response time distribution.

Fortunately, Gittins is a SOAP policy, so we are able to use SOAP to obtain the �rst full
analysis of Gittins’s response time distribution, which plays a role in many of our results
(Chs. 10, 11, and 13).
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2.2.2 Proofs of Gi�ins’s Optimality

Given that Gittins is more of a policy construction than a single policy, it should come
as no surprise that there are many proofs of Gittins’s optimality in the M/G/1 [18, 28,
29, 43, 76, 79, 116, 128, 128, 136, 141]. Each proof makes di�erent assumptions on what
information the scheduler knows about each job, what structure the job size distribution
has, when preemption is allowed, and when a job’s holding cost can change. Many of the
proofs also have technical limitations which are seldom acknowledged in the literature.
See Scully and Harchol-Balter [122, Section II] for a detailed review of these prior proofs.

We use WINE to give a uni�ed account of Gittins’s optimality in the M/G/1, unifying
and generalizing the prior proofs cited above (Ch. 16). Moreover, our approach naturally
extends to give performance bounds on variations of Gittins where a job’s priority is
computed only approximately. Key to our approach is a very general job model that can
capture many types of uncertainty the scheduler might have about a job’s remaining work
(Ch. 14).

2.2.3 Precursors to WINE

WINE (Chs. 4 and 15) is a queueing identity that gives a formula for the number of jobs
in the system, or more generally for the total holding cost of jobs in the system. WINE is
intimately tied to the Gittins policy. Roughly speaking, each version of Gittins gives rise
to a new version of WINE.

Just as prior proofs of Gittins’s optimality are special cases of our proof (Ch. 16), there
have a number of previously introduced identities that are special cases of WINE. These
include results of Glazebrook and Niño-Mora [47, Lem. 3] and Glazebrook [46, Thm. 1(a)],
who, as we discuss further in Section 2.3.2, analyze versions of Gittins in multiserver
queues. In addition to our presentation of WINE being more general, we believe our
statement and proof is also easier to understand. With that said, one advantage of the
presentations of Glazebrook and Niño-Mora [47] and Glazebrook [46] is that they make
clear the connection between WINE and a previous technique called the achievable region
method [18, 29], which lurks behind our presentation without making itself fully visible.

There are other identities that are similar to WINE, though not special cases of it, that
have been used to analyze scheduling policies. These include results of Righter et al. [111,
Lem. (3.12)] and Banerjee et al. [12, Lem. 13], the latter of which has a common special
case with WINE but generalizes it in a di�erent direction.

2.3 Scheduling in Multiserver Systems

Multiserver systems like the M/G/k have posed a signi�cantly greater challenge to queueing
theory than single-server systems like the M/G/1. For example, Kingman [73] highlights
analyzing the M/G/k as a challenge to revisit as queueing theory enters its second century.



20 Chapter 2 Prior Work

2.3.1 Approximate Analyses of the M/G/k under FCFS
While much progress towards understanding the M/G/k has been made in queueing
theory’s �rst century, the vast majority of it is for FCFS scheduling. This progress has come
partly in the form of response time bounds, for which Li and Goldberg [82] provide both
both an excellent overview and a remarkable recent example. Other work on the M/G/k
includes determining when response time moments are �nite [113, 114, 138], di�usion
approximations [71, 139, 152], and heavy-tra�c analyses [77, 78].

While we prove results for SRPT and Gittins in the M/G/k, we have relatively little to
say about the M/G/k under FCFS, except in the few special cases where Gittins reduces
to FCFS. This suggests that using policies designed to lower mean response time might
actually make the M/G/k easier to analyze.

2.3.2 Scheduling in the M/G/k and Similar Models
There has been some progress on analyzing scheduling policies in the M/G/k, but it is
limited to relatively simple policies like P-Prio [56, 91, 130]. Moreover, these results assume
phase-type size distributions.

We use WINE to provide the �rst analyses of SRPT and Gittins in the M/G/k, without
any assumptions on the size distribution (Ch. 17). There is some prior work on SRPT and
Gittins in multiserver settings, which we review below.

Multiserver SRPT

SRPT has been studied in central-queue multiserver systems with adversarial arrival
processes, as opposed to the stochastic arrival processes of traditional queueing models
like the M/G/k. Speci�cally, it is known that even though SRPT minimizes mean response
time in single-server systems with adversarial arrivals [116], SRPT becomes suboptimal
with multiple servers. Speci�cally, Leonardi and Raz [81] show that the competitive ratio
of SRPT. Nevertheless, Leonardi and Raz [81] also show that SRPT is in some sense the
best one can do in multiserver systems.

One can show that even with the stochastic arrivals of the M/G/k, SRPT is still subop-
timal.1 However, the existing bounds on SRPT for adversarial arrivals [81] are too loose
to give a good sense of whether SRPT is close to optimal. We resolve this question by
showing that SRPT is indeed close to optimal in the M/G/k (Ch. 17).

Concurrently with the work that led to this thesis, Dong and Ibrahim [34] have analyzed
the heavy-tra�c behavior of SRPT in a setting with customer abandonment. This work
is complementary to ours. For instance, they consider a steady-state overloaded regime,
which exists due to abandonment, while we only consider systems with load less than the
service capacity.

1Personal communication with Isaac Grosof, August 2022. Roughly speaking, even though arrivals are
stochastic in the M/G/k, there is a positive probability of arrival sequences similar to those Leonardi and
Raz [81] construct to show SRPT’s suboptimality under adversarial arrivals.
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Multiserver Gi�ins

Both Glazebrook and Niño-Mora [47] and Glazebrook [46] analyze particular cases of
the Gittins policy in the M/G/k, bounding its mean response time or, more generally,
mean holding cost. However, both results make restrictive assumptions on the job size
distributions, and both consider cases where, roughly speaking, jobs are always in one
of �nitely many states.2 The means that there is a “worst state” in which jobs have
their maximum possible expected remaining work, and this maximum possible expected
remaining work plays a role in the bound. But there are plenty of scenarios where there is
no upper bound on jobs’ expected remaining size, such as scheduling with unknown sizes
under a heavy-tailed size distribution. Our work on Gittins in the M/G/k overcomes this
obstacle with an analysis that works for any size distribution, without assuming �nitely
many job states (Ch. 17).

Multiserver Gittins has also received some attention in the adversarial scheduling
literature. For example, Megow and Vredeveld [87] study scheduling with adversarial arrival
times but stochastic job sizes. The prove that Gittins is a constant-factor approximation for
mean completion time. However, completion time is a subtly di�erent metric than response
time: a job’s response time is its completion time minus its arrival time. This means that
while minimizing mean completion time and mean response time are equivalent objectives,
approximation ratios for completion time do not carry over to response time. Our work on
Gittins in the M/G/k thus avoids working with completion time, instead reasoning directly
in terms of response time (Ch. 17).

2.3.3 Scheduling in More Complicated Multiserver Models
In addition to central-queue multiserver systems, scheduling and related problems have
been considered in more complicated multiserver architectures. These include

• immediate-dispatch systems [61, 62, 81],
• systems with redundant job replicas [6, 7, 41, 42],
• polling systems [19, 21, 148],
• input-queued switches [37, 59, 60, 85, 132], and
• systems where jobs occupy multiple servers [58, 137, 151].

We have only just begun to understand scheduling in these systems. For instance, the
literature on input-queued switches provides sophisticated algorithms for deciding which
of many possible subsets of queues to serve, but the scheduling policy within each queue
is always assumed to be FCFS.

We have taken a �rst step in this direction, studying immediate-dispatch systems with
SRPT scheduling at each queue [51], though we do not cover this result in this thesis.

2Speci�cally, Glazebrook and Niño-Mora [47] analyze the preemptive M/M/1 with Bernoulli feedback, in
which jobs can be modeled as �nite-state Markov chains; and Glazebrook [46] analyzes (a generalization
of) the nonpreemptive M/G/1 with Bernoulli feedback, in which jobs are piecewise-deterministic Markov
processes with continuous state spaces, but preemption is allowed in only �nitely many states. See Chapter 14
for more on modeling jobs as Markov processes.
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2.4 Other Related Work

2.4.1 Work Decomposition Laws
Chapter 8 is about work decomposition laws. These are theorems that decompose the
steady-state amount of work in a queueing system into a sum of two random variables,
one of which is the amount of work in a simpler queueing system. Our results follow in
the tradition of a long line of work on decomposition laws [22, 39, 40, 46, 47, 94]. While
we believe our results are new, they are a natural extension of known decomposition
laws. Roughly speaking, we apply the techniques of Miyazawa [94] to a wider variety of
systems. This yields decomposition results similar to those of Glazebrook and Niño-Mora
[47, Thm. 1] and Glazebrook [46, Lem. 1], but our results are more general, and our proofs
are signi�cantly simpler.

2.4.2 Size Estimates
Chapters 10 and 12 both study scheduling with noisy size estimates. This is a setting where
the scheduler learns an estimate of each job’s size when it arrives and must make do with
these estimates when scheduling.

Most work on scheduling with size estimates has used simulations, with Dell’Amico
et al. [32] starting a fruitful series of simulation studies [5, 30, 31, 36, 92, 93]. While there
has been some analytical work on scheduling with size estimates [36, 92], the analysis is
still applied numerically.

Our study of size estimates uses the SOAP analysis applied both numerically and
theoretically, building on the prior work in two ways. First, thanks to the �exibility of
SOAP, we can compare against the policy that minimizes mean response time, namely
Gittins, resulting in new insights (Ch. 10). Second, we use SOAP to prove mean response
time guarantees on policies for scheduling with size estimates, yielding theoretical results
that hold for a range of noise models (Ch. 12).

We note that the Y-SMART policies of Wierman and Nuyens [147] are related to
scheduling with size estimates, but they are not quite the same. This is because Y-SMART
policies assume dynamically updating estimates for a job’s remaining work, as opposed to
a static estimate of a job’s initial size.

2.4.3 Practical Preemption Limitations

Limited Priority Levels

Some systems only give the scheduler a limited number of priority levels to work with. A
notable example is network switches, which might have, say, eight priority levels. One of
the challenges to using policies like SRPT in systems with limited priroity levels is deciding
how to partition the range of possible remaining work amounts, or more generally the
range of possible ideal priorities, into a small number of levels. Work in the systems
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literature has contended with this question in settings like network switches [96], web
servers [57], GPU cluster scheduling [54], and TCP �ow scheduling [86].

We use SOAP to study scheduling with limited priority levels (Ch. 9). While we do not
model all of the concerns of the aforementioned systems, we arrive at similar conclusions,
particularly for adapting SRPT to limited priority levels [57, 96].

Preemption Checkpoints

Some systems do not allow preempting jobs at any time but instead have preemption
checkpoints. Preempting a job between checkpoints may be disallowed, or it may be
undesirable due to the risk of losing progress. Most queueing-theoretic prior work on
preemption checkpoints studies the problem of placing checkpoints to minimize lost
progress [8, 33, 99].

To the best of our knowledge, the only queueing-theoretic work on preemption check-
points in scheduling is that of Goerg [48], who analyzes a version of SRPT with preemption
checkpoints. Using the analysis, Goerg [48] studies the question of how frequent pre-
emption checkpoints should be to ensure good mean response time, assuming that each
checkpoint incurs some overhead. We use SOAP to study an analogous question about
LAS with preemption checkpoints (Ch. 9).

2.4.4 Scheduling in Adversarial Models
This chapter has focused almost exclusively on scheduling in the queueing theory commu-
nity. However, scheduling has also been studied extensively by the algorithms community,
typically with adversarial arrivals or all arrivals in a single initial batch. See Pinedo [107]
and Lenstra and Shmoys [80] for recent treatments of this area. Throughout this chapter,
we have mentioned a few scheduling results from the algorithms community that are
particularly related to problems studied in this thesis [10, 11, 17, 63, 81, 87, 110].

2.5 Publications Covered in This Thesis

This thesis is based on a number of publications of which I was a coauthor. These publica-
tions are listed below, along with the chapters based on them. We also comment on ways
where either prior publications or the thesis goes beyond what the other covers.

• (Chs. 6 and 7) Scully et al. [124] introduces SOAP. We have slightly extended SOAP
in a subsequent publication [121], but we do not cover the extension here.

• (Chs. 9 and 10) Scully and Harchol-Balter [123] numerically applies the SOAP analysis
to study practical scheduling questions. The second half of Chapter 10 is new material
not covered in the paper.

• (Ch. 11) Scully et al. [125] introduces a simple scheduling policy whose mean response
time is comparable to Gittins’s. We give just an overview here, referring the reader
to the paper for full proofs.
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• (Ch. 13) Scully et al. [127] and Scully and van Kreveld [126] characterize the asymp-
totic response time tail of Gittins and other SOAP policies. We give just an overview
here, referring the reader to the papers for full proofs.

• (Ch. 12) Scully et al. [120] studies scheduling with noisy size estimates. We give just
an overview here, referring the reader to the paper for full proofs.

• (Chs. 8 and 17) Scully et al. [118] analyzes SRPT and Gittins in the M/G/k. This paper
is the culmination of other work of ours on multiserver scheduling [50, 51, 119], but
we do not cover these precursors here.3 The results of Chapter 8 are more general
than those in the paper.

• (Chs. 14–16) Scully and Harchol-Balter [122] introduces WINE and applies it to
proving Gittins’s optimality in the M/G/1, though the name “WINE” is new as of
this thesis. A prior publication of ours [118] develops many of the same ideas but in
a less general setting. The second half of Chapter 10 is new material not covered
in the paper, though special cases of it have appeared in other publications of ours
[120, 126].

3Grosof et al. [50], which gives the �rst analysis of SRPT in the M/G/k, deserves a brief discussion. This
paper started our work on multiserver scheduling by analyzing SRPT in the M/G/k. In particular, it does so
without using WINE. As such, our claim that we use WINE to give the �rst analysis of SRPT in the M/G/k is
a simpli�cation: we give the �rst analysis of SRPT in the M/G/k, and the version of that analysis presented
in this thesis uses WINE, even though the original analysis did not use WINE. In contrast, WINE seems to be
essential for analyzing Gittins in the M/G/k [119, Appx. A].
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SOAP Overview

A three-point summary of SOAP:
• (§ 3.1) Our ability to analyze the response time distribution of scheduling policies

is limited to a small set of relatively simple policies. Beyond our reach are policies
designed to deal with important concerns, such as job size uncertainty and practical
preemption limitations. But the state of the art advances slowly, because each new
policy generally requires its own custom-tailored analysis.

• (§ 3.2) SOAP de�nes a broad class of scheduling policies and gives a universal analysis
of all policies in the class. The SOAP policy class covers most previously analyzed
policies, but also many policies that have never been analyzed before.

• (§ 3.3) SOAP gives the �rst response time analyses of scheduling policies that deal
with job size uncertainty, practical preemption limitation, and more. We use these
analyses to answer many theoretically and practically motivated questions about
scheduling policy design.

3.1 Problem: Can Analyze Only a Small Set of
Scheduling Policies

3.1.1 Why Analyzing Scheduling Policies Ma�ers
Scheduling can signi�cantly improve a queueing system’s response time, but it can be
hard to determine the precise impact a particular scheduling design decisions will have.
For example, consider using Shortest Remaining Processing Time (SRPT) in a single-server
queueing system. SRPT, which always serves whichever job has the least remaining work,
is known to minimize mean response time [116], but there are other questions we might
have about SRPT’s performance.

• How well does SRPT perform on non-mean response time metrics, such as response
time tail?

• How are SRPT’s response time bene�ts distributed across di�erent types of jobs? Is
SRPT unfair to large jobs?

Fortunately, thanks to the fact that SRPT has been analyzed [117], queueing theorists can
answer these and many other questions about SRPT [13–15, 83, 101, 103, 104, 143–146].

What Is “Analyzing” A Policy?

When we say that SRPT has been “analyzed”, we mean that its response time distribution
has been characterized in a single-server queueing model, speci�cally the M/G/1 queue

25



26 Chapter 3 SOAP Overview

(Ch. 5). However, this response time characterization is often still rather complicated,
making it just the �rst step towards answering questions about the policy’s performance.
For instance, while Schrage and Miller [117] analyzed SRPT in 1966, it was not until
decades later that the analysis was used to investigate SRPT’s response time tail [103] and
fairness [142].

3.1.2 Prior Scheduling Analyses Fall Short
Many scheduling policies have been analyzed in the M/G/1 in the years since Schrage and
Miller [117] analyzed SRPT, as illustrated in Figure 3.1(a). However, as we discuss in our
review of prior work (§ 2.1), this set of policies is still limited, and M/G/1 scheduling theory
has little to say even slightly beyond the borders of what has already been analyzed.

Practical Concerns Are Out of Reach

For example, we saw in Section 3.1.1 how SRPT’s analysis helped us answer some questions
a system designer might want to know before implement SRPT. However, in practice, few
systems will perfectly implement SRPT, leading to a number of further questions.

• SRPT assumes knowledge of each job’s exact size. But in practice, some systems can
provide only a noisy estimate of each job’s size. How should we adapt SRPT to be
robust to noisy size estimates? How does performance degrade as a function of the
amount of noise?

• SRPT assumes arbitrary granularity in how it prioritizes jobs. But in practice, some
systems have only a limited number of priority levels available to the scheduler. How
should we adapt SRPT to settings with a limited number of priority levels? How
many levels do we need for good performance?

• SRPT assumes jobs may be preempted at any time. But in practice, some systems
allow jobs to be preempted only at certain checkpoints, and due to overhead, such
checkpoints cannot be too frequent. How should we adapt SRPT to settings with
preemption checkpoints? What checkpoint frequency balances good performance
with low overhead?

Notice that these questions are not about SRPT itself, but about practical variations that
deviate from true SRPT. Such practical variations are generally outside the scope of what
we can currently analyze. In particular, the �rst and second questions above have not been
theoretically studied in the M/G/1 prior to SOAP, though as we will discuss below, there is
some work on the third question [48].

There are a number of other questions that are out of reach of current analysis. We
might ask analogues of the second and third questions for preemptive policies other than
SRPT. Or, as a variation on the �rst question, we might consider scheduling in a setting
where size estimates are extremely noisy or nonexistent. In such a setting, we likely want
to abandon SRPT altogether. One alternative is to use historical job size data to compute
the expected remaining work of each job, then prioritize jobs based on that. This policy is
called Shortest Expected Remaining Processing Time (SERPT), but it has never been analyzed.



3.1 Problem: Can Analyze Only a Small Set of Scheduling Policies 27

MLPS
SMART

• FCFS

• LAS

• LPL-LAS
• PS

• SRPT

• PSJF

• RS

• SJF• P-Prio

• NP-Prio

• LCFS

• PLCFS
• Chk-SRPT

• P-Acc-Prio
• NP-Acc-Prio • Nudge

• ROS

(a) Scheduling policies analyzed in the M/G/1, excluding those analyzed with SOAP. See Chapter 2
for further discussion on many of the policies shown.

MLPS
SMART

SOAP• FCFS

• LAS

• LPL-LAS
• PS

• SRPT

• PSJF

• RS

• SJF• P-Prio

• NP-Prio

• LCFS

• PLCFS
• Chk-SRPT

• P-Acc-Prio
• NP-Acc-Prio • Nudge

• ROS

• SERPT
• Gittins

• Chk-LAS • LPL-SRPT

(b) Scheduling policies analyzed in the M/G/1, including those analyzed with SOAP, which are
highlighted in bold. This includes two policies, Chk-SRPT and RS, for which mean response time,
but not distribution of response time, was previously known.

Figure 3.1. SOAP expands the set of policies we know how to analyze in the M/G/1, a single-server
queueing model. (a) Prior to SOAP, most policies were analyzed one-by-one, with a few relatively
small classes of policies analyzed (§ 2.1.5). (b) SOAP uni�es and generalizes the state of the art
with a single universal analysis for a broad class of policies, subsuming much of what was already
known while also analyzing many policies for the �rst time.
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Most Prior Analysis Happens One Policy at a Time

Some good news about the questions above is that there has been work analyzing SRPT
with preemption checkpoints, with Goerg [48] providing a mean response time formula.
Unfortunately, the analysis is speci�c to SRPT, so we are out of luck if we want to adapt a
di�erent policy for a system with preemption checkpoints.

This is just one instance of a larger issue with the state of the art in M/G/1 scheduling:
for the most part, scheduling policies are analyzed one by one. There are numerous
publications analyzing a single policy or small number of similar policies (§ 2.1). Analyzing
a policy or few evidently takes a publication-sized amount of research e�ort. But expending
so much e�ort on every single policy is unsustainable in light of the vast space of possible
scheduling policies.

Ideally, we would hope to analyze many scheduling policies at once. Two examples of
this are analyses of classes of policies: Multi-Level Processor Sharing (MLPS) policies [74] and
SMAll Response Times (SMART) [146]. Both classes represent signi�cant steps that increase
our ability to analyze many policies at once. Unfortunately, both classes are somewhat
limited in scope (§ 2.1.5). Roughly speaking, SMART includes only relatives of SRPT, and
MLPS includes only speci�c combinations of simple policies like FCFS and LAS (§ 3.2.1).

3.2 Key Idea: Unifying Language for Policies Enables
a Universal Analysis

Despite the fact that the state of the art in M/G/1 scheduling is analyzing policies one by
one, there are common ideas that appear across multiple analyses. For example, part of
Harchol-Balter [55], an introductory queueing text, is devoted to analyzing ten di�erent
scheduling policies in the M/G/1. But nine out of ten of the analyses follow a common
overall strategy, albeit with di�erent details. Can we unify the analyses of these nine
policies? If so, can that help us analyze even more policies?

SOAP, which stands for Schedule Ordered by Age-based Priority, answers both questions
a�rmatively. SOAP consists of two parts:

• (§ 3.2.1) SOAP policies: a broad class of scheduling policies, which can all be described
in a single unifying language.

• (§ 3.2.2) SOAP analysis: a single universal analysis that applies to all SOAP policies.
SOAP thus uni�es and generalizes prior analyses, as shown in Figure 3.1(b).

3.2.1 Unifying Language: Rank Functions

The key idea behind SOAP is its unifying language for describing scheduling policies,
which we call rank functions. A rank function assigns each job a rank, or numerical priority,
based on the job’s age, which is the amount of time the job has been served so far. We use
the convention that lower rank is better. A rank function thus encodes a scheduling policy:
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0 0

0

rankLAS(0) B 0

(a) Rank function of LAS.

B

B

0 0

0

rankSRPT(B, 0) B B − 0

(b) Rank function of SRPT for job of size B .

Figure 3.2. A rank function describes a scheduling policy in the following way. Each job, based
on its age 0 and possibly other static characteristics, is assigned a rank, or numerical priority, by
the rank function. (a) Under LAS, a job’s rank is simply its age. (b) Under SRPT, a job’s rank is its
remaining work, which depends on both its age and its initial size.

the scheduler serves the job of minimal rank at every moment in time. In the case of ties,
we usually use the convention that ties are broken in �rst-come, �rst-served (FCFS) order.1

A SOAP policy is any scheduling policy that can be described using a rank function.
We give some examples of rank functions below. For many more examples, as well as a
more formal de�nition of SOAP policies and rank functions, see Chapter 6.

Simple Examples of Rank Functions

Perhaps the simplest example of a policy that can be described as a rank function is Least
Attained Service (LAS), which always serves the job of least age. LAS can be represented
by the rank function

rankLAS(0) B 0.

See Figure 3.2(a) for an illustration.
Another example is the aforementioned Shortest Remaining Processing Time (SRPT).

Here a job’s rank is its remaining work, which is di�erence between the job’s initial size B
and the work done so far. The work done so far is simply the job’s age 0, so

rankSRPT(B, 0) B B − 0.

See Figure 3.2(b) for an illustration.
One last example of a rank function is that of First-Come, First-Served (FCFS), which

serves jobs in arrival order. FCFS can be represented by many rank functions. In particular,
thanks to our FCFS tiebreaking convention, any constant function rankFCFS(0) = 2 su�ces.

1We actually also allow for last-come, �rst-served tiebreaking (LCFS) as well. Whether using FCFS or
LCFS tiebreaking, there are several subtleties to consider, which Chapter 6 explains in detail.
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Figure 3.3. The SERPT policy always serves the job of least expected remaining work. We show
the rank function of SERPT for the given job size distribution ( , meaning jobs have size 1, 6, or 14.
Initially, a job’s expected size is E[(] = 7, and its expected remaining work decreases while it
is served. This continues until age 1, at which point one of two things happens: either the job
completes and exits the system, or we learn from its continued presence that it is not size 1. Its
expected remaining work then jumps up to E[( − 1 | ( > 1] = 9. A similar jump occurs at age 6.

More Complex Examples of Rank Functions

LAS, SRPT, and FCFS all have relatively simple rank functions. It is therefore unsurprising
that all three of these policies have been analyzed. But, as we will see in examples below,
policies with more complex rank functions arise in practical situations, and these complex
rank functions are harder to analyze (§ 3.2.2).

As a �rst example, suppose we are scheduling in a system with unknown job sizes
with the goal of lowering mean response time. Ideally, we would use SRPT, but we cannot
implement SRPT without knowing job sizes. How can we mimic SRPT using only jobs’
ages? One policy that does this is Shortest Expected Remaining Processing Time (SERPT).
SERPT uses the job size distribution to compute the expected remaining work of each job
based on its age. Speci�cally, for job size distribution ( , SERPT’s rank function is2

rankSERPT(0) B E[( − 0 | ( > 0] .

The way to understand the right-hand side is as follows. The job’s size is a random variable ( .
When the job has age 0, the remaining work is the di�erence ( − 0. But if the job is not yet
complete, it must be that the job’s remaining work is positive, so we condition on ( > 0.

We illustrate and explain SERPT’s rank function for an example job size distribution
in Figure 3.3. Notice that SERPT’s rank function is nonmonotonic, unlike the previously
mentioned rank functions of LAS, SRPT, and FCFS. It turns out that with a single exception
(discussed below), all SOAP policies that have been analyzed in the past have nonmonotonic
rank functions. As we explain in Section 3.2.2, rank nonmonotonicity is the main technical
obstacle we overcome in the SOAP analysis.

2Abusing notation slightly, below, we write ( for both the size distribution and also for the random variable
representing a generic job’s size. See (Ch. 5) for details regarding this and other notation conventions.
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0 0

0

rankc (0)

(a) Rank function of generic SOAP policy c .

Δ 2Δ 3Δ 4Δ 5Δ
0 0

0

rankChk-c (0)

(b) Rank function of Chk-c , with rank of c
shown for reference (dashed orange line).

Figure 3.4. Preemption limitations can be thought of as restrictions on a SOAP policy’s rank
function. For example, given (a) a generic SOAP policy c , we can de�ne (b) a new policy Chk-c ,
which is like c but only preempts jobs at checkpoint ages. These checkpoint ages are evenly spaced
with gap Δ.

We have seen in SERPT that nonmonotonic rank functions can arise from unknown
job sizes. They can also arise from other practical concerns, such as preemption limitations.
Suppose we wish to schedule in a system where jobs can only be preempted at certain
checkpoint ages. Perhaps these checkpoints occur every Δ units of time while serving a job.
One example of this is scheduling packet �ows in a network switch where Δ is the packet
size, because we want to avoid interrupting transmission in the middle of a packet.

We can model scheduling with checkpoint ages using rank functions as follows. Let c
be a generic SOAP policy.3 We can de�ne a variant of c , which we call Checkpointed c
(Chk-c), which is essentially a version of c that only preempts jobs at checkpoint ages.
The rank function of Chk-c is

rankChk-c (0) B rankc (0) 1(0 = =Δ for some = ∈ N).

We illustrate an example in Figure 3.4. Notice that Chk-c can have a nonmonotonic
rank function even if c ’s rank function is monotonic. For example, Chk-SRPT, which was
analyzed by Goerg [48], has a nonmonotonic rank function. This makes Chk-SRPT the only
nonmonotonic rank function to be analyzed prior to SOAP.4 But Chk-LAS and essentially
every other policy with checkpoints is also nonmonotonic, and none of these have been
analyzed prior to SOAP.

3For simplicity of notation, we assume that c ’s rank function is always positive and takes only a job’s
age as input, as opposed to also needing a job’s size or other properties.

4With that said, Goerg [48] only derives the mean response time of Chk-SRPT, so the SOAP analysis still
provides the �rst distributional characterization of Chk-SRPT’s response time.
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3.2.2 Main Obstacle to Universal Analysis: Nonmonotonic Rank
Functions

The SOAP analysis characterizes the response time of any SOAP policy in the M/G/1. Here
we describe the main obstacles we overcome in the analysis. See Chapter 7 for the full
analysis, and in particular Theorem 7.15 for the main result.

A number of SOAP policies have been analyzed in the past, but virtually all of them
have monotonic rank functions. The SOAP analysis improves on this state of the art in
two ways.

• SOAP uni�es prior analyses. While LAS, SRPT, FCFS, and other SOAP policies were
previously each analyzed separately, the SOAP analysis gives one formula that works
for any rank function.

• SOAP generalizes prior analyses. In particular, virtually all prior analyses were for
monotonic rank functions, but the SOAP analysis also applies to nonmonotonic rank
functions.

What are the main obstacles to these improvements, and how do we overcome them?
For unifying prior analyses, the answer is more subjective, but I believe the main obstacle
is the lack of a uniform way of de�ning scheduling policies. This is why the idea of
representing policies as rank functions is important: without a unifying language for
policies, we have no hope of a universal analysis that applies to all of them.

For generalizing prior analyses, there is a much more concrete obstacle: nonmonotonic
rank functions. In the rest of this section, we explain why policies with nonmonotonic
rank functions are hard to analyze, then give the main insight that enables us to analyze
them.

Why Nonmonotonic Rank Functions Are Challenging to Analyze

Perhaps the most common method of analyzing a scheduling policy’s response time in the
M/G/1 is the tagged job approach. The approach works by considering a single “tagged”
job’s journey through the system. By appropriately randomizing the tagged job’s size and
other attributes, the jobs already in the system when the tagged job arrives, and the arrivals
that occur after the tagged job, the distribution of the tagged job’s response time becomes
the system’s response time distribution [150].

How do we determine the tagged job’s response time? This boils down to determining
how long each other job delays the tagged job, meaning receives service while the tagged
job is in the system. The tagged job’s response time is the sum of these delays, plus its own
size.

The SOAP analysis thus boils down to determining how long each other job delays the
tagged job. Under monotonic policies like SRPT, this is not too hard to do. For example,
suppose the tagged job has size B , and another job has remaining work A when the tagged
job arrives.

• If A ≤ B , then the other job outranks the tagged job both now and hereafter, so the
other job delays the tagged job by A .
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tagged job’s size
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rankc (0)

worst future rank

Figure 3.5. The Pessimism Principle states that the tagged job’s response time is una�ected if
instead of following the ordinary rank function (orange solid line), we increase its rank at each age
to its worst future rank (magenta dotted line).

• If A > B , then the tagged job outranks the other job both now and hereafter, so the
other job does not delay the tagged job at all.

However, under nonmonotonic policies, determining the delay due to another becomes
more complicated. Whether the other job outranks the tagged job can change over time,
with alternating periods of the tagged job and the other job having better priority, then
the other job having better priority.

Insight: Remove Some Nonmonotonicity from the Analysis

The SOAP analysis uses the tagged job approach described above, but in a way that avoids
dealing with the worst of the complexities introduced by nonmonotonic rank functions. It
turns out that a single observation e�ectively removes some of the nonmonotonicity from
the analysis. This observation, which we call the Pessimism Principle, is the following:

The tagged job’s response time is una�ected if we increase its current rank to
its worst future rank.

Figure 3.5 shows the relationship between the rank function and the tagged job’s worst
future rank.

Why is the Pessimism Principle helpful? Without the Pessimism Principle, with of the
tagged job and other job has better rank can alternate back and forth. With the Pessimism
Principle, the tagged job’s rank never increases, as shown in Figure 3.5. This means the
other job outranks the tagged job until it is served for some amount of time C , after which
it never outranks the tagged job again. Having a single interval of delay makes the tagged
job’s response time much easier to analyze.

But why is the Pessimism Principle true? The key is that the amount of time C the other
job is served under the Pessimism Principle is the amount of time until it completes or
reaches the tagged job’s worst future rank. But without the Pessimism Principle, the total
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delay due to the other job is this same amount C , because the tagged job will eventually
reach its worst future rank. Increasing the tagged job’s rank to its worst future rank thus
does not create extra delay. It simply “clumps together” smaller delays, which simpli�es
the analysis.

3.3 Impact: Broad Class of Policies Analyzed for the
First Time in the M/G/1

The SOAP analysis boils down to a single result, Theorem 7.15, that characterizes the
response time distribution in the M/G/1 under any SOAP policy. But the breadth of SOAP
policies makes it a high-impact result with a wide variety of applications.

Our applications of SOAP can be grouped into roughly three settings.
• (§ 3.3.1) We apply SOAP to scheduling with unknown job sizes. This involves analyzing

policies like SERPT (Fig. 3.3).
• (§ 3.3.3) We apply SOAP to scheduling with noisy job size estimates. For instance, we

analyze multiple SRPT-like policies to determine which are most robust to noise.
• (§ 3.3.2) We apply SOAP to scheduling with practical preemption limitations. One

example of such a limitation is only allowing preemption at checkpoints (Fig. 3.4).
In each of these settings, we apply SOAP in two distinct ways.

• Numerical: We evaluate formulas from the SOAP analysis for speci�c rank functions,
size distributions, and loads. Sometimes the rank functions involved are parameter-
ized, allowing us to numerically optimize those parameters to achieve some objective.
Despite their simplicity, computational applications teach us many important lessons
about scheduling policy design.

• Theoretical: We use the SOAP analysis as a starting point for proving a theorem that
holds for a broad class of rank functions, size distributions, or loads. Theoretical
applications give more rigorous guarantees than what we can learn from computa-
tional applications. However, they are much harder to obtain, as they require novel
theoretical insight on top of the already complex SOAP analysis.

Because the SOAP analysis is for the M/G/1, all of the applications described in this section
are in single-server systems.

3.3.1 Unknown Job Sizes

How Good Is SERPT’s Mean Response Time?

Recall from Figure 3.3 that SERPT is the policy that always serves the job of least expected
remaining work. SERPT is one way to generalize SRPT to settings with unknown job sizes.

Given that SRPT minimizes mean response time when job sizes are known, it is natural
to ask: does SERPT minimize mean response time when job sizes are unknown? Unfortu-
nately, it is not so simple. Instead, a di�erent, more complicated policy called the Gittins
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policy is known to be optimal with unknown sizes (§ 2.2).
Despite its suboptimality for mean response time, SERPT has an intuitive appeal, and

it is signi�cantly simpler than Gittins. Does SERPT achieve mean response time close
enough to Gittins to serve as a substitute for it in practice? We use SOAP to investigate
this question both numerically and theoretically.

• (Ch. 10) Numerically, we �nd that SERPT does indeed seem to have near-optimal
mean response time in a variety of situations.

• (Ch. 11) Theoretically, we unfortunately are unable to prove results about SERPT
itself. In light of this, we propose a new variant of SERPT, called monotonic SERPT
(M-SERPT), that is even simpler to implement. We are able to prove a mean response
time guarantee for M-SERPT, speci�cally that its mean response time is always
within a factor of 5 of Gittins’s.

How Good Are SERPT’s, M-SERPT’s, and Gi�ins’s Response Time Tails?

We have seen above that SERPT, M-SERPT, and Gittins have good mean response time.
However, mean response time is not the be-all and end-all of queueing metrics. Another
important metric is the response time tail, namely the probability that a job experiences
response time larger than some threshold. By looking at the asymptotic behavior of the
response time tail, we can understand the probability with which jobs have especially long
response time.

We theoretically apply the SOAP analysis to investigate the asymptotic response time
tail of SERPT, M-SERPT, and Gittins (Ch. 13). Our main question is whether any of these
policies have asymptotically optimal response time tail, because if so, we would have a
policy that performs well for both the mean and tail of response time.

• For heavy-tailed size distributions, all three policies have optimal asymptotic tail.
• For light-tailed size distributions, all three policies can have asymptotic tail that

is optimal, pessimal, or in between. But we can tweak either policy to avoid the
pessimal case without signi�cantly harming mean response time.

3.3.2 Practical Preemption Limitations
Queueing theoretic study of preemptive scheduling typically assumes that preemption is
unrestricted and incurs no overhead, but preemption can be a lot messier in practice. We
have already seen that we can use SOAP policies to model some of these practicalities, such
as only being able to preempt jobs at certain checkpoints, as in the Chk-c policy. Another
type of preemption limitation that occurs in practice is having only a limited number of
priority levels to work with when designing a policy. This happens, for instance, when
scheduling packet �ows in network switches [96], as there are typically a small number of
priority levels baked into a switch’s hardware.

How should we adapt preemptive scheduling policies to handle practical preemp-
tion concerns like limited priority levels and preemption checkpoints? We use SOAP to
investigate this question both numerically and theoretically.
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• (Ch. 9) Numerically, we �nd rules of thumb for scheduling in systems with limited
priority levels and preemption checkpoints. For example, we �nd that whether job
sizes are known or unknown, one can often achieve near-optimal mean response
time with just 5 or 6 priority levels.

• (Ch. 13) Theoretically, we investigate how frequent checkpoints need to be to ensure
asymptotic optimality of the response time tail. We �nd that a constant gap between
checkpoints never harms tail optimality, but we also �nd that tail optimality is still
possible even when the checkpoint gap grows as a function of age.

3.3.3 Noisy Size Estimates
SRPT minimizes mean response time assuming access to perfect job size information.
However, information provided in a practical system will virtually always be imperfect.
This prompts a question: is SRPT robust to noise in the job size information it is given? If
not, can we design a new policy that is? We use SOAP to investigate this question both
numerically and theoretically.

• (Ch. 10) Numerically, we �nd that naively using SRPT with noisy size estimates can
lead to surprisingly poor performance. Fortunately, we �nd a promising alternative in
a policy called Preemptive Shortest Job First (PSJF), which prioritizes jobs by (original)
size instead of remaining work. PSJF is known to nearly match SRPT’s performance
when given perfect job size information [146], but we �nd that as estimation noise
increases, PSJF is much more robust than SRPT.

• (Ch. 12) Theoretically, we use the SOAP analysis to prove theorems that explain the
aforementioned non-robustness of SRPT and robustness of PSJF. We also propose a
new variant of SRPT, whose design is guided by the SOAP analysis, that we prove
has robustness properties similar to PSJF.
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WINE Overview

A three-point summary of WINE:
• (§ 4.1) We do not know how to schedule jobs in multiserver systems to optimize

response time objectives. Are policies like SRPT and Gittins, which are good in
single-server systems, also good in multiserver systems? We cannot answer this
question because we do not even know how to analyze the response time of a given
policy. Existing techniques for single-server systems, such as SOAP Chapter 3, do
not generalize to multiserver systems.

• (§ 4.2) WINE is a new queueing identity that relates a system’s performance to a
much simpler quantity: the relevant work in the system. WINE is helpful because
it turns bounds on relevant work, which can be obtained using other techniques
(Ch. 8), into bounds on mean response time. WINE works in any queueing system,
unlike SOAP, which is limited to single-server systems.

• (§ 4.3) We use WINE to bound the mean response time of SRPT and Gittins in
multiserver systems. The bounds are tight enough to imply near-optimality for
mean response time in the multiserver setting. And although we developed WINE
for multiserver systems, it turns out to have several applications in single-server
scheduling, too.

4.1 Problem: Analyzing and Optimizing Scheduling
in Multiserver Systems

Multiserver queueing systems are ubiquitous in practice. For example, virtually all computer
systems today have multiple processing units, from smartphones with multiple cores to
datacenters with thousands of machines. Unfortunately, while queueing theorists have
studied scheduling in single-server systems for decades, there is currently very little
queueing theory that can help us analyze or optimize scheduling policies in multiserver
systems.

For concreteness, consider the problem of minimizing mean response time in a system
with known job sizes. In single-server systems, it has long been known that SRPT, which
always serves the job of least remaining work (§ 3.2.1), is the optimal policy [116]. SRPT is
actually proven optimal not just in the M/G/1, which has stochastic arrivals, but also in
single-server systems with adversarial arrivals (§ 5.1.3).

Although SRPT’s optimality proof only holds with a single server, the general idea
of serving jobs that will complete soon seems wise even we have multiple servers. We
therefore ask:

Is SRPT also optimal, or at least near-optimal, in multiserver systems?

37
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We focus for now on central-queue systems, like the M/G/k, in which : ≥ 2 servers are
connected to a single queue.

When necessary for disambiguation, we append a “-k” to a policy’s name when dis-
cussing its :-server version. That is, SRPT-1 is the single-server policy that always serves
the job of least remaining work, and SRPT-k is the :-server policy that always serves the
: jobs with the : least amounts of remaining work, or all jobs if there are fewer than : .

4.1.1 Prior Work on SRPT-k Is Not Enough
Scheduling in multiserver systems has received some study, though the core question
of whether SRPT-k performs well in the M/G/k is still open. Below we discuss the most
immediately relevant prior work, which studies SRPT-k in an adversarial model, and
explain why it does not give a strong indication as to whether SRPT-k performs well in
the M/G/k. Chapter 2 gives a more comprehensive account of prior work.

SRPT-k Can Perform Poorly under Adversarial Arrivals

Leonardi and Raz [81] show that under adversarial arrivals, SRPT-k is suboptimal with
unbounded competitive ratio. This means that an o�ine policy c-k, meaning one that knows
the sizes and arrival times of past and future jobs, can achieve mean response time much
better than SRPT-k’s for some arrival sequences, making E[)SRPT-:]/E[)c-:] arbitrarily
large for those sequences. With that said, Leonardi and Raz [81] also show that no other
policy can have bounded competitive ratio, and SRPT-k’s competitive ratio is essentially
the best possible.

How Good is SRPT-k under Stochastic Arrivals?

The proof that SRPT-k has unbounded competitive ratio under adversarial arrivals uses an
arrival sequence speci�cally constructed to be bad for SRPT-k. But such arrival sequences
are unlikely to occur naturally in practice. Therefore, to determine whether SRPT-k is a
policy one should use in practice, it is helpful to analyze its performance in stochastic
models, such as the M/G/k.

Unfortunately, the above results for adversarial arrivals give us little clue as to how
well SRPT-k performs in the M/G/k. On one hand, SRPT-k has the best possible competitive
ratio, which seems to be a good sign. But on the other hand, that competitive ratio is
unbounded, indicating that SRPT-k can perform poorly. It is unclear whether some other
policy with the same competitive ratio as SRPT-k, or maybe even a worse competitive
ratio, might signi�cantly outperform SRPT-k in the M/G/k.

Unknown Job Sizes and the Gi�ins Policy

We have thus far focused our discussion on SRPT-k, which requires known job sizes to
implement. But we can ask the same questions for scheduling with unknown job sizes, or
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more generally any level of partial information about job sizes.
In settings with any amount of job size information,1 mean response time is minimized

by a policy called the Gittins policy (§ 3.3.1). In fact, SRPT can be seen as the special case
of Gittins for the case where the amount information known about each job is the job’s
exact size.

We might hope to use Gittins in a multiserver setting like the M/G/k. Fortunately,
de�ning a multiserver version of Gittins is straightforward. In a single-server setting,
Gittins works much like SRPT: it assigns each job a numerical rank and always serves the
job of least rank (§ 3.2.1). We can thus de�ne Gittins-k to be the policy that serves the
: jobs with the : least ranks, much like SRPT-k.

Given that Gittins-1 minimizes mean response time in the M/G/1, it is natural to ask: is
Gittins-k also optimal or near-optimal in the M/G/k? Unfortunately, there is no prior work
on the mean response time of Gittins-k, so this question is wide open.

4.1.2 Why the M/G/k Is Harder to Analyze than the M/G/1
We use SOAP, the other tool in this thesis (Ch. 3), to analyze a wide variety of policies in the
M/G/1. What prevents us from doing a similar style of analysis in the M/G/k? Answering
this requires describing how the SOAP analysis works at a high level.

Background: Relevant Work

The SOAP analysis uses a technique called the tagged job approach which is common in
M/G/1 scheduling theory (§ 2.1). The basic idea is to follow a generic “tagged” job on its
journey through the system, tracking how long it spends in service and how long it spends
waiting in the queue. As we discuss in Chapter 3, this is challenging because each job’s
rank can go up and down, including the tagged job’s rank, and jobs arrive and depart over
time.

Fortunately, there is a trick that helps simplify the above story. Roughly speaking,
rather than tracking the exact states of all the jobs that might delay the tagged job, we
track a summary quantity called relevant work. Roughly speaking, relevant work is the
total amount of work that currently outranks the tagged job. Put another way, if new jobs
suddenly stopped arriving, then the amount of time until the tagged job would next enter
service is the amount of relevant system work. If the tagged job’s current rank is A , then
we call relevant work ≤A-work, because it’s work on jobs with rank A or better.

Why Relevant Work Helps More in the M/G/1 than in the M/G/k

Keeping track of relevant work for a given rank A is usually easier than keeping track of
every job’s state, because relevant work summarizes the many job states with a single

1Speci�cally, we assume job sizes follow some stochastic model, and while this stochastic model is known
to the scheduler, the future size outcome for any particular job is unknown. One simple example of this is
the one discussed in Section 3.3.1, where the scheduler knows the job size distribution but not any job’s size.
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number. And remarkably, tracking relevant work turns out to be enough to analyze SOAP
policies in the M/G/1. The reason why is that in the M/G/1, the single server acts as a
“choke point”. This means that all relevant work is strictly prioritized over the tagged job,
which in turn is strictly prioritized over any other work.

Unfortunately, the situation is more complicated in the M/G/k. Because there are
multiple servers, there is no single “choke point”. While the tagged job is in service at one
server, other servers can serve other jobs, which may have rank better or worse than the
tagged job’s rank. This means that just looking at relevant work does not tell the whole
story in the M/G/k, which makes a tagged job analysis much more di�cult.2

4.2 Key Idea: Relate Response Time to Work, a Much
Simpler �antity

We have seen that the tagged job approach which is successful for the M/G/1 is di�cult to
translate to the M/G/k. One of the principle obstacles is that relevant work, the amount of
work with priority over the tagged job, plays a much clearer role in determining the tagged
job’s response time in the M/G/1 than it does in the M/G/k. Nevertheless, relevant work
remains a promising idea for summarizing the system state. Is there a way to translate
relevant work into response time without using the tagged job approach?

WINE, which stands for Work Integral Number Equality”, answers this question a�r-
matively. WINE is a new queueing identity that directly relates the number of jobs in a
queueing system to relevant work. Crucially, WINE holds in any queueing system, and
in particular in the M/G/k. By combining WINE with Little’s law [84], which relates the
number of jobs to mean response time, WINE gives an exact formula for mean response
time in the M/G/k in terms of relevant work.

Of course leaves us with a burning question: how much relevant work is in the M/G/k?
This is still a much harder question than analyzing relevant work in the M/G/1. Our key
idea here is to relate relevant work in the M/G/k to relevant work in an M/G/1 whose
server is : times as fast. We prove a result called Relevant Work Decomposition (Ch. 8),3

There are actually many versions, or “�avors”, of WINE. The rest of this section
fully illustrates one of the simplest �avors of WINE (§ 4.2.1) and gives a quick taste of
other �avors (§ 4.2.2). Section 4.3 explains in more detail how WINE and Relevant Work
Decomposition combine to analyze the M/G/k under SRPT-k and Gittins-k.

2As we discuss in our review of prior work (§ 2.5), we actually have managed to complete tagged job
analyses of SRPT-k and a few other relatively simple policies in multiserver systems [51, 52, 119], but the
technique has little hope of generalizing to more complex policies like Gittins-k [119].

3Relevant Work Decomposition appears in Part II instead of Part III because it turns out that a special
case of Relevant Work Decomposition helps with the SOAP analysis, so we introduce it when needed.



4.2 Key Idea: Relate Response Time to Work, a Much Simpler �antity 41

1/G

G

0 1/A
0

single job’s ≤A -work

area 1

(a) Integrating the ≤A -work of a single job with
remaining work G .

1/G1 1/G2 1/G3 1/G4

0 1/A
0

system ≤A -work

area 1

area 1

area 1
area 1

total area
# = 4

(b) Integrating system ≤A -work with# = 4 jobs
present.

Figure 4.1. Illustration of SRPT-�avored WINE, which relates the number-in-system # to an
integral of ≤A -work. Recall that SRPT assigns a job rank equal to its remaining work.

4.2.1 Basic “SRPT-Flavored” WINE

How can we hope to translate between relevant work and the number of jobs? For con-
creteness, let us consider SRPT, under which a job’s rank is its remaining work.

WI is for Work Integral

There is a hint in the WINE name: the number of jobs results from an integral of ≤A -work.
How might we design such an integral? The key idea is to look at one job at a time: if
we can make a single job’s ≤A -work integrate to 1, then the system’s total ≤A -work will
integrate to the number of jobs.

Consider a single job with remaining work G .4 What is this single job’s ≤A -work under
SRPT? Recall that SRPT assigns the job rank G . If G ≤ A , then the job is relevant, so its
≤A -work is its remaining work G . If instead G > A , then the job is irrelevant, so its ≤A -work
is 0. That is,

single job’s ≤A -work = G1(G ≤ A ).

How can we integrate this quantity to get A? Figure 4.1(a) gives one way of doing so:

1 =

∫ ∞

0
(single job’s ≤A -work) d(1/A ) =

∫ ∞

0

single job’s ≤A -work
A 2 dA .

4To clarify, even though we are looking at one job at a time, this is not a tagged job analysis. As will soon
become clear, instead of following this job in its journey through the system, we will examine it at a speci�c
moment in time.
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This means that if we integrate the total system ≤A -work instead of a single job’s ≤A -work,
we get the number of jobs # currently in the system, as illustrated in Figure 4.1(b):

# =

∫ ∞

0
(system ≤A -work) d(1/A ) =

∫ ∞

0

system ≤A -work
A 2 dA .

This equation is SRPT-�avored WINE.

Under What Conditions Does SRPT-Flavored WINE Hold?

A subtle note that should be appreciated about SRPT-�avored WINE is that, despite being
SRPT-�avored, it holds in any queueing system under any scheduling policy. Speci�cally,
the only place we appealed to SRPT was in determining a job’s ≤A -work, which we might
more speci�cally call “SRPT-�avored” ≤A -work. But we can still look at the system from
the perspective of SRPT’s rank function, even if another scheduling policy is being used.

4.2.2 Other Flavors of WINE

We have seen SRPT-�avored WINE gives a formula for the number of jobs that holds
under very general conditions. However, it requires analyzing SRPT-�avored ≤A -work,
which seems like it might be di�cult to do for policies other than SRPT. It turns out that
SRPT-�avored WINE can in fact help us analyze policies other than SRPT (§ 4.3), but there
is nevertheless some merit to this concern. Are there other �avors of WINE?

It turns out there are an in�nite array of �avors of WINE. Roughly speaking, SRPT-
�avored WINE comes from looking at the system from SRPT’s perspective, which assumes
each job’s size is known. The key idea to generalizing WINE is to look at the system
from a less-informed perspective where job sizes are uncertain. There are many types of
uncertainty: we might have no idea as to each job’s size, or we might have very accurate
size estimates, or somewhere in between. Each of these “types of uncertainty”, a concept
we formalize in Chapter 14, yields a new �avor of WINE.

There is actually another way we can generalize WINE. So far, we have integrated
relevant work to compute the number of jobs, which is useful for computing mean response
time. But if we are in a setting where some jobs are more important than others, we might
instead want to optimize for a weighted mean response time metric. We derive �avors of
WINE that give di�erent jobs di�erent weights, yielding new formulas for weighted mean
response time.

How do we derive these di�erent �avors of WINE? It turns out the key is to look at
relevant work from the perspective of the Gittins policy. That is, these other versions of
WINE are “Gittins-�avored”. Deriving the general form of WINE thus amounts to proving
properties of Gittins’s rank function.
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Figure 4.2. Using WINE to analyze the mean response time of Gittins-k in the M/G/k.

4.3 Impact: Near-Optimal Mean Response Time in the
M/G/k, and More

Figure 4.2 illustrates how we use WINE to analyze mean response time in the M/G/k. The
�gure shows Gittins, but we use the same approach for SRPT.5

The main idea behind analyzing the M/G/k is to scale its servers’ speeds so that their
total speed is 1. This gives the M/G/k the same total server speed as an M/G/1. One might
therefore hope that the M/G/k and M/G/1 have similar amounts of ≤A -work. We can use
Relevant Work Decomposition (Ch. 8) show that this is indeed the case, resulting in a
precise comparison between the mean relevant system work E[, (≤A )] under Gittins-k to
that under Gittins-1. WINE converts this comparison into a comparison of mean number-in-
system E[# ], which Little’s law [84] in turn converts into a comparison of mean response
time E[) ]. The end result, presented in Chapter 17, has the form

E[)Gittins-:] ≤ E[)Gittins-1] + (: − 1) (“something small”).

In particular, this bound is tight enough to imply that Gittins-k is in a certain sense near-
optimal for mean response time, because the “something small” term usually grows more
slowly as a function of load than the E[)Gittins-1] term.

While our main motivation for developing WINE is analyzing multiserver systems,
WINE is also useful in analyzing single-server systems. For example, in Chapter 16, we use

5In fact, SRPT can be viewed as a special case of Gittins (Pol. 6.12).
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WINE to show that an approximately computed version of Gittins still has approximately
optimal mean response time in the M/G/1. This proves to be a critical step of Chapter 12,
which combines the WINE-based approximate Gittins result with additional analysis using
SOAP to design a variant of SRPT that is robust to job size estimation error.



Part II

SOAP

45





Chapter 5

Core Modeling Assumptions and
�eueing Theory Background

There are many types of queueing systems, and there are many ways one might mathemat-
ically model them. The goal of this chapter is to introduce the types of queueing systems
we consider (§ 5.1) and specify the modeling choices we make (§ 5.2). We also introduce
queueing terminology and notation we use throughout our study (§§ 5.3–5.6).

We use the model described in this chapter throughout the entire thesis. We use it as-is
in Part II, and we add just one more feature (Ch. 14) in Part III. When we venture beyond
this default model, which occurs only occasionally, we clearly state what assumptions
change.

5.1 What Is a �eueing System?

At a high level, a queueing system consists of the following:
• Servers, entities that do some sort of useful work.
• Jobs, entities with some amount of work, called the job’s size, to be done at a server.
• Queues, which hold jobs that are waiting for time at the server.

We model queueing systems that have a �xed con�guration of servers and queues, some
examples of which are shown in Figure 5.1.1 Jobs, in contrast, are transient: they arrive,
spend time in the system, then eventually depart when their work is complete.

While in the system, a job may spend time queueing, meaning in a queue, and spends
the rest of its time in service, meaning at a server. Likewise, each server is sometimes busy,
meaning serving a job, and is otherwise idle.

A canonical example of a queueing system is checkout in a grocery store: servers are
checkout counters, each of which has a queue, and jobs are customers, and a job’s size is
roughly determined by the number of items they are buying. Among the queueing systems
shown in Figure 5.1, the grocery store checkouts I frequent most resemble Figure 5.1(c),
with customers distributing themselves among the various checkout counters.

We assume that jobs only occupy one server at a time and that, for the most part,
servers serve one job at a time. Thus, whenever the system has more jobs than servers,
some jobs must wait in a queue. When this occurs, the system’s scheduler decides which
jobs to serve according to a scheduling policy (§ 5.3). Choosing the right scheduling policy
is an important aspect of designing queueing systems. Typically, a policy is chosen based

1For some applications, such as ride-sharing, it makes sense to also allow servers to arrive and depart,
but such systems are outside the scope of this thesis.
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server

jobs depart

queue

jobs arrive

(a) Single-server system.

(b) Central-queue multiserver system.

dispatcher

(c) Immediate-dispatch multiserver system.

Figure 5.1. Examples of queueing systems.

on its performance on one or multiple metrics. These metrics include quantities like mean
response time, the average amount of time jobs spend in the system (§ 5.4.1).

In practice, all queues have a limited capacity, and jobs typically will not wait in a
queue forever. Returning to the grocery store example, even the largest supermarkets can
hold only so many people, and all but the most patient customers would leave the store
empty-handed instead of waiting in an hours-long checkout line. However, as an idealized
assumption, we assume that queues have unlimited capacity and that jobs, once they enter
the system, do not leave until they have been served.

5.1.1 What do Servers and Jobs Represent?

Exactly what the servers and jobs in our model represent depend on what real-world
system we wish to study. When studying queueing in data centers, we might make any of
the following choices, depending on what aspect of the system we want to focus on:

• A server represents a CPU core, and a job represents a single thread.
• A server represents a continuously running program, such as a database, and a job

represents a request to that program, such as a query.
• A server represents a multicore computer, and a job represents a parallel program.
• A server represents a network switch, and a job represents a packet �ow.
• A server represents a repair technician, and a job represents a broken computer or

network switch.
• A server represents the entire data center, and a job represents a large distributed

computation.
Of course, this list is far from exhaustive: there are more examples of queueing in data
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centers, to say nothing of other domains.
Instead of committing to any one choice about what servers and jobs represent, we

consider queueing systems in the abstract. Many real-world systems resemble our model,
and our results can in principle provide insight into any of them, though the value of this
insight depends on how closely our modeling assumptions match the real-world system in
question.

5.1.2 Central-�eue vs. Immediate-Dispatch Systems
A queueing system may have one or multiple queues and one or multiple servers, as
illustrated in Figure 5.1. This thesis focuses on central-queue systems, in which all servers
are connected to a single queue. This means that any job may be served at any server. Both
Figures 5.1(a) and 5.1(b) show central-queue systems.

Figure 5.1(c) shows another type of system called immediate-dispatch: each server is
connected to its own queue, and jobs must be assigned to a server upon arrival. This
creates an additional scheduling constraint: jobs may only be served at the server to which
they were assigned. While a few of our intermediate results apply to immediate-dispatch
systems (Ch. 8), we primarily focus on central-queue systems.

5.1.3 Adversarial vs. Stochastic Arrivals
When modeling a queueing system, some of the most important choices concern how jobs
enter the system. When does each job arrive? What is each job’s size? What information
does the scheduler learn about each arriving job?

Broadly speaking, there are two ways theorists model arrival processes:
• Adversarial arrival models make few, if any, assumptions about what arrivals occur.
• Stochastic arrival models assume that arrivals are generated according to some

random process.
Each model has its strengths and weaknesses. Studying adversarial arrival models can

yield guarantees about a system’s performance in the worst-case scenario. However, the
lessons learned from adversarial models can be misleading if such worst-case scenarios
are uncommon: it may be that we optimize performance in a rare scenario but sacri�ce
performance in more common scenarios. This is because adversarial models have no notion
of what scenarios are “rare” or “common”.

Optimizing for common scenarios is where stochastic arrival models shine: the assump-
tion of underlying randomness tells us that some scenarios are more likely than others.
We can thus optimize for probabilistic quantities, such as means and percentiles of key
metrics (§ 5.4). However, the lessons learned from stochastic models can be misleading if
the randomly generated arrivals do not closely enough resemble the real-world arrivals
being modeled.

We study stochastic arrival models. The distributional assumptions we make on the
arrival process, outlined in Section 5.2 below, aim to be general enough to teach us broadly
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applicable lessons. For example, while we assume each job’s size is drawn randomly from
some distribution (§ 5.2.2), many of our results apply no matter what that distribution is.

5.2 Primary Model: The M/G/1 with Labels
One of the main goals of this thesis is to study entire classes of scheduling policies. Instead
of studying individual policies one by one, we seek generic results that yield insight into
many policies at once. This approach requires a model that allows us to study a wide range
of scheduling scenarios with a single vocabulary. A particular obstacle to doing so is that
in di�erent scenarios, the scheduler uses di�erent information about the jobs in the system
to make its scheduling decisions.

• There may be multiple priority classes of jobs, such as from di�erent clients paying
for di�erent qualities of service.

• The scheduler might have any level of size information about each job. In some
scenarios, job sizes might be exactly known. In others, only noisy estimates may be
available.

• There may be other metadata attached to each job, such as its geographic origin.
The purpose of this section is to de�ne a single model that we can use to study all of the
above concerns and more.

Our model is a version of the venerable M/G/1, a stochastic single-server model with a
long history in queueing theory [26, 28, 74]. We call our model the M/G/1 with labels. Its
distinguishing feature is that each job has a label representing information the scheduler
knows about the job, though exactly what this information is depends on the particular
system being modeled. Hereafter, when we discuss the M/G/1, we mean the M/G/1 with
labels unless otherwise speci�ed.

Figure 5.2 summarizes the key features of the M/G/1 with labels. The rest of this section
�lls in the details by answering the following questions:

• (§ 5.2.1) What do jobs look like, and what does it mean to serve a job?
• (§ 5.2.2) How do new jobs arrive?
• (§ 5.2.3) What does the scheduler know about each job?

We conclude the section by describing the multiserver version of our model (§ 5.2.4). We
defer discussing how the scheduler decides which job to serve to Section 5.3.

5.2.1 Anatomy of a Job
As mentioned in Section 5.1, each job has some amount of work to be done at the server.
We follow the convention that the server serves work at rate 1. We thus measure work in
units of time: a job’s work is the amount of time it needs to be served.

At any moment in time, four pieces of data are associated with each job in the system:
• Size: the amount of work the job had initially when it arrived.
• Age: the amount of time the job has already been served.
• Remaining work: the amount of work the job has now.
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Figure 5.2. The M/G/1 with labels. Several jobs of varying size, remaining work, ages, and labels
are present, with new jobs arriving over time according to a stochastic arrival process. The job
labeled MA is in service, so its work decreases and age increases at rate 1 (red arrow). Each job’s
label communicates some information to the scheduler, which in this case is the US state the job
came from.

• Label: information about the job that is revealed to the scheduler upon arrival.
All four of these concepts are illustrated in Figure 5.2. When discussing job sizes, we use
the terms like small, smaller, large, and larger, which have their natural meanings.

A job’s size and label are static: they are determined upon arrival and never change.
A job’s age and remaining work are dynamic: they respectively increase and decrease at
rate 1 while a job is in service, though they do not change while a job is queueing. A job’s
size, age, and remaining work always satisfy

size = age + remaining work.

When a job completes, meaning when its remaining work reaches 0, it departs the system.
We assume that the job in service may be preempted, meaning paused and returned to

the queue, with no overhead or loss of work. We describe preemption in more detail in
Section 5.3.2.

5.2.2 The M/G Stochastic Arrival Process
The arrival process speci�es when jobs arrive, what each job’s size is, and what each job’s
label is. We �rst address arrival times and sizes before moving on to labels. We use the
term M/G arrivals to refer to the arrival process described below, and we call a queueing
system with M/G arrivals an M/G system.

The name “M/G/1” is actually formal queueing theory notation [67], with the symbol
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in each of the three positions communicating something about the system, the �rst two of
which concern the arrival process.

• The “M” in the �rst position means that job arrival times are generated by a memory-
less process, speci�cally a Poisson process with constant rate. We denote this arrival
rate by _.

• The “G” in the second position means that job sizes are drawn from a general distri-
bution. We denote this size distribution by ( .

• The “1” in the third position means that there is a single server.
Both _ and ( are nonnegative by de�nition, and to avoid dwelling on uninteresting corner
cases, we assume that both are strictly positive.

It remains to explain how labels �t into this picture. We denote the set of possible labels
by L. Each job’s label-size pair is drawn from a label-size distribution (!, (), with ! and (
denoting the label and size, respectively.

We assume that the arrival times and label-size pairs of all jobs are mutually inde-
pendent. We also assume that future arrivals cannot be anticipated in any way, so at any
moment in time, the future of the arrival process is independent of all past events. Note,
however, that an individual job’s label ! and size ( need not be independent. For example,
if jobs are labeled with a noisy size estimate, we would certainly hope that ! and ( are
correlated.2

Load and Stability

Given that jobs are arriving randomly over time, we might worry: can the arrivals over-
whelm the server and cause the system to be unstable? The key quantity to determine
whether this occurs is called load, which is

d B _E[(] .

We can interpret load in multiple ways:
• The average rate at which work arrives is d .
• The average number of arrivals that occur while serving a job is d .
• If the system is stable, the fraction of time the server is busy is d .

Each of these perspectives makes it clear that we must have d ≤ 1 to have any hope of
stability. It turns out that for the M/G/1 to converge to some steady-state distribution,
meaning stochastic equilibrium, it is necessary and su�cient to have the strict inequality
d < 1, so we assume this throughout (§ 5.6.1). Unless otherwise stated, we assume that
each queueing system we study is in steady state.

An M/G arrival process is uniquely characterized by its arrival rate _ and label-size
distribution (!, (). Equivalently, one may specify the load d instead of the arrival rate, as
one can recover the arrival rate as _ = d/E[(]. We use the latter convention throughout.
In particular, when we discuss a quantity varying as a function of changing load, unless

2Here we slightly abuse notation by con�ating the label and size distributions with random variables that
represent an individual job’s label and size. As discussed in Section 5.6.2, we do so throughout this thesis.



5.2 Primary Model: The M/G/1 with Labels 53

otherwise speci�ed, we mean that only the arrival rate is changing. For example, the
heavy-tra�c limit is the d → 1 limit, namely the limit as the system approaches but does
not quite reach instability.

5.2.3 Labels and What the Scheduler Knows
It is natural to assume that the scheduler knows each job’s age, because ages can be tracked
in real time. We also assume that the scheduler knows each job’s label. We call the pair
(ℓ, 0) of a job’s label ℓ and age 0 the job’s state. A job’s state thus encodes much of what
the scheduler knows about the job.3 We generally do not assume that the scheduler knows
any job’s size or remaining work unless they can be deduced from the job’s state.

However, even when the scheduler does not know a job’s size, it may have have partial
information about the job’s size based on its state. Consider a job with label ℓ that just
arrived and has age 0. From the scheduler’s perspective, the job’s size is an unknown
random variable drawn from the label-conditional size distribution

(ℓ B (( | ! = ℓ).

More generally, if the job has age 0, then from the scheduler’s perspective, its remaining
work is an unknown random variable drawn from the state-conditional remaining work
distribution

(ℓ,0 B ((ℓ − 0 | (ℓ > 0) = (( − 0 | ! = ℓ, ( > 0).
Of course, the scheduler needs to know the label-size distribution (!, () to compute

the above conditional distributions. We assume throughout that (!, () is indeed known, as
one can imagine inferring it from past data. However, in practice, such inference would
yield only an approximation of (!, (). While we do consider one scenario in Chapter 12
where the scheduler knows (!, () only approximately, scheduling when (!, () is only
approximately known is area with many open problems.

This thesis is written in a style where we (meaning you, the reader, and me, the author)
often inhabit the role of the scheduler. Phrases like “we know each job’s size” thus refer to
what the scheduler knows.

The Unlabeled Case

In some scenarios, we do not have any relevant information that distinguishes one job
from another other than age. This is the case where there is only one label. We call this
the unlabeled case, and we denote the single trivial label by ∗, so L = {∗}. We often drop ∗
from notation, such as writing (0 instead of (∗,0 .4

3Speci�cally, in addition to a job’s label and age, the scheduler could keep track of other quantities, such
as when the job arrived or how . Our reasons for focusing especially on a job’s label and age will become
clear in Chapter 6.

4Whether ( with a single subscript denotes a label-conditional size distribution ((ℓ for ℓ ∈ L) or a
state-conditional remaining work distribution in the unlabeled case ((0 for 0 ≥ 0) will always be clear from
context.
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What Do Labels Represent?

There is a sense in which saying “the scheduler knows each job’s label” is slightly mislead-
ing. This is because labels are a modeling tool: we are vague about what L is and what
information labels have because we as modelers get to decide. A better way to think about
labels is the other way around: “each job’s label is what the scheduler knows about it”. For
example, if we are modeling a system where the geographic origin of each job is known,
we would want the set of labels L to encode that information. We might let L be the set of
U.S. states, as in Figure 5.2.

Throughout this thesis, we typically let the set of labels be whatever is simplest for the
scheduling policy we are studying. That is, we do not include irrelevant information in
the label. For instance, when studying scheduling policies that use only job sizes and ages
to make scheduling decisions, we let each job’s label be its size, so L = R>0, even though
other information might be available to the scheduler. See Chapter 6 for examples of how
we use di�erent sets of labels for di�erent scheduling policies.

Limitations of Labels

The M/G/1 with labels turns out to be a very �exible model that is suitable for studying a
wide array of scheduling scenarios, as we demonstrate with many examples in Chapter 6.
With that said, the model has two important limitations:

• Labels must be i.i.d. across jobs (§ 5.2.2). This means that, for instance, a job’s label
cannot specify what time of day the job arrived.

• Once a job arrives, its label is �xed. The only dynamic part of a job’s state is its age,
and so a job’s state only changes while it is in service. This means that we cannot
model scenarios where the scheduler dynamically learns information about jobs
while they wait in the queue.

We will partially relax the second limitation in Chapter 14, in which we extend our model
such that, roughly speaking, a job’s label can change alongside its age while the job is
in service. However, models where a job’s state changes while waiting in the queue are
beyond the scope of this thesis.

5.2.4 Multiserver Analogue: The M/G/k
One of the main topics we study in this thesis is scheduling in multiserver systems. Most
of our work on this topic studies the M/G/k, the central-queue multiserver analogue of the
M/G/1. The only di�erence between the M/G/1 and M/G/k is the servers:

• The M/G/1 has a single server with service rate 1.
• The M/G/k has : ≥ 2 servers, each with service rate 1/: . That is, while a job is in

service, its work decreases and age increases at rate 1/: . A job of size B thus requires
:B time in service to complete.

All other aspects of the M/G/k are the same as the M/G/1: we have the same M/G arrival
process, and the scheduler still knows each job’s label and age.
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Using service rate 1/: for the M/G/k’s servers is, of course, an arbitrary convention.
However, it plays an important intuitive role in our analysis. The M/G/k is a notoriously
di�cult system to analyze directly, even when using the simplest scheduling policies
[73, 82]. Our general approach is to analyze the M/G/k by comparing it to an M/G/1
experiencing the same arrival process. Giving both systems total service rate 1 makes this
comparison a “fair �ght”, meaning the systems behave similarly enough that we can gain
insight into the M/G/k by studying the considerably simpler M/G/1.

The M/G/k is a central-queue system, so the scheduler is free to assign any job to any
server. Most of our multiserver results are proven for the M/G/k. However, a few of our
results apply to any system with M/G arrivals (Ch. 8), or even to systems with other arrival
processes (Ch. 15).

5.3 Scheduling

The system’s scheduler decides which jobs to serve at every moment in time. The procedure
the scheduler uses to make this decision is called the system’s scheduling policy, or simply
policy when it is clear that scheduling is being discussed. Having already described what the
scheduler knows about each job (§ 5.2.3), we now give some simple examples of scheduling
policies (§ 5.3.1). We then discuss preemption and server sharing, which feature in several
of the example policies, in more detail (§ 5.3.2).

5.3.1 Examples of Scheduling Policies
All of the policies below are described assuming a single-server system like the M/G/1,
but most of them have analogues for central-queue multiserver systems like the M/G/k
(Ch. 6). We allude throughout our discussion to the mean response time metric, which is
the average amount of time jobs spend in the system (§ 5.4.1). We discuss mean response
times in more detail in Section 5.5.

Policies that Treat All Jobs the Same Way

If queueing systems have a single default scheduling policy, it is unquestionably First-Come,
First-Served (FCFS), which serves jobs in arrival order. FCFS is a nonpreemptive policy:
once a job enters service, it remains in service until it completes. FCFS is appealing in
that it seems to treat jobs fairly. However, FCFS su�ers from a drawback: a single very
large job can “block” the system for a long time, delaying many other jobs. For job size
distributions with high variance, this blocking leads to poor mean response time (§ 5.5.1).
Other nonpreemptive policies, such as Last-Come, First-Serve (LCFS) and Random Order of
Service (ROS), su�er from the same issue.5

5After each completion, LCFS serves the job that most recently arrived, whereas ROS serves a job chosen
uniformly at random.
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In order to mitigate this blocking issue, a policy must be preemptive: it must occa-
sionally preempt, or interrupt, the job in service. One of the simplest preemptive policies
is Preemptive Last-Come, First-Served (PLCFS), which always serves whichever job most
recently arrived. That is, whenever a new job arrives, PLCFS preempts the job currently in
service and starts serving the new arrival. Counterintuitively, this frequent preemption
can lead to PLCFS having lower mean response time than FCFS for high-variance size
distributions [55].

Another policy that is designed to avoid blocking the server is Processor Sharing (PS).
This policy takes preemption to the extreme: it serves jobs in round-robin fashion, serving
each job for a short time X each cycle. Speci�cally, we consider PS in the X → 0 limit,
which creates the e�ect of sharing the server equally among all jobs in the system. That is,
if there are = jobs in the system, the server serves each job at rate 1/= (§ 5.3.2). By sharing
the server, PS avoids getting blocked by any one very large job.

A �nal policy that treats all jobs the same way is Least Attained Service (LAS). This
policy always serves the job of least age. If multiple jobs are tied for least age, LAS shares the
server equally among the tied jobs.6 The idea behind the LAS policy is that by prioritizing
the jobs with small ages, very small jobs will be served very quickly, without needing to
wait behind larger jobs that have been in the system for a long time.

Policies with Multiple Classes of Jobs

There are many systems where some jobs are more important than others for one reason
or another. Perhaps some requests are especially urgent, or perhaps some clients pay extra
for expedited service. One way to model such a system is to give each job a priority class.
In the simplest version, there are = classes of jobs 1, . . . , =. Class 1 has priority over class 2,
which has priority over class 3, and so on.

Two natural policies for scheduling in systems with priority classes are Preemptive
Priority (P-Prio) andNonpreemptive Priority (NP-Prio). Both policies prioritize jobs according
to their class, and both serve jobs in arrival order within each class. The di�erence between
the policies is when they make scheduling decisions.

• P-Prio makes scheduling decisions continuously. It will thus preempt a job of class 8
if a job of class 9 < 8 arrives.

• NP-Prio makes scheduling decisions at discrete points in time, namely when jobs
arrive while the server is idle and when jobs depart while the queue is nonempty.
If a job of class 8 is in service when a job of class 9 < 8 arrives, NP-Prio completes
the class 8 job then begins serving whichever job has the best priority. This next job
might be the class 9 job, but it could be a di�erent job with even better priority.

The advantage of P-Prio is that it is stricter in its prioritization: each job can essentially

6This sharing arises naturally in the following way. Suppose LAS repeatedly served the job of least age
for an interval of length X , breaking ties arbitrarily. Given multiple jobs tied for least age, this version of LAS
would alternate between them, because being served for X time increases a job’s age by X . The X → 0 limit
thus results in sharing the server, analogous to the situation with PS.
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pretend that lower priority jobs don’t exist. The advantage of NP-Prio is that it does not
require preemption to implement.

When modeling systems with multiple classes, one typically lets the labels be the set of
classes L = {1, . . . , =}, with each job labeled by its class. However, one would use a larger
set of labels if each job carried additional pertinent information in addition to its class.

We have described P-Prio and NP-Prio for a �nite number of classes above, but the
same descriptions easily generalize to any totally ordered set of classes.

Policies that Use Job Size Information

It turns out that to achieve low mean response time, it is crucial to use information about
each job’s size. The intuition is that if the scheduler serves a small job before a large job,
that causes a small amount of waiting, whereas serving the large job before the small job
causes a large amount of waiting.

One way to prioritize jobs by size is to use P-Prio and NP-Prio, using a job’s size as
its class and prioritizing smaller sizes. The resulting policies are more commonly called
Preemptive Shortest Job First (PSJF) and Shortest Job First (SJF), respectively. For most
size distributions, PSJF has lower mean response time than SJF, especially when the size
distribution has high variance [55].

However, it is possible to do even better than PSJF when it comes to minimizing mean
response time. PSJF prioritizes each job using its initial amount of work, namely its size. But
this may be di�erent than the amount of work the job currently has, namely its remaining
work. When deciding the order in which to serve two jobs, we cause the least amount of
waiting by considering the jobs’ remaining work, as opposed to their sizes.

The policy that always serves the job of least remaining work is called Shortest Remain-
ing Processing Time (SRPT). A classic result in scheduling theory is that SRPT minimizes
mean response time in single-server queueing systems under very general conditions [116],
even when arrivals are adversarial rather than stochastic (§ 5.1.3).

5.3.2 Preemption and Server Sharing

Several of the scheduling policies described in Section 5.3.1 preempt jobs, with PS and
LAS using very frequent preemption to share the server between multiple jobs. We take a
moment here to describe more precisely the assumptions we make about preemption and
server sharing.

Preemption Is Free

We assume that when the scheduler preempts a job to begin serving a di�erent job, the
switch occurs with no overhead and no loss of work.

• No overhead means that preemption is immediate: the server switches instantly from
serving one job to serving another.
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• No loss of work means that when a job is preempted, its remaining work and age are
una�ected.

Our default assumption is that the scheduler may preempt jobs at any time, though we
occasionally make more restrictive assumptions (Chs. 9, 14, and 16).

Server Sharing Follows from Free Preemption

Our assumptions about preemption allow the server to rapidly switch between a number
of jobs, e�ectively sharing a server between multiple jobs. It turns out that the simplest
approach to modeling this phenomenon is to explicitly allow the scheduler to share the
server between multiple jobs. Formally, we allow a server with service rate D ≥ 0 may
serve any number of jobs =, serving the 8th such job at rate E8 ≥ 0. Serving a job at rate E
decreases its remaining work and increases its age at rate E . The total job service rate must
not exceed the server’s service rate, meaning

∑=
8=1 E8 ≤ D.

For simplicity of language, we often use phrases that assume that servers serve one
job at a time. For example, we often discuss “the job in service” at a server. These phrases
should be understood as meaning what they would if the scheduler really were alternating
rapidly between serving di�erent jobs to simulate sharing. For example, “the job in service”
at a server refers to a randomly chosen job among those that are currently sharing the
server, with with each job 8 being chosen with probability proportional to its service rate E8 .

Server Sharing with Multiple Servers

Our above discussion of server sharing is su�cient for systems where each queue is
connected to its own server, such as the M/G/1. However, there is an additional subtlety
we must consider for central-queue multiserver systems, such as the M/G/k. The M/G/k
has : servers, each with service rate 1/: . We can think of the scheduler as assigning each
job a service rate at every moment in time. There are two types of constraints on what the
scheduler’s actions:

• Because the total service rate of all the servers is 1, it must be that the total service
rate of all jobs is at most 1.

• Because we intend server sharing to be the limit of rapidly alternating which job
is in service at each server, it must be that each job’s service rate is at most 1/: .
Otherwise, we would be e�ectively allowing two servers to serve the same job at
the same time.

5.4 �eueing Metrics

5.4.1 Response Time
One of the most important aspects of a queueing system’s performance is jobs’ response
times. A single job’s response time is the amount of time it spends in the system between
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arrival and departure. This includes time queueing and time in service. In most queueing
systems, lower response time, and in particular less time spent queueing, is generally
desirable.

Of course, the queueing models we study involve many jobs arriving over time, so the
natural object to study is a system’s response time distribution, denoted ) . Intuitively, ) is
the distribution of response times we would observe by watching a very large number of
jobs pass through the system. We give two more precise de�nitions in Section 5.4.2.

There are multiple response time metrics one might hope to optimize, including:
• Mean response time E[) ]: the average amount of time jobs spend in the system.
• Response time tail probability P[) > C]: the probability jobs have response time larger

than a parameter C .
• Response time quantile C@ = min{C ≥ 0 | P[) ≤ C] ≥ @}: the threshold C@ such that (at

most) a @ fraction of jobs have response time at most C@ .
Which of these metrics is most important depends on the system being modeled. For
example, when designing for the goal of preventing especially large response times, tail
probabilities and quantiles would be more important metrics to optimize than the mean.

In this thesis, we focus primarily on mean response time and the asymptotic response
time tail, meaning the asymptotic behavior of P[) > C] in the C →∞ limit. While we do
not discuss quantiles speci�cally, results about the asymptotic tail imply results about the
@ → 1 limiting behavior of quantiles.

What Factors A�ect Response Time?

For concreteness, consider an M/G/1 with labels. Its response time distribution ) is a
function of the following factors:

• The M/G arrival process, namely the arrival rate _ and label-size distribution (!, ().
• The scheduling policy. For example, we have seen in Section 5.3.1 that scheduling

can a�ect mean response time E[) ].
Beyond the M/G/1, other aspects of the queueing system’s architecture can a�ect its
response time. For example, in an M/G/k, the number of servers : is an important factor. To
reduce clutter, we often leave) ’s dependence on the various factors that a�ect it implicit in
our notation. When we wish to make some dependence explicit, we write it as a subscript.
For the most part, this means specifying the scheduling policy: )c denotes the response
time distribution under policy c .

The above discussion applies not just to response time, but also to many other quantities
that depend on the system parameters, such as the distribution of the number of jobs in
the system (§ 5.4.3). In particular, we use the same subscript notation convention.

Some of the above factors a�ect response time in obvious ways. For instance, increas-
ing the arrival rate essentially always increases response times. But other e�ects are
less straightforward. For instance, in an M/G/1, suppose we change ( by increasing its
variance Var[(] while keeping its mean E[(] �xed.

• Under FCFS, mean response time E[) ] increases as a function of Var[(] (§ 5.5.1).
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• Under SRPT, the speci�cs of ( matter, but as a rule of thumb, mean response time
E[) ] decreases as a function of Var[(] [146].

The fact that scheduling can counterintuitively a�ect response time is one of the main
reasons I believe scheduling theory is so important (Ch. 1).

5.4.2 Characterizing Response Time with PASTA
We introduced ) earlier as the distribution of response times one would observe by
watching a large number of jobs pass through the system. More formally, if )= is the
distribution of the �rst = jobs’ response times, then)= converges in distribution to) in the
= →∞ limit (§ 5.6.1).

For systems with M/G arrivals, we can de�ne ) in another way. Consider a generic job,
meaning one with label-size pair drawn from (!, (), arriving to a steady-state system. This
new arrival’s response time is a random variable distributed as ) .

The equivalence of the above two ways of de�ning ) follows from the Poisson Arrivals
See Time Averages (PASTA) property [150] and our assumption that the systems we study
are in steady state (§ 5.6.1). While the �rst perspective is the reason we really care about) ,
the second perspective is often the more useful one when it comes to characterizing )
theoretically (Ch. 7). In particular, we often compute ) by way of the conditional response
time distribution

) (ℓ, B) B () | ! = ℓ, ( = B),
which is the response time distribution of a job with given label ℓ and size B arriving to a
steady-state system.7

5.4.3 Number-in-System
Another important aspect of a queueing system’s performance is the number of jobs in
the system, which we call the number-in-system, denoted # .

By default, # refers to the number-in-system of a steady-state system, but we occasion-
ally look at non-steady-state scenarios. We use the same convention for other quantities
de�ned in terms of the system’s current state (§ 5.6.1).

Just as one can de�ne multiple metrics from the response time distribution ) , one can
de�ne multiple metrics based in the number-in-system distribution # . In this thesis, we
primarily concern ourselves with the mean number-in-system E[# ]. This is largely because
the mean number-in-system is related to mean response time via Little’s law [84], which
states

E[# ] = _E[) ] .
Little’s law holds for a wide variety of queueing systems, even those with arrival processes
other than M/G arrivals, so long as there is a well-de�ned average arrival rate _. Its main

7The de�nition of ) (ℓ, B) contains a mild abuse of notation: we use the notation for distributions to stand
for random variables with those distributions. We use similar abuse of notation throughout this thesis, as
discussed in more detail in Section 5.6.2.
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implication is that given a �xed arrival process, minimizing mean response time and
minimizing mean number-in-system are equivalent objectives.

5.4.4 Weighted Response Time and Holding Cost
Metrics based on response time ) or number-in-system # are limited in that they treat
all jobs the same way. However, there are various reasons we might want a performance
metric that gives di�erent jobs di�erent values.

• In a system with multiple priority classes, we might care more about the response
times of jobs with better priority.

• The amount of delay that is acceptable for a job may depend on its size. For example,
delaying a 100-minute job for 10 minutes may barely be noticed, whereas delaying a
1-minute job for 10-minutes may feel like a major delay.

In these situations, a metric that assigns di�erent jobs di�erent weights may be more
appropriate. One notable example of a weighted response time metric is slowdown ) /( ,
the ratio of a job’s response time to its size.

More generally, we can consider each job to have a holding cost, and we might aim
to minimize the mean system holding cost, namely the mean total holding cost of all jobs
in the system. We do not discuss holding cost in detail until Part III, so we defer further
details to Chapter 14.

5.5 M/G/1 Crash Course

We have thus far discussed a variety of scheduling policies (§ 5.3) and performance metrics
(§ 5.4). One of the main goals of this thesis is to answer many versions of the following
question:

How well does a given scheduling policy perform on a given metric in a given
queueing system?

As a warm-up to answering many di�cult instances of this question in the rest of the
thesis, we take a moment to answer some simple versions of it by reviewing the M/G/1
response times of two basic scheduling policies: FCFS and PLCFS. With that said, the true
purpose of this section is to introduce two key queueing theory concepts, system work
(§ 5.5.1) and busy periods (§ 5.5.2). We use these concepts not just to analyze FCFS and
PLCFS here but to analyze a great deal of scheduling policies throughout this thesis.

5.5.1 System Work
As discussed in Section 5.4.2, one way to analyze a system’s response time is to imagine
a job arriving to a steady-state system. To that end, consider a generic job arriving to a
steady-state M/G/1 using FCFS. We can divide the job’s response time into two parts: time
in service and time queueing.
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• The amount of time the job spends in service is simply its size ( .
• Because jobs are being served in arrival order, the amount of time the job spends

queueing is the total remaining work of all the other jobs that in the system when it
arrives. We call this quantity the system work, denoted, .

Because future arrivals are independent of the past (§ 5.2.2), the arriving job’s size (
and system work, it observes are independent, so we can write response time as an
independent sum

)FCFS =st , + (, (5.1)

where =st denotes equality of distributions (§ 5.6.2).
Of course, we have only shifted the problem of determining FCFS’s response time to the

problem of characterizing the steady-state system work, . Fortunately, characterizations
of, are among the earliest results obtained for the M/G/1. We give a derivation of our
own in Chapter 8, but for now, we focus on just its mean, which is [55]

E[, ] =
_
2E[(

2]
1 − d =

d

2E[(] +
_
2Var[(]

1 − d .

We thus obtain a formula for FCFS’s mean response time:

E[)FCFS] =
_
2E[(

2]
1 − d + E[(] =

(
1 − d

2
)
E[(] + _

2Var[(]
1 − d . (5.2)

Takeaways for FCFS’s Response Time

The most important things to notice about E[)FCFS] is how it is a�ected by load d and job
size variance Var[(].

• As load d approaches 1, which is the maximum load under which the system is stable
(§ 5.6.1), mean response time E[)FCFS] diverges. This occurs under any scheduling
policy, although some have a growth rate slower than FCFS’s Θ

( 1
1−d

)
(§ 2.1.2).8

• As job size variance Var[(] increases while E[(] and d remain �xed, mean response
time E[)FCFS] increases. In particular, arbitrarily large variance can yield arbitrarily
large mean response times, even at low loads. We will soon see that not all scheduling
policies su�er from this issue (§ 5.5.2).

System Work Is Scheduling-Invariant

Above, we reduced the problem of characterizing FCFS’s response time)FCFS to the problem
of characterizing the steady-state system work, . Why is this a helpful step?

One of the main reasons system work is such a helpful concept is that in single-server
systems like the M/G/1, system work is scheduling-invariant, meaning the same under

8Recall from Section 5.2.2 that when we discuss a quantity varying as a function of changing load, we
mean that the arrival rate is changing while the size distribution remains �xed.
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0 time
0
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job J job K

J’s busy period K’s busy period

Figure 5.3. System work over time under a non-idling scheduling policy in an M/G/1. Each arriving
job causes an upward jump, increasing system work by the arriving job’s size. During busy periods,
meaning whenever system work is nonzero, system work decreases at rate 1.

any scheduling policy, under a very mild condition: the system must be using a non-idling
policy, meaning one that never leaves the server idle while system work is nonzero. This is
because system work undergoes the same upward jumps (due to arrivals) and downward
slopes (due to service) under any non-idling policy, as illustrated in Figure 5.3.

In the interest of transparency, I should mention that analyzing )FCFS and analyzing,
are tasks of essentially equivalent di�culty, as witnessed by (5.1). But the general strategy of
reducing analysis of a scheduling policy’s response time to scheduling-invariant quantities
will serve us well throughout this thesis, including in the very next section.

5.5.2 Busy Periods
We now move on to analyzing the response time of PLCFS. Just as system work helped us
analyze FCFS, another queueing theory concept will help us analyze PLCFS: busy periods.
Roughly speaking, a busy period is an interval of time during which a system has nonzero
system work, as illustrated in Figure 5.3. After de�ning busy periods more precisely, we
see they are exactly what we need to understand to analyze PLCFS.

Somewhat confusingly, the term “busy period” actually refers to multiple related but
slightly di�erent concepts. In an attempt to clarify, we introduce some more speci�c terms
below. Consider a particular job J that at some point arrives to an M/G/1. The busy period
started by job J, or simply J’s busy period, consists of the following two entities:

• The busy period’s tree is the following random rooted tree. Let every job be a vertex,
and draw a directed edge from a job K to another job L if L arrives while K is in
service.9 The busy period’s tree is all vertices accessible from J, as illustrated in
Figure 5.4.

9If the server is sharing between multiple jobs when a job L arrives (§ 5.3.2), we choose which job from
which to draw the edge to L randomly from among those in service, picking each job with probability
proportional to its service rate when L arrives.
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Figure 5.4. Tree of job I’s busy period. An edge from a job A to another job B indicates that B
arrives while A is in service. Job J’s busy period’s tree (gray box) is the subtree rooted at J.

• The busy period’s work is the total size of all jobs in the busy period’s tree. We can
divide work into initial work, which is J’s size, and new work, which is the total size
of the other jobs in the tree.

When unambiguous, we occasionally use just “busy period” to refer to a busy period’s tree
or work. Some busy periods are highlighted in Figure 5.3.

We write �(B) for the distribution of the work of a busy period started by a job of
size B , and we write � B �(() for the work of a generic busy period, meaning a busy period
started by a generic job with size distributed as ( . Characterizations of �(B) and � are
standard results in queueing theory. For now, we show just their means [55]:

E[�(B)] = B

1 − d ,

E[�] = E[(]
1 − d .

PLCFS Response Time Is a Busy Period

What is PLCFS’s response time distribution? Recall from Section 5.3.1 that PLCFS is the
policy that always serves whichever job most recently arrived. By PASTA (§ 5.4.2), it
su�ces to consider the response time of a generic job, which we will call J, arriving to a
steady-state M/G/1.

What is job J’s response time? When J arrives, it becomes the most recently arrived
job in the system, so it immediately begins service. However, new arrivals may preempt J
before it completes, and still newer arrivals may preempt those new arrivals, and so on.
The key observation is that PLCFS prioritizes another job over J if and only if the other job
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is in J’s busy period’s tree. This means J’s response time is its busy period’s work, so

)PLCFS =st �,

E[)PLCFS] =
E[(]
1 − d .

In particular, note that PLCFS’s mean response time does not depend on the job size
distribution beyond its mean. This is in contrast to FCFS, which, as shown in (5.2), depends
also on the variance.

Busy Periods are Scheduling-Invariant

One important feature of busy periods in the M/G/1 is that they are scheduling-invariant.
Strictly speaking, as we explain below, busy periods are only scheduling-invariant in a dis-
tributional sense, but this is adequate for our purposes. Busy periods thus join system work
as scheduling-invariant quantities that prove useful for a variety of analyses throughout
this thesis.

To consider how scheduling decisions a�ect the busy period of some job J, let .1 be the
list of label-size pairs of arrivals that occur while J is in service under some scheduling
policy, and let .2 be the same for another policy. On one hand, changing when J is served
will a�ect which jobs arrive while serving J, so .1 ≠ .2 in general. This means busy periods
are not scheduling-invariant for a �xed arrival sequence. But on the other hand, we do not
have a �xed arrival sequence: M/G arrivals are a stochastic process. In particular, arrivals
are distributed, roughly speaking, “time-invariantly”. The upshot is that under M/G arrivals,
we have.1 =st .2, meaning.1 and.2 have the same distribution. Applying this observation
recursively, we �nd that the distribution of J’s busy period is scheduling-invariant.10

An important consequence of scheduling invariance of busy periods is that we can
broaden our view on what can start a busy period. Instead of limiting ourselves to busy
periods started by a job, we can consider busy periods started by an amount of initial work.
This work can come from multiple jobs, and it can even include parts of jobs. Busy periods
started by initial work E are essentially the same as busy periods started by a job of size E .11

In particular, such a busy period’s work distribution is also �(E).

10In the queueing theory literature, scheduling invariance of busy periods under M/G arrivals is sometimes
phrased as a system having job-linked arrivals [44, Section 4.8]. The idea is that we can imagine that because
the arrivals during a job’s service have a scheduling-invariant distribution, we may view the arrivals during
a job as being predetermined.

11The only di�erence is that when discussing the busy period’s tree, the root represents the initial work,
as opposed to representing a speci�c job.
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5.6 Additional Preliminaries

5.6.1 Convergence to Stochastic Equilibrium

We assume that the systems we study in this thesis are ergodic and converge to a stochastic
equilibrium. To make this precise, we need to specify what the state of the system is.

Recall that we write # for the number of jobs in the system. The state of the system
consists of the following:

• The number of jobs # .
• The state (!8, �8) of the 8th job in the system for all 8 ∈ {1, . . . , # }.
• Any additional state the scheduling policy needs to maintain to make its scheduling

decisions.
Provided the scheduling policy’s state is detailed enough, an M/G system with the above
state description becomes a continuous-time Markov process.

All the speci�c M/G systems we study are either M/G/1 or M/G/k queues, and their
scheduling policies do not require tracking any additional state at all. This makes them (non-
lattice) renewal processes, so d < 1 ensures positive recurrence and thereby our ergodicity
and equilibrium assumptions. However, the ergodicity and equilibrium assumptions are
implicit in results that apply to all M/G systems.

5.6.2 (Abuse of) Notation for Distributions and Random
Variables

Our notation throughout this thesis does not distinguish between two related but subtlety
di�erent concepts:

• distributions, namely probability measures; and
• random variables, which have distributions.
Given a distribution+ , we also write+ for a new random variable with that distribution.

Unless otherwise speci�ed, this new random variable is independent of all other random
variables. A notable exception is the label ! and size ( of a generic job, which we assume
to be correlated according to the joint label-size distribution (!, ().

In the other direction, given a random variable + to do with the system state (e.g.
system work, ), we also write + to denote its steady-state distribution. More generally,
random variables that depend on the system state refer to steady-state systems unless
otherwise noted.

We use the following notation for some common distributions:
• Bernoulli(?): a “probability-? coin �ip” which is 1 with probability ? and is 0 other-

wise.
• Geo(?): geometric distribution with parameter ? and support at 0. This is the number

of independent probability-? coin �ips before a 1 occurs, not counting the �nal 1.
• Normal(`, f): Gaussian distribution with mean ` and standard deviation f .
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We write =st for equality in distribution. That is,* =st + means P[* > C] = P[+ > C]
for all C ∈ R. Similarly, ≤st denotes the usual stochastic partial order, so * ≤st + means
P[* > C] ≤ P[+ > C] for all C ∈ R.

5.6.3 Excess Distributions
In a steady-state queueing system, there is some probability the server is in the middle
of serving a job. Analyzing the system often involves determining the distribution of the
amount remaining work of the job in service. This is given by the excess of the job size
distribution ( , as de�ned below.

De�nition 5.1. The excess of distribution + , denoted E+ , is the distribution de�ned by
the tail function

P[E+ > C] B 1
E[+ ]

∫ ∞

C

P[+ > D] dD.

When we wish to denote = independent samples of the excess distribution E+ , we denote
them (E+ )1, . . . , (E+ )= .

5.6.4 Laplace-Stieltjes Transforms
De�nition 5.2. The Laplace-Stieltjes transform (LST) of distribution + , denoted L[+ ], is
the function

L[+ ] (\ ) B E[exp(−\+ )] .

Below, we review the well-known LST formulas for the excess of a distribution, the
system work in an M/G/1, and an M/G/1 busy period’s work.

Proposition 5.3. Let + be a nonnegative distribution. The LST of the excess E+ is

L[E+ ] (\ ) = 1 − L[+ ] (\ )
\E[+ ] .

Proposition 5.4. The LST of the system work, in an M/G/1 is

L[, ] (\ ) = 1 − d
1 − dL[E(] (\ ) .

Proposition 5.5. The LST of the work of a busy period started by a random amount of initial
work + is

L[�(+ )] (\ ) = L[+ ] ([ (\ )),
where [ (\ ) is the principal solution to12

[ (\ ) = \ + _
(
1 − L[(] ([ (\ ))

)
.

12Speci�cally, when \ > 0, there is a unique positive real solution, and taking the analytic continuation
covers other values of \ .
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While the busy period LST is given in terms of the implicitly de�ned [ (\ ), the deriva-
tives of busy period LSTs yield equations that can be solved to obtain explicit expressions
for any integer moment.

One can show using Proposition 5.5 that busy periods are additive.

Corollary 5.6. Busy periods are additive in the following sense: for any independent non-
negative random variables * and +,

�(* ++ ) =st �(* ) + �(+ ),

where the two busy periods on the right-hand side are independent.

5.6.5 Neglected Measure-Theoretic Technicalities
This thesis plays somewhat fast and loose with measure theory. For example, we ought
to assume that the set of labels L is a measure space, we should maybe assume that (
has no singular component, and we should verify that various functions on L ×R>0 are
measurable. There are even more measure-theoretic technicalities to consider for the more
general job model we use in Part III.

I �nd it easier to communicate the main ideas in this thesis without worrying about
measure-theoretic technicalities, and I hope that most readers will appreciate this choice.
Those concerned about the details should rest assured that in a great many cases of
practical interest, the technicalities can be worked out easily. More conservatively, all of
the su�ciently general theoretical results in this thesis, particularly those in Part III, can
be understood as “reductions to measure theory”. See Chapter 14 for further discussion.

5.6.6 Other Notes on Notation and Terminology
We conclude with some miscellaneous notes on notation and terminology.

• We use 5 (G−) and 5 (G+) to refer to right and left limits of a function 5 at G .
• We use (G)+ B max{G, 0} to denote the positive part of G .
• When it can be done without loss of clarity, we often omit parentheses around objects

like tuples to reduce clutter. For instance, for a function 5 applied to a tuple (G,~),
we might write 5 (G,~) instead of 5 ((G,~)).

• The terms “increasing”, “decreasing”, and “monotonic” are meant in their weak sense
unless preceded by “strictly”.

• In addition to the usual numbering of theorems, lemmas, de�nitions, etc., we also
have several numbered policies, which we use for de�nitions of scheduling policies.

Most importantly, Appendix A contains an index of notation.



Chapter 6

SOAP Policies: Describing Scheduling
with Rank Functions

There is a large body of literature analyzing the response time distributions of various
scheduling policies in the M/G/1. Unfortunately, this prior work is lacking in two signi�cant
ways.

• The M/G/1 scheduling literature is limited to relatively “simple” policies. This is a
problem because more “complex” policies naturally arise in practice, such as when
scheduling with uncertain job sizes or preemption limitations.

• The M/G/1 scheduling literature, for the most part, analyzes policies one at a time,
with occasional analyses of classes of related policies [74, 146]. This is a problem
because there is a huge space of possible scheduling policies

The next few chapters introduce SOAP: Schedule Ordered by Age-based Priority, a
framework that takes a big step towards solving both of the above problems. The SOAP
framework consists of two things:

• SOAP policies: a broad class of scheduling policies that includes many complex
policies we would like to analyze.

• SOAP analysis: a generic analysis of the response time distribution in an M/G/1 using
any SOAP policy.

This chapter introduces SOAP policies, and Chapters 7 and 8 present the SOAP analysis.
The key idea behind SOAP is to de�ne a unifying language for expressing scheduling

policies. We want this language to be �exible enough to describe a wide variety of policies,
but we also want it to be restrictive enough to admit a generic analysis of any policy
that can be expressed in the language. We thus begin this chapter by introducing a new
unifying language which provides a good balance of these features: rank functions (§ 6.1).
A SOAP policy is any policy that can be represented as a rank function. We spend most of
the chapter showcasing the breadth of the class of SOAP policies, using rank functions to
express a large fraction of the simple policies that have been analyzed previously (§ 6.2),
as well as many more complex policies that were never analyzed prior to SOAP (§ 6.3). We
conclude with a discussion of what policies are not SOAP (§ 6.4).

Throughout this section, by default, we discuss scheduling in the M/G/1 with labels
(§ 5.2), though we will brie�y discuss SOAP policies in the M/G/k (§ 6.1.5).

This chapter is based on material from Scully et al. [124].

6.1 What Is a SOAP Policy?
Given that essentially all of Part II relies on the de�nition of SOAP policies, let us immedi-
ately answer the question posed in the section title.

69
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A SOAP policy is a scheduling policy that works by always assigning each job a rank,
or numerical priority (lower is better), based on just its label and age (§ 5.2.3). A SOAP
policy is thus speci�ed by a rank function

rank :

label︷︸︸︷
L ×

age︷︸︸︷
R≥0 →

rank︷︸︸︷
R≥0

All SOAP policies thus work in the same way:

At all times, serve the job of minimal rank, breaking ties in FCFS order.

The di�erences between SOAP policies thus rest entirely in the choice of rank function.
We give a more formal de�nition of SOAP policies later in this section (§ 6.1.2). The

rest of the section motivates this de�nition (§ 6.1.1), discusses its signi�cance (§ 6.1.3), and
clari�es some technical concerns (§ 6.1.4).

6.1.1 Motivation: General, But Not Too General, Policy Class

There are many scheduling policies that work by assigning each job a numerical priority,
then serve the job with least or greatest numerical priority. Such policies are known as
index policies. For example, LAS and SRPT (§ 5.3) are both index policies: LAS always
serves the job of least age, and SRPT always serves the job of least remaining work.

Can we hope for a generic analysis of all index policies? Unfortunately, this is almost
certainly too much to ask for, because any policy can be framed as an index policy by
“retroactively” assigning indices: give the job the policy would serve priority 0, and give
jobs in the queue priority 1, then serve the job with the least numerical priority. This
construction tells us that for the notion of index policies to be helpful, we need to specify
what a job’s priority is allowed to depend on.

We can thus reduce our search for a suitable unifying language for scheduling policies to
a single question: to balance the concerns of modeling �exibility and theoretical tractability,
what should we allow a job’s priority to depend on? SOAP provides a new answer to this
question: letting a job’s priority depends only on its label and age turns out to strike a
good balance. The rest of this section de�nes the class of SOAP policies in more detail.

6.1.2 Defining SOAP Policies and Rank Functions

SOAP policies are the subset of index policies where a job’s priority depends only on its
label and age. We call a job’s priority its rank, and we use the convention that lower rank
means better priority, so a SOAP policy always serves the job of minimal rank. We formalize
this below.
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0 0

0

rankLAS(0) B 0

(a) Rank function of LAS.

B

B

0 0

0

rankSRPT(B, 0) B B − 0

(b) Rank function of SRPT for job of size B .

Figure 6.1. Rank functions representing LAS (Pol. 6.4) and SRPT (Pol. 6.10), both of which are
SOAP policies.

De�nition 6.1.
(a) A rank function on label set L is a function rank : L × R≥0 → R≥0 that maps

each label-age pair (ℓ, 0) to a number rank(ℓ, 0), which we call a rank. If a job is in
state (ℓ, 0), then we call rank(ℓ, 0) that job’s rank.

• In the unlabeled case, meaning whenL is a singleton (§ 5.2.3), we drop the trivial
label from the notation, writing just rank(0). We also call the rank function
itself unlabeled in this case.

(b) A SOAP policy is a scheduling policy c such that there exists some rank function
rankc on some label set such that c always serves the job assigned minimal rank by
rankc , breaking ties in FCFS order by serving whichever job arrived earliest among
the tied jobs. We say that rankc represents policy c .

• When a job J has priority over another job K, we say J outranks K. This happens
when J’s rank is strictly less than K’s, or when J and K have equal ranks but
the tiebreaker favors J.

• When we wish to disambiguate with (c) below, we use the term SOAP policy
with FCFS tiebreaking.

(c) A SOAP policy with LCFS tiebreaking is the same as an ordinary SOAP policy as
de�ned in (b), except ties are broken in LCFS order by serving whichever job arrived
latest among the tied jobs.

As simple examples, LAS is the SOAP policy represented by rankLAS(0) B 0, and SRPT
is the SOAP policy represented by rankSRPT(B, 0) B B − 0, where a job’s label B is its size.
These rank functions are illustrated in Figure 6.1. We give many more examples of SOAP
policies in Sections 6.2 and 6.3.

For the most part, whenever we de�ne a SOAP policy c , we specify a canonical rank
function rankc representing it, which we call “the” rank function of c . This is despite the
fact that many other rank functions can represent c . For example, we de�ne rankLAS(0) B 0
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above, but any strictly increasing function of 0 represents LAS.
Whenever we are discussing the rank function of a speci�c SOAP policy c , we typically

include c in the subscript, as in rankc . When discussing a generic rank function of an
unspeci�ed SOAP policy, we typically omit the subscript.

6.1.3 “Simple” vs. “Complex” SOAP Policies
As we will see in Section 6.2, many classic scheduling policies that have been previously
analyzed the queueing literature are SOAP policies. However, these policies are all relatively
simple compared to other SOAP policies. We take a moment here to outline several features
rank functions that allow for expressing policies that are signi�cantly more complex than
those previously analyzed.

Complexity from Nonmonotonicity

De�nition 6.2.
(a) A rank function rank is increasing if rank(ℓ, ·) is increasing for all ℓ ∈ L. We de�ne

decreasing rank functions similarly. A rank function is monotonic if it is either
increasing or decreasing. Otherwise, it is nonmonotonic.

(b) A SOAP policy c is increasing if it can be represented by an increasing rank function.
We de�ne decreasing and monotonic SOAP policies similarly. If a SOAP policy is not
monotonic, meaning it can only be represented by nonmonotonic rank functions,
then it is nonmonotonic.

Virtually all previously analyzed SOAP policies1 are monotonic, including all of the
examples in Section 6.2. This is likely because, as we explain in Chapter 7, nonmonotonic
policies are signi�cantly more di�cult to analyze. Nevertheless, nonmonotonic policies
arise naturally in many scenarios, such as scheduling with uncertain job sizes (§ 6.3.1) or
under preemption limitations (§ 6.3.2). The fact that we can analyze the M/G/1 response
time of any SOAP policy, and in particular nonmonotonic ones, is one of the main ways
SOAP advances the state of the art in queueing theory.

Complexity from Policy Mixture and Multiple Types of Labels

SOAP policies that were previously analyzed tend to be represented by rank functions
where the set of labels L contains, roughly speaking, one type of label. For instance, LAS
uses a single trivial label, and SRPT has all jobs labeled by their size. But what if one only
knows the sizes of certain jobs? One could model this scenario using a label set like2

L = {unknown} ∪ {known(B) | B > 0}.
1While we refer to “previously analyzed SOAP policies” throughout this chapter, we emphasize that such

policies were not identi�ed as SOAP policies when they were �rst analyzed. SOAP policies and the SOAP
analysis were not introduced until 2018 [124].

2Below, unknown and known are purely symbolic, making L analogous to an algebraic data type in a
programming language like ML, Haskell, and Rust. Being symbolic means unknown is equal to itself and
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Using multiple types of labels allows one to express mixtures of policies. For instance, the
rank function

rank(unknown, 0) B 0,

rank(known(B), 0) B B − 0.

is a mixture of LAS and SRPT. We are aware of only a few previously analyzed SOAP
policies that mix policies together [49, 105], and none use multiple types of labels like in
the example above.

Complexity from Multidimensional Ranks

De�nition 6.1 de�nes rank functions to always have codomain R≥0. However, one can
in principle use a set of ranks with a richer ordering than R≥0, such as R2

≥0 ordered
lexicographically. We are not aware of any previously analyzed SOAP policies that requires
multidimensional ranks to represent, but the SOAP analysis we present in Chapter 7 applies
essentially verbatim to multidimensional ranks as well. See Scully et al. [124] for more
details on multidimensional ranks.

With that said, while one can construct SOAP policies that do require multidimensional
ranks, we �nd that single-dimensional ranks are expressive enough for the policies we
wish to study. So for simplicity of presentation, we use R≥0 as the set of ranks throughout.

6.1.4 Clarifying Remarks on SOAP Policies and Rank Functions

Rank Ties and Server Sharing

Section 5.3.2 outlines how rank ties in LAS naturally lead to server sharing: when many
jobs are tied for minimal rank, whichever job is favored by the tiebreaking rule stops being
tied for minimal rank after an instant of service, due to its age increasing. Similar server
sharing can happen under any SOAP policy whose rank function at some point increases
with age. We outline how this works in detail in Algorithm 6.1. The algorithm is the natural
result of imagining that the server has a minimum service quantum X , then taking the
X → 0 limit.

Is SOAP Only for the M/G/1 with Labels?

Unless otherwise stated, all the examples in this chapter assume an M/G/1 with labels. While
labels are central to the de�nition of SOAP policies, nothing in the de�nition explicitly
mentions any assumptions about the arrival process. Can SOAP be de�ned for systems
other than the M/G/1 with labels? Extending SOAP to other M/G arrival systems, like
the M/G/k, is generally straightforward (§ 6.1.5). But even beyond that, the answer is at

nothing else, and known(B) is equal only to other terms of the form known(B ′) for some B ′ > 0, with equality
if and only if B = B ′. We reserve typewriter font for symbolic terms like these. A similar example arises in
Policy 6.18.
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Algorithm 6.1. SOAP policy tiebreaking with server sharing.

Input A rank function rank and a set J of jobs currently tied for minimal rank.
Output Subset of jobs in J to serve, with service rates if sharing the server between

multiple jobs.
Procedure

• Let K be the subset of J consisting of jobs with decreasing rank, meaning they are
in states (ℓ, 0) with d

d0 rank(ℓ, 0) ≤ 0.
• If K is nonempty, use FCFS tiebreaking within K , meaning serve the job in K that

arrived earliest.
• Otherwise, K is empty, so share the server among all jobs in J , choosing service

rates such that all the jobs’ ranks increase at the same rate. That is, serve a job in
state (ℓ, 0) at rate proportional to 1

/ d
d0 rank(ℓ, 0), normalizing such that the total

service rate is 1.

least in principle yes: one can imagine a variety of arrival processes, both stochastic and
adversarial (§ 5.1.3), where each job is assigned a static label when it arrives.

However, it turns out that for the SOAP analysis, it is crucial that labels, and more
generally label-size pairs, are i.i.d. across jobs. This is one of the core assumptions of the
M/G/1 with labels (§ 5.2.3), and it turns out to be one of the main limits on what policies
the SOAP analysis applies to. As such, for the purposes of this thesis, policies that could
be represented by a rank function but require non-i.i.d. labels are not SOAP policies. We
give some examples of such policies in Section 6.4.3.

Terminology: “Rank” vs. “Index”

In De�nition 6.1, we refer to a job’s numerical priority as its “rank”, with lower rank
indicating better priority. This is somewhat at odds with conventional terminology for
index policies, where a job’s numerical priority is called its “index”, with higher index
indicating better priority. A notable example is the literature on the Gittins policy [44],
which is in fact usually called the Gittins index policy and de�ned as serving the job of
maximal Gittins index.

In light of this, why do we introduce the additional term “rank” and use the lower-
is-better convention? Why not stick with “index” and higher-is-better? There are two
reasons, though both are ultimately matters of personal preference.

• It is useful to have separate terms for numerical priority in general, for which we
use the term “index”, and numerical priority that speci�cally only depends on a job’s
label and age, for which we use the term “rank”.3

• While I �nd that each of lower-is-better and higher-is-better can be more intuitive
in di�erent cases, for most of the scheduling policies in this thesis, I prefer lower-is-

3In Chapter 14, we introduce a more general job model where a job’s state might not be its label-age pair,
but we continue to use “rank” to refer to priroity that depends only on that more general job state.
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better. In particular, SRPT is nicely framed as lower-remaining-work-is-better, and
several other policies we study are, in one way or another, generalizations of SRPT.

Technical Restrictions on Rank Functions

When discussing server sharing above, we implicitly assumed the existence of (right)
derivatives d

d0 rank(ℓ, 0). We also assume throughout Chapters 7 and 8 that various expec-
tations related to rank functions are well de�ned. The following assumptions su�ce and
hold in essentially all cases of practical interest, so we assume them throughout.

Assumption 6.3.
(a) The label set L is (a metric space isomorphic to) a subset of R= for some integer

= ≥ 0.
(b) For all ages 0 ≥ 0, the function rank(·, 0) is piecewise continuous.
(c) For all labels ℓ ∈ L, the function rank(ℓ, ·) is piecewise di�erentiable and is upper

semi-continuous, meaning rank(ℓ, 0) ≥ max{rank(ℓ, 0−), rank(ℓ, 0+)}.

These assumptions become even less restrictive if we allow a richer space of ranks
than R≥0 (§ 6.1.3). They can also likely be relaxed by stating them in measure-theoretic
language, but doing so is outside the scope of this thesis (§ 5.6.5).

6.1.5 SOAP Policies in the M/G/k

We have thus far discussed SOAP policies as they apply in a single-server setting like the
M/G/1 with labels. SOAP policies have natural interpretations in multiserver systems as
well. In the M/G/k, a SOAP policy serves the : jobs of minimal : minimal ranks, serving
all jobs if there are : − 1 or fewer. There are a few subtle details to note in the M/G/k
case: server sharing can become somewhat intricate (§ 5.3.2), and multiple rank functions
that represent the same policy in the M/G/1 may represent di�erent policies in the M/G/k.
However, these details will not concern us.

When we wish to disambiguate between a SOAP policy c being used in a single-server
system and c being used in a multiserver system, we write c-1 and c-k for the single-server
and multiserver versions, respectively. This disambiguation is useful in Part III, where we
compare an M/G/k using a multiserver policy c-k to an M/G/1 with the same total service
rate (§ 5.2.4) using the analogous single-server policy c-1.

6.2 Previously Analyzed “Simple” SOAP Policies

6.2.1 Simple SOAP Policies that Treat All Jobs the Same Way

For a SOAP policy, treating all jobs the same way corresponds to the unlabeled case.
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1

0 0

0

rank(0) B 1(0 = 0)

(a) Rank function of FCFS (or LCFS, if we use
LCFS tiebreaking).

1

0 0

0

rank(0) B 1

(b) Rank function of FCFS (or PLCFS, if we use
LCFS tiebreaking).

Figure 6.2. Two rank functions that represent FCFS (Pol. 6.5). Both rely on the fact that we use
FCFS tiebreaking when multiple jobs have the same rank. If we use LCFS tiebreaking instead, then
the two rank functions instead represent two di�erent policies: LCFS (Pol. 6.6) and PLCFS (Pol. 6.7).

Policy 6.4. The Least Attained Service (LAS) policy always serves the job of least age. It is
a SOAP policy with rank function

rankLAS(0) B 0.

See Figure 6.1(a) for an illustration.

Policy 6.5. The First-Come, First-Served (FCFS) policy nonpreemptively serves jobs in
arrival order. It is a SOAP policy that is represented by any rank function rank such that
rank(0) ≥ rank(0) for all 0 > 0. See Figure 6.2 for illustrations of two such rank functions.

We take a moment below to explain in more detail why the property rank(0) ≥ rank(0)
results in FCFS, because we will see similar ideas in other rank functions later.

Suppose for now that rank(0) > rank(0) for all 0 > 0, as in Figure 6.2(a). We can think
of the rank(0) > rank(0) property as encoding nonpreemptiveness. This is because only
time multiple jobs are tied for minimal rank is immediately after a departure, when all
the jobs present have age 0. Once a job begins service, it outranks the jobs that remain
at age 0, as well as later arrivals which have initial age 0, so it is never preempted. FCFS
tiebreaking ensures that when choosing a job at age 0 to start serving, the scheduler starts
the one that arrived earliest, thus resulting in FCFS.

FCFS tiebreaking has another e�ect: the scheduler will not preempt the job in service
even if the rank function only satis�es the weaker property rank(0) ≥ rank(0), as in
Figure 6.2(b). However, we will see in Policies 6.6 and 6.7 below that this weaker property
does not ensure nonpreemptiveness under LCFS tiebreaking.

Policy 6.6. The Last-Come, First-Served (LCFS) policy nonpreemptively serves jobs in
reverse arrival order. That is, after each departure, LCFS serves whichever job most recently
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arrived. It is a SOAP policy with LCFS tiebreaking represented by any rank function rank
such that rank(0) > rank(0) for all 0 > 0, such as that the one shown in Figure 6.2(a).
As discussed above, such a rank function encodes the fact that the scheduling policy is
nonpreemptive, so LCFS tiebreaking results in LCFS.

Policy 6.7. The Preemptive Last-Come, First-Served (PLCFS) policy always serves the job
that most recently arrived. It is a SOAP policy with LCFS tiebreaking represented any
constant rank function, such as the one shown in Figure 6.2(b). This means the LCFS
tiebreaking rule is always in e�ect, as opposed to in Policy 6.6, when LCFS tiebreaking is
only relevant after departures.

6.2.2 Simple SOAP Policies with Multiple Classes of Jobs
The following example considers a system with multiple classes of jobs, each representing
a di�erent priority level. Each job is labeled by its class. For simplicity of notation, we
assume classes are nonnegative numbers, so L ⊆ R≥0, where lower numbers denote better
priority.

Policy 6.8. The Nonpreemptive Priority (NP-Prio) and Preemptive Priority (P-Prio) policies
both prioritize jobs according to their priority class. Their eponymous di�erence is that
NP-Prio is nonpreemptive, while P-Prio will preempt the job in service if a new job with
better priority class arrives. They are SOAP policies with respective rank functions

rankNP-Prio(ℓ, 0) B ℓ1(0 = 0),
rankP-Prio(ℓ, 0) B ℓ .

Due to FCFS tiebreaking, within each class, NP-Prio and P-Prio both serve jobs in FCFS
order.

The queueing literature traditionally considers systems with �nitely many classes,
meaning L = {1, . . . , =} for some positive integer =, but the above examples of NP-Prio
and P-Prio work just as well with in�nitely many classes.

6.2.3 Simple SOAP Policies that Use Job Size Information
The following examples consider a system where the scheduler knows each job’s size. Each
job is thus labeled with its size B , so L = R>0.

Policy 6.9. The Shortest Job First (SJF) and Preemptive Shortest Job First (PSJF) policies
both prioritize jobs according to their size, with smaller sizes having better priority. In fact,
SJF and PSJF are just NP-Prio and P-Prio, respectively, in the case where each job’s class is
its size. They are therefore SOAP policies with respective rank functions

rankSJF(B, 0) B B1(0 = 0),
rankPSJF(B, 0) B B .
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Policy 6.10. The Shortest Remaining Processing Time (SRPT) policy always serves the job
of least remaining work. It is a SOAP policy with rank function

rankSRPT(B, 0) B B − 0.

See Figure 6.1(b) for an illustration. SRPT has the distinction of minimizing mean response
time in single-server systems [116].

6.3 Newly Analyzed “Complex” SOAP Policies

6.3.1 Complex SOAP Policies for Job Size Uncertainty
SRPT minimizes mean response time, but to implement SRPT, we need to know each job’s
size. What can we do instead if the scheduler does not know each job’s size? Under SRPT, a
job’s rank is its remaining work, so a natural idea is to try to estimate each job’s remaining
work, then use those estimates to schedule.

What does the scheduler know about each job? This is subject of Section 5.2.3, part of
which we brie�y review here. The scheduler knows each job’s state (ℓ, 0), which is the pair
of its label ℓ and age 0. We also assume that we know the characteristics of the M/G arrival
process, and in particular the label-size distribution (!, (). From this, we can compute two
important types of distributions:

• the label-conditional size distribution of a label ℓ , de�ned as (ℓ = (( | ! = ℓ); and
• the state-conditional remaining work distribution of a state (ℓ, 0), de�ned as

(ℓ,0 B ((ℓ − 0 | (ℓ > 0) = (( − 0 | ! = ℓ, ( > 0).

SERPT: A Natural but Suboptimal Idea

From the state-conditional remaining work distribution comes a natural scheduling idea:
instead of prioritizing by remaining work, which is unknown, prioritize by expected re-
maining work.

Policy 6.11. The Shortest Expected Remaining Processing Time (SERPT) policy always serves
the job with the least expected remaining work. It is a SOAP policy with rank function

rankSERPT(ℓ, 0) B E[(ℓ,0]
= E[(ℓ − 0 | (ℓ > 0]
= E[( − 0 | ! = ℓ, (ℓ > 0] .

In the unlabeled case, this becomes

rankSERPT(0) B E[(0] = E[( − 0 | ( > 0],

and in the known-size case, where a job’s label is its size, SERPT reduces to SRPT.
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(a) Rank function of SERPT.
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(b) Rank function of Gittins.

Figure 6.3. Rank functions of two policies designed to deal with job size uncertainty: SERPT
(Pol. 6.11) and Gittins (Pol. 6.12) . We show both policies in the unlabeled case with job size
distribution ( = “1, 6, or 14, each with probability 1/3”. Notice that both policies are nonmonotonic
for this job size distribution. Gittins minimizes mean response time in the M/G/1 with labels (Ch. 16).
In particular, Gittins improves upon SERPT by giving a job rank approaching 0 as its age approaches
1 and 6, two ages at which the job could potentially complete.

See Figure 6.3(a) for an example of SERPT’s rank function in the unlabeled case. In
particular, the example shows that SERPT’s rank function can be nonmonotonic, in contrast
to all of the policies in Section 6.2.

Given that SRPT is optimal for mean response time when job sizes are known to the
scheduler, we might wonder: is SERPT optimal when job sizes are unknown? Perhaps sur-
prisingly, the answer is no: there is room for improvement. To see where this improvement
might come from, consider the example from Figure 6.3, where all jobs have size 1, 6, or 14.
Suppose there are two jobs present in the system: job J has age 10, and job K has age 1 − Y
for some small Y > 0.4 SERPT treats these two jobs as follows (Fig. 6.3(a)).

• Job J (age 10) has passed ages 1 and 6, implying it is size 14, so its remaining work
is 4.

• Job K (age 1 − Y) could still be any size, so its expected remaining work is 6 + Y.
• Seeing as J has lower expected remaining work than K, we should serve J.

But is serving J the right decision? Here is an alternative line of reasoning that suggests
otherwise.

• Job J (age 10) has remaining work 4, as previously discussed.
• Job K (age 1 − Y) has a 1/3 chance of having only remaining work Y.
• Seeing as K has a signi�cant chance of being almost done while J de�nitely has

signi�cant remaining work, we should serve K. Speci�cally, we should serve K at
least until it reaches age 1: the cost of taking Y time is very small, but we bene�t

4It turns out that having two jobs of these ages cannot actually occur under SERPT, but the example is
informative regardless.
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greatly if K turns out to be size 1.
The second line of reasoning turns out to be correct: serving K is indeed better in this

example. In fact, even if we alter the example so that job K is either size 1, 300, or 400, it
remains correct to serve job K until it reaches age 1. The key observation is that thanks
to preemption, when we serve a job, we are only committing to serving it in the short
term. SERPT neglects this observation: a job’s remaining work is the amount of service it
takes to complete the job, but we might preempt the job before it completes, so expected
remaining work is not always the right quantity to focus on.

Gi�ins: Optimal Mean Response Time

The following scheduling policy, called Gittins, improves upon SERPT by taking into
account the above observation that we it can help to preempt jobs before they complete.

Policy 6.12. The Gittins policy for mean response time (Gittins) is the SOAP policy with
rank function

rankGittins(ℓ, 0) B inf
Δ>0

E[min{(ℓ,0,Δ}]
P[(ℓ,0 ≤ Δ]

= inf
1>0

E[min{(ℓ , 1} − 0 | (ℓ > 0]
P[(ℓ ≤ 1 | (ℓ > 0]

= inf
1>0

E[min{(, 1} − 0 | ! = ℓ, ( > 0]
P[( ≤ 1 | ! = ℓ, (ℓ > 0]

.

In the unlabeled case, this becomes

rankGittins(0) B inf
Δ>0

E[min{(0,Δ}]
P[(0 ≤ Δ]

= inf
1>0

E[min{(, 1} − 0 | ( > 0]
P[( ≤ 1 | ( > 0] ,

and in the known-size case, where a job’s label is its size B , Gittins reduces to SRPT:

rankGittins(B, 0) B inf
Δ>0

E[min{B − 0,Δ}]
P[B − 0 ≤ Δ]

= B − 0 [by minimizing at Δ = B − 0]

= rankSRPT(B, 0). [by Pol. 6.10]

Gittins has the distinction of minimizing mean response time in the M/G/1 with labels
(Ch. 16). We can thus see Gittins as a way of optimally generalizing SRPT to scenarios
where the scheduler does not known each job’s size.

See Figure 6.3(b) for an example of Gittins’s rank function in the unlabeled case. Notice
that, like SERPT, Gittins is nonmonotonic in this example.
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The intuition behind Gittins is that the Δ in the in�mum is an amount of time we
might “commit” to serving the job for. Equivalently, we can see this as committing to
serving the job until it reaches age 1 = 0 + Δ. Under this commitment, we serve the job for
E[min{(ℓ,0,Δ}] in expectation, and the job completes with probability P[(ℓ,0 ≤ Δ]. We can
think of the ratio E[min{(ℓ,0,Δ}]/P[(ℓ,0 ≤ Δ] as being the average time-per-completion
ratio of the Δ service commitment. While SERPT only considers the time-per-completion
ratio for Δ = ∞, Gittins considers the time-per-completion ratios of all Δ > 0, choosing
the minimum such ratio as a job’s rank. Considering all Δ > 0 is the right choice because
we can choose to preempt jobs at any time.

The version of Gittins de�ned above is actually a special case of a more general
de�nition, which we discuss in Chapter 14. In particular, one can construct versions of
Gittins that optimize objectives other than mean response time, such as mean weighted
response time or mean holding cost (§ 5.4.4).

How Does SERPT Compare to Gi�ins?

Comparing Policies 6.11 and 6.12, we see that the the Gittins policy is signi�cantly more
complicated to de�ne than SERPT.5 Yet the rank functions for SERPT and Gittins shown
in Figure 6.3 look very similar. We therefore might wonder: what is Gittins’s complexity
buying us? Is SERPT’s performance much worse than Gittins?

The question of how well SERPT does compared to Gittins is one we could not answer
prior to SOAP, because the mean response time of neither policy was known. Armed with
the SOAP analysis (Chs. 7 and 8), we are able to compare SERPT to Gittins for any given
label-size distribution. We do this in Chapter 10 for many examples, and we �nd that
SERPT does indeed have mean response time close to that of Gittins.

However, the question of whether SERPT is nearly as good as Gittins for all label-size
distributions remains a challenge, even with the SOAP analysis. This is because SERPT and
Gittins are not really individual SOAP policies, but rather SOAP policy constructions. Specif-
ically, di�erent label-size distributions yield di�erent SERPT and Gittins rank functions, as
we can see from the appearance of (ℓ,0 , the state-conditional remaining work distribution,
in Policies 6.11 and 6.12. We take a �rst step towards solving this di�cult problem in
Chapter 11, showing that in the unlabeled case, a new variant of SERPT achieves mean
response time within a constant factor of Gittins’s for all job size distributions.

6.3.2 Complex SOAP Policies for Preemption Limitations
For the most part, the M/G/1 scheduling literature focuses on one of two extreme cases
with regards to preemption: it is either disallowed entirely or completely unrestricted.
However, there are a variety of ways that practical systems may lie between these two
extremes. We can use rank functions to model many of these scenarios as SOAP policies.

5Whether this translates into greater computational complexity remains an open problem, but with
known algorithms, computing SERPT is faster than computing Gittins [125, Appx. B].
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Figure 6.4. Rank function of Chk-c (Pol. 6.13) for some SOAP policy c , with checkpoint ages
� = {0,Δ, 2Δ, . . .}.

Preemption Checkpoints

In some systems, jobs can be preempted, but not at any time. Imagine, for instance, a
computer program that has periodic checkpoints at which it saves its work. It could be that
to prevent loss of progress, we only allow preempting a job immediately after a checkpoint.
As another example, computer networks transmit packet �ows that consist of multiple
packets of data. Most network hardware works at packet-level granularity, so while we
might preempt transmission of one packet �ow to start transmitting another, we would
not preempt transmission in the middle of a packet. The following example shows how to
model this scenario using SOAP policies.

Policy 6.13. Let c be a SOAP policy, and let � ⊆ R≥0 be a set of ages, which we call
checkpoint ages. The Checkpointed c (Chk-c) policy is, roughly speaking, a version of c
that only preempts jobs at checkpoint ages. It is a SOAP policy with rank function

rankChk-c (ℓ, 0) B rankc (ℓ, 0) 1(0 ∈ �).

As a concrete example, to model scheduling packet �ows with packet size Δ, we would let
the checkpoint ages be � = {=Δ | = ∈ N} = {0,Δ, 2Δ, . . .}. See Figure 6.4 for an illustrated
example with this set of checkpoint ages. Because each checkpoint causes jumps to and
from rank 0, even if the original policy c is monotonic, Chk-c is generally nonmonotonic.6

We note that Goerg [48] analyzes the mean response time of Chk-SRPT with checkpoint
ages � = {0,Δ, 2Δ, . . .} for some Δ > 0. But analyzing the full response time distribution

6There are two corner cases where Chk-c is monotonic. First, in the corner case where rankc (ℓ, 0) = 0
for all ℓ ∈ L and 0 ∈ �, the rank function rankChk-c is constant, and so Chk-c is equivalent to FCFS. Second,
it may be that some monotonic rank function represents Chk-c , even if the rank function rankChk-c de�ned
here is nonmonotonic. For example, Chk-NP-Prio is equivalent to ordinary NP-Prio.
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has not been done in prior work, nor have any other policies of the form Chk-c been
analyzed.

When designing a system where jobs have preemption checkpoints, an important
design question is: how frequent should checkpoints be? On one hand, more frequent
checkpoints allow for more frequent preemption, which allows for more �exibility when
scheduling. But on the other hand, it is usually the case that each checkpoint actually adds
some amount of overhead to a job’s size. For example, in networking, every packet has a
header containing metadata, so using smaller packet sizes means having more headers
and thus larger packet �ows.

We use the SOAP analysis to answer the question of how frequent checkpoints should
be. In Chapter 9, we study many examples of checkpointed policies with a constant gap
between checkpoints, resulting in a rule of thumb for optimizing the tradeo� between
scheduling �exibility and avoiding overhead. One might wonder whether one could do
better than constant checkpoint gaps, such as by having the gaps grow for larger ages. We
study this question in Chapter 13, showing that if gaps between checkpoints grow too
quickly, then the checkpointed policy can have poor performance.

Limited Priority Levels

Some systems limit preemption in a more subtle way than age checkpoints: they have
limited priority levels (LPL). For instance, network switches often have a �xed number of
priority levels built into their hardware [96], and other computer systems have similar
constraints [54, 57, 86]. In terms of SOAP policies, LPL means that a rank function’s range
must be a �nite set. This rules out using policies like LAS and SRPT, where a job’s rank
changes continuously with age. The following example shows how to model LPL systems
using SOAP policies.

Policy 6.14. Let c be a SOAP policy, and let ' ⊆ R≥0 be a set of cuto� ranks. The Limited-
Priority-Level c (LPL-c) policy is, roughly speaking, a version of c that has only |' | + 1
priority levels, where the ranks in ' serve as cuto�s between the levels. It is a SOAP policy
with rank function

rankLPL-c (ℓ, 0) B sup
(
({0} ∪ ') ∩ [0, rankc (ℓ, 0)]

)
.

That is, if ' = {21, . . . , 2=−1} contains = − 1 cuto� ranks, then LPL-c “rounds down” the
ranks c assigns to one of 0, 21, . . . , 2=−1, so LPL-c uses = priority levels. See Figure 6.5 for
an illustrated example with four priority levels.

When designing a scheduling policy for an LPL system, policies of the form LPL-c are
a natural choice. For instance, if we wish to minimize mean response time and have access
to job size information, we might use LPL-SRPT, but we are immediately confronted with
a question: how should we choose the rank cuto�s? We use the SOAP analysis to answer
this question, as well as other design questions for LPL systems, in Chapter 9.
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Figure 6.5. Rank function of LPL-c (Pol. 6.14) for some SOAP policy c , with four priority levels
separated by rank cuto�s ' = {21, 22, 23}.

Only Preempting for Large Priority Di�erences

For our �nal examples of preemption limitations, we return to the class-based priority
setting of Section 6.2.2. For concreteness, suppose there are a �nite number of classes
L = {1, . . . , =}. In this setting, NP-Prio and P-Prio represent the two extremes of never
allowing preemption and always allowing preemption. But perhaps we want to allow
preemption only when the job in service is signi�cantly less important than the job
preempting it. The following two policies show how to model such constraints using SOAP
policies.

Policy 6.15. The Preempt-Large-Di�erence Priority (Large-Di�) policy is a partially pre-
emptive version of class-based priority where once a job begins, it can only be preempted
by a job which is at least 3 priority classes better. Put another way, its rank decreases by 3
once it begins service, so this is a SOAP policy with rank function

rankLarge-Di�(ℓ, 0) = ℓ − 31(0 > 0).

Policy 6.16. The Red-Preempts-Blue Priority (Red-Blue) policy is a partially preemptive
version of class-based priority. Jobs from classes 1, . . . ,<, which we call red classes, may
preempt jobs from classes<+1, . . . , =, which we call blue classes, but otherwise, preemption
is not allowed. This is a SOAP policy with rank function

rankRed-Blue(ℓ, 0) =
{
ℓ1(0 = 0) if ℓ ∈ {1, . . . ,< − 1}.
ℓ1(0 = 0) + (< + 1)1(0 > 0) if ℓ ∈ {< + 1, . . . , =}.

The policies in Policies 6.15 and 6.16 are relatively simple as far as SOAP policies go.
Both are monotonic, and so they would be tractable to analyze with pre-SOAP techniques.
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Figure 6.6. Rank function of P-Prio-c (Pol. 6.17) for some SOAP policy c . We show the ranks for
classes 8 ∈ {1, 2, 3}.

Nevertheless, the SOAP analysis is still valuable in this context, because it provides a
“one-size-�ts-all” solution that works not just for these two policies, but also for many
variations on the same theme of allowing preemption only for large priority di�erences.

6.3.3 Complex SOAP Policies from Mixtures of Policies
Most previously analyzed SOAP policies are, roughly speaking, “one-idea” policies. For
instance, NP-Prio and P-Prio only care about each job’s priority class, while SJF, PSJF, and
SRPT only care about each job’s size. But what if we want to use both a job’s priority class
and size to make scheduling decisions? For example, perhaps we want to preemptively
prioritize by class like P-Prio, but we want to use SRPT within each class. We can model
this and similar policies as SOAP policies.

Policy 6.17. Consider a system where each job is labeled by one of = priority classes and
a label from set L′, so L = {1, . . . , =} × L′, and let c be a SOAP policy with label set L′.
The Preemptive Priority Around c (P-Prio-c) policy is a variant of P-Prio that uses c within
each class. It is the SOAP policy with rank function

rank((8, ℓ), 0) = 8 + squish
(
rankc (ℓ, 0)

)
.

where squish is a strictly increasing functionR≥0 → [0, 1), such as squish(A ) = 1−exp(−A ).
See Figure 6.6 for an illustration.

We note that Goerg and Pham [49] analyze the mean overall and per-class response
times of P-Prio-SRPT. But analyzing the full response time distributions has not been done
in prior work, nor have any other policies of the form P-Prio-c been analyzed.

Below is one last example showcasing the �exibility of rank functions as a modeling
tool, featuring a mixture of FCFS and SRPT. It is also another example of modeling a
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preemption limitation using SOAP (§ 6.3.2), because some jobs are preemptible while
others are not.

Policy 6.18. Consider a system with two classes of customers: humans and robots.
• Humans, unpredictable and easily o�ended, have unknown job sizes, are nonpre-

emptible, and insist on FCFS service relative to other humans. We label humans with
the symbol human.

• Robots, precise and ruthlessly e�cient, have known job sizes, are preemptible, and
insist on SRPT service relative to other robots. We label a robot of size B with the
symbolic expression robot(B).

One scheduling policy we could use in this system is the SOAP policy with rank function

rank(human, 0) = 21(0 = 0),
rank(robot(B), 0) = B − 0,

where 2 ≥ 0 is a constant. This policy mixes FCFS (among humans) with SRPT (among
robots), letting robots with size below 2 have priority over humans that have not yet started
service.

6.4 What Policies Are Not SOAP?
We have seen the breadth of the class of SOAP policies throughout Sections 6.2 and 6.3.
Nevertheless, there are some types of scheduling policies that fall squarely outside the
SOAP class. This section describes four ways scheduling policies can fail to be SOAP,
giving examples of each:

• (§ 6.4.1) The policy does not �t into the general paradigm of assigning each job a
priority based only on its own characteristics.

• (§ 6.4.2) The policy assigns jobs priorities based on their own characteristics, but a
job’s priority can change while it is waiting in the queue.

• (§ 6.4.3) The policy could be represented using a rank function, but it would require
assigning labels to jobs in a non-i.i.d. manner.

• (§ 6.4.4) The policy would be a SOAP policy if not for the fact that it breaks ties in
an order other than FCFS or LCFS.

The lines between these aspects are admittedly blurry. For instance, we will cover the
Earliest Deadline First (EDF) policy as an example for both the second and third reason.

6.4.1 Priorities Not Determined Job-by-Job
SOAP policies are in some sense “local”: they assign each job its priority based only on its
own characteristics. But not all policies �t into this general paradigm. For instance, many
policies from the worst-case scheduling literature use the entire system state to make
scheduling decisions. These include recently developed scheduling policies for scheduling
with job size estimates under adversarial arrivals [10, 11].



6.4 What Policies Are Not SOAP? 87

One example of a scheduling policy from the queueing literature is the recently intro-
duced Nudge policy [53]. Nudge serves jobs in FCFS order by default, but it occasionally
swaps the order of adjacent jobs in the queue. Exactly when these swaps occur depends on
the history of past swaps, so the resulting prioritization of jobs is not determined locally
job-by-job. Nudge’s signi�cance has to do with its response time tail P[) > C], as we
discuss further in Chapter 13.

6.4.2 Priorities Changing in the �eue
SOAP policies only change a job’s priority while it is in service, because a job’s label never
changes, and its age changes only while in service. But some policies do change a job’s
priority while it waits in the queue. Perhaps the simplest examples of this are Accumulating
Priority policies [38, 131]. Under these policies, a job’s priority gets better and better the
longer it waits in the queue.

Another example of a policy changing jobs’ priorities while they are in the queue is
the Earliest Deadline First (EDF) policy. EDF is used in settings where each job is assigned
a deadline when it arrives, and the scheduler always serves the job with the least time
until its deadline. We would like to say that under EDF, a job’s rank could be the amount
of time between now and its deadline, but this amount of time depends not on the job’s
age but rather the total time the job is in the system, so this strategy does not work for
representing EDF.

6.4.3 Labels Not Independently and Identically Distributed
Here is another attempt at representing EDF with a rank function: let a job’s rank be simply
its deadline, represented as a “wall clock” time. A job’s assigned deadline never changes, so
this avoids the issue discussed in Section 6.4.2 above. However, this rank function would
require each job’s label to be its deadline, or at least contain information from which the
deadline could be deduced. This is an issue because deadlines are not i.i.d. in general, as
jobs that arrive later in time tend to have later deadlines.

Another example of a scheduling policy that requires non-i.i.d. labels to represent using
a rank function is the Randomized Multi-Level Feedback (RMLF) policy [16, 17, 63]. RMLF
labels each job with a value in the interval L = [0, 1) and has rank function7

rankRMLF(ℓ, 0) = 2bℓ+log2 0c . (6.1)

One could in principle use this rank function to schedule in the M/G/1 with labels, and
the resulting policy would be a SOAP policy. However, the random assignment of labels
is actually part of the RMLF policy, and typically di�erent jobs have di�erent label distri-
butions. This is partly because RMLF is designed for guaranteeing good mean response

7There are multiple variants of RMLF in prior work. This rank function is for the eRMLF variant introduced
by Bansal et al. [16].
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time under adversarial arrival processes (§ 5.1.3), a setting where careful randomization is
critical for good worst-case performance.

Even though we can represent RMLF using the above rank function, its lack of i.i.d.
labels means it is “just barely” not a SOAP policy. Is there any hope of using SOAP to analyze
it anyway? Scully and Harchol-Balter [121] give a partial answer to this by extending the
SOAP analysis to policies which specify a range of ranks, as opposed to a single rank,
for each job state. This approach works for RMLF because plugging in ℓ = 0 and ℓ = 1
give lower and upper bounds, respectively, in (6.1). The cost of using only rank function
bounds is that we obtain only response time bounds, as opposed to an exact analysis, but
the bounds are tight enough to characterize RMLF’s response time tail (Ch. 13).

6.4.4 Tiebreaking Not FCFS or LCFS
Perhaps the most important policy that is not SOAP is the Processor Sharing (PS) policy,
which always shares the server equally among all jobs in the system. This seems simple
enough to represent as a rank function: all jobs have the same rank. However, PS requires
a tiebreaking rule other than FCFS or LCFS. For example, with (continuously invoked)
random tiebreaking, we could represent PS using the rank function in Figure 6.2(b).

Another example of a policy that requires random tiebreaking is the Random Order of
Service (ROS) policy, a nonpreemptively that chooses a job uniformly at random to serve
after each completion. With random tiebreaking, we could represent ROS using the rank
function in Figure 6.2(a).

Chapter 7 presents the SOAP analysis assuming FCFS or LCFS tiebreaking. One might
hope to extend the analysis to random tiebreaking. However, given the fact that the prior
analyses of PS are signi�cantly more complicated than prior analyses of SOAP policies [55],
extending SOAP to random tiebreaking is likely to require signi�cant new insights.



Chapter 7

SOAP Analysis: One Response Time
Formula for All Rank Functions

Having introduced SOAP policies and rank functions in Chapter 6, we now move on to
presenting our main result about SOAP: a universal response time analysis that applies to
any SOAP policy in the M/G/1.

The signi�cance of the SOAP analysis is two-fold: it uni�es and generalizes prior M/G/1
response time analyses. Its unifying power is in formalizing the common ideas that occur
in many prior analyses, such as most of those in Harchol-Balter [55, Part VII]. In particular,
the SOAP analysis demonstrates that many prior analyses are all essentially the same
argument, but applied to di�erent rank functions. And therein lies its generalizing power:
by analyzing a generic rank function, we wind up with a result that applies to all SOAP
policies, which go far beyond previously analyzed policies. In particular, SOAP provides
the �rst analysis for policies with nonmonotonic rank functions.

This section presents the SOAP analysis. As a warmup, we begin by analyzing P-Prio,
a simple SOAP policy which has been analyzed before (§ 7.1). This case is simple because
a job’s rank never changes under P-Prio, but it leaves us with a major question: how do
we deal with the fact that a job’s rank can change as a function of its age? The general
SOAP analysis boils down to answering this question. Some key de�nitions from the P-Prio
analysis generalize relatively straightforwardly to general SOAP policies (§ 7.2), but to
carry out the full analysis, we need two new ideas. Roughly speaking, the �rst idea helps
us handle rank increases (§ 7.3), and the second idea helps us handle rank decreases (§ 7.4).
The result is formulas for the mean and LST of response time under any SOAP policy
(Thm. 7.15).

There is one key part of the SOAP analysis that we defer to Chapter 8. We do so for
two reasons. First, it is the most technical part of the analysis, so deferring the details
streamlines our presentation. Second, it turns out that generalizing slightly beyond what
is necessary for this chapter’s analysis gives a result that is useful in other contexts, as we
will see in Part III.

This chapter is based on material from Scully et al. [124].

7.1 Warmup with Constant Ranks: Analyzing P-Prio
Our goal is to determine )P-Prio, the response time distribution of an M/G/1 using P-Prio.
Recall that P-Prio is the policy with rank function rankP-Prio(ℓ, 0) = ℓ , meaning each job
is labeled with its rank (Pol. 6.8). Our result will actually characterize the conditional
response time distribution )P-Prio(ℓ, B) (§ 5.4.2), but )P-Prio can be fully determined from
L[)P-Prio(ℓ, B)] and the label-size distribution (!, ().

89
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Figure 7.1. Response time is the sum of waiting time and residence time.

This section only discusses P-Prio, so to reduce notational clutter, we usually omit the
subscript P-Prio in the rest of this section.

We de�ne many new concepts in this section. For now, we de�ne them in a way that
works for P-Prio and prioritize intuition over formality. We defer the more general versions
of the de�nitions, which are more complicated, to Section 7.2.

7.1.1 Overall Analysis Strategy

To analyze P-Prio, we use the tagged job approach. We consider a generic “tagged” job
arriving to a steady-state system and analyze the tagged job’s response time. By PASTA
(§ 5.4.2), the tagged job’s response time is a random variable distributed according to ) .
Slightly abusing notation (§ 5.6.2), we hereafter use ) to denote both the overall response
time distribution as well as the random variable that is the tagged job’s response time.

We analyze the tagged job’s response time ) by decomposing it into two parts:
• Waiting time, denoted )wait, is the amount of time between the tagged job’s arrival

and its �rst instant in service.
• Residence time, denoted ) resd, is the amount of time between the tagged job’s �rst

instant in service and its departure.
We can thus write response time as

) = )wait +) resd, (7.1)

as illustrated in Figure 7.1.
Analyzing ) amounts to analyzing each of )wait and ) resd, then determining how the

correlation between them. The �rst step of doing so is to condition on the tagged job’s
label-size pair. Suppose for the rest of this section that the tagged job has label ℓ and size B .
Conditioning on this, (7.1) becomes

) (ℓ, B) = )wait(ℓ, B) +) resd(ℓ, B), (7.2)
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where )wait(ℓ, B) and ) resd(ℓ, B) denote conditional waiting and residence times, respec-
tively, which are de�ned analogously to conditional response time ) (ℓ, B) (§ 5.4.2).

It may seem that we have not made much progress with (7.2) compared to (7.1), but
there is an important di�erence: it turns out that)wait(ℓ, B) and) resd(ℓ, B) are independent.
That is, all correlation between )wait and ) resd is due to the fact that the tagged job’s
label-size pair a�ects both quantities, so they are conditionally independent given the
label-size pair.1 This conditional independence will become evident in the rest of this
section as we analyze each of waiting time (§ 7.1.2) and residence time (§ 7.1.3).

7.1.2 Waiting Time of P-Prio

Old Jobs and System Relevant Work

When the tagged job arrives, there may be other jobs already in the system. We call any
jobs present when the tagged job arrives old jobs, because they arrived prior to the tagged
job. Whether each old job is served before the tagged job depends on whether or not it
outranks the tagged job. That is, writing A B ℓ for the tagged job’s rank during its waiting
time,2 we classify old jobs as follows:

• Old relevant jobs outrank the tagged job, meaning they have rank at most A . These
jobs are served before the tagged job begins service, so they contribute to its waiting
time.

• Old irrelevant jobs are outranked by the tagged job, meaning they have rank greater
than A . These jobs are not served until after the tagged job completes, so they
contribute to neither waiting time nor residence time.

To determine the tagged job’s waiting time, we need to know the total remaining work of
old relevant jobs.

Let the relevant systemwork, denoted, (≤A ), be the total remaining work of old relevant
jobs in the system when the tagged job arrives. We can think of relevant system work as
being the system work in an M/G/1 where we modify the arrival process to remove jobs
that would be irrelevant, replacing the label-size distribution (!, () by (!, (1(! ≤ A )). This
allows us to apply known results about M/G/1 system work to relevant system work. In
particular (§ 5.5.1),

E[, (≤A )] =
_
2E[(

21(! ≤ A )]
1 − d (≤A ) . (7.3)

where d (≤A ) = _E[(1(! ≤ A )]. See De�nition 7.3 for the full de�nition of relevant system
work.

1For analyzing P-Prio speci�cally, we actually only need to condition on the tagged job’s label. But
conditioning on the tagged job’s size is necessary for the full SOAP analysis, so we do the same here.

2We introduce the notation A to emphasize that what matters here is the rank of the tagged job, which in
general might be a more complicated function of the job’s label and age.
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New Jobs and Relevant Busy Periods

We have seen so far that old jobs contribute, (≤A ) to the tagged job’s waiting time. But
new jobs, those that arrive after the tagged job, can also contribute to waiting time. Whether
a new job is served before the tagged job depends on whether or not it outranks the tagged
job, so we classify new jobs as follows:

• New relevant jobs outrank the tagged job, meaning they have rank (strictly) less
than A .

• New irrelevant jobs are outranked by the tagged job, meaning they have rank at least
(and possibly equal to) A .

To determine the tagged job’s waiting time, we need to know the total size of new relevant
jobs that arrive during the waiting time. This is recursive: if a relevant new job arrives
during waiting time, it extends that waiting time, thus creating the possibility for more
new relevant jobs to arrive. The recursion suggests waiting time is a type of busy period
(§ 5.5.2).

Let a relevant busy period started by initial work E be the same as an ordinary a busy
period started by initial work E , except we only include relevant jobs. We can think of a
relevant busy period as a busy period in an M/G/1 where we modify the arrival process
to remove jobs which would be irrelevant, replacing the label-size distribution (!, () by
(!, (1(! < A )). This allows us to apply known results about M/G/1 busy periods to relevant
busy periods. For example, writing �(<A, E) for the work of a relevant busy period started
by initial work E , we have (§ 5.5.2)

E[�(<A, E)] = E

1 − d (<A ) . (7.4)

where d (<A ) = _E[(1(! < A )]. See De�nition 7.6 for the full de�nition of relevant busy
periods.

Pu�ing the Pieces Together

To review: when the tagged job arrives, it observes relevant system work due to old relevant
jobs, all of which outranks the tagged job. New relevant jobs continue to arrive, and these
also outrank the tagged job. These are exactly the jobs that contribute to the tagged job’s
waiting time. Therefore, the waiting time is a relevant busy period started by the relevant
system work:

)wait
P-Prio(ℓ, B) =st �(<A,, (≤A )),

recalling that A B ℓ = rankP-Prio(ℓ, 0). Combining (7.3) and (7.4) yields the expectation:

E[)wait
P-Prio(ℓ, B)] =

_
2E[(

21(! ≤ A )]
(1 − d (≤A )) (1 − d (<A )) .
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7.1.3 Residence Time of P-Prio
The �rst important fact about residence time is that, at least under P-Prio, the tagged job’s
rank is the same as it was during waiting time, namely A B ℓ . We can therefore use the
same de�nition of “relevant” as we did for waiting time.

At the start of residence time, there are no relevant jobs, new or old, in the system.
However, new relevant jobs can still arrive, preempting the tagged job and delaying its
completion. This means that, much like waiting time, the tagged job’s residence time is a
relevant busy period, but this time started by the tagged job’s size B . Therefore,

) resd
P-Prio(ℓ, B) =st �(<A, B),

E[) resd
P-Prio(ℓ, B)] =

B

1 − d (<A ) , [by (7.4)]

where A B ℓ = rankP-Prio(ℓ, 0) for all ages 0.

7.1.4 Response Time of P-Prio
Having analyzed the tagged job’s mean waiting and residence times, mean conditional
response time follows immediately:

E[)P-Prio(ℓ, B)] = E[)wait
P-Prio(ℓ, B)] + E[)

resd
P-Prio(ℓ, B)]

=

_
2E[(

21(! ≤ A )]
(1 − d (≤A )) (1 − d (<A )) +

B

1 − d (<A ) .

To determine the distribution and not just the mean, we need to determine the dependence
between waiting time and residence time.

Fortunately, as alluded to in Section 7.1.1, it turns out that waiting time and residence
time are independent.3 This is because when the tagged job enters service, there must be
no relevant jobs in the system. Otherwise, the tagged job would not have the best rank
and thus would not be starting service. This means we e�ectively start residence time with
a “clean slate”. Irrelevant jobs that were present during waiting time might still be present
during residence time, but these irrelevant jobs do not a�ect the tagged job’s response
time.

Independence of waiting and residence times allows us to characterize the response
time distribution of the tagged job in terms of relevant system work and relevant busy
periods:4

)P-Prio(ℓ, B) =st �(<A,, (≤A )) + �(<A, B)
=st �(<A,, (≤A ) + B). [by Cor. 5.6]

3More precisely, they are conditionally independent given the tagged job’s label-size pair. We say simply
“independent” because it is clear that we are considering a tagged job with a given label-size pair (ℓ, B). We
do the same throughout this chapter.

4Recall from our notation conventions that the terms in the following sum are independent (§ 5.6.2).
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We can use this to characterize the LST (Def. 5.2) of )P-Prio(ℓ, B) in terms of the system
work and busy period LSTs under modi�ed arrival processes. Because busy period LSTs are
characterized recursively (Prop. 5.5), the LST of)P-Prio(ℓ, B) also has a recursive component.
But like busy period LSTs, the recursion can be solved to obtain moments E

[ (
)P-Prio(ℓ, B)

)=]
for all = ∈ N.

7.2 The Relevant System: What Delays the Tagged Job
Having warmed up by analyzing P-Prio in Section 7.1, we now turn to analyzing general
SOAP policies, where a job’s rank can change during service. Just like P-Prio, the basic idea
of our general SOAP analysis is to look at the system through the lens of what is relevant
to a tagged job. Informally, we call this lens the relevant system. Concepts like relevant jobs,
relevant system work, and relevant busy periods are all aspects of the relevant system.

7.2.1 Why Is Generalizing from P-Prio to All SOAP Policies Hard?
There are three main steps to generalizing the P-Prio analysis to all SOAP policies. The
�rst step is the topic of this section. The second and third, which we review very brie�y
below, are treated in detail in Sections 7.3 and 7.4.

The �rst step is to generalize de�nitions of relevant system concepts. This is the topic
of this section: we de�ne relevant jobs (§ 7.2.2), relevant work (§ 7.2.3), and relevant busy
periods (§ 7.2.4). The second and third steps of generalizing the P-Prio analysis have to do
with overcoming two obstacles:

• (§ 7.3) The fact that the tagged job’s rank might increase makes it more complicated
to apply relevant system concepts. Speci�cally, we can no longer simply use the
tagged job’s rank when deciding what is relevant.

• (§ 7.4) The fact that other jobs’ ranks might decrease makes it more complicated to
analyze the relevant system. Speci�cally, the steady-state relevant system work no
long.

In light of the �rst obstacle above, this section takes no strong position about exactly
which jobs should count as “relevant”. Instead, we de�ne the relevant system in a way that
works for any subset of states Y ⊆ L ×R≥0 we deem relevant. We will generally take Y
to be the set of states whose rank is below some threshold, but the de�nitions work just as
well for any set Y, and we �nd some uses for this extra generality throughout the thesis
(Chs. 8, 12, and 16).

7.2.2 Relevant Jobs
De�nition 7.1. Let Y ⊆ L ×R≥0 be a set of job states.

(a) A job is Y-relevant if its state is in Y. Otherwise, it is Y-irrelevant.
(b) A server is Y-relevant-busy if it is currently serving a Y-relevant job. Otherwise, it

is Y-relevant-idle.
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De�nition 7.2. We use the shorthands below when discussingY-relevant system concepts,
such as those de�ned in De�nitions 7.1 and 7.3–7.6.

(a) When discussing a SOAP policy c that is clear from context, we write

≤A B {(ℓ, 0) ∈ L ×R≥0 | rankc (ℓ, 0) ≤ A },
<A B {(ℓ, 0) ∈ L ×R≥0 | rankc (ℓ, 0) < A }

to denote the sets of states with rank at most A and rank less than A , respectively.
(b) When discussing an unspeci�ed setY, or whenY is clear from context, we omit the

“Y-” pre�x, writing just relevant or irrelevant.
• For example, throughout Section 7.1, a relevant job is one that is either old and
≤A -relevant or new and <A -relevant.

(c) When we do specify the set Y, we often omit “relevant”.
• For example, a ≤A -idle server is one that is either idle or serving a job of rank

greater than A .
• We never similarly omit “irrelevant”.

7.2.3 Relevant Work
De�nition 7.3. Let Y ⊆ L ×R≥0 be a set of job states.

(a) TheY-relevant remaining work (or remaining Y-work) of a job in state (ℓ, 0), denoted
(ℓ,0 (Y), is the amount of service the job requires to stop being aY-job, which happens
when it either completes or its state exits Y. Formally, the job’s remaining Y-work
is the random variable

(ℓ,0 (Y) B min{(ℓ,0,Δℓ,0 (Y)}
=

(
min{(ℓ − 0,Δℓ,0 (Y)}

�� (ℓ > 0)
=

(
min{( − 0,Δℓ,0 (Y)}

�� ! = ℓ, ( > 0
)
.

where
Δℓ,0 (Y) B inf{Δ ≥ 0 | (ℓ, 0 + Δ) ∉ Y}

is the distance from the job’s age 0 to the earliest age at which the job would exit Y.
(b) TheY-relevant system work (or systemY-work), denoted, (Y), is the total remaining

Y-work of all jobs in the system:

, (Y) B
#∑
8=1

(!8 ,�8 (Y).

When we wish to specify or clarify the scheduling policy c whose system Y-work
we are discussing, we include it as a subscript, as in,c (Y).

(c) More generally, just as we use the term “work” in many ways in informal discussion,
we use the term Y-relevant work (or Y-work) to refer to any work that involves
serving a job while its state is in Y.
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Some clarifying remarks about Y-work:
• Although a job’s state may enter and exit Y multiple times over the course of its

service, remaining Y-work measures only the service needed to complete or exit Y
for the �rst time. Visits toY after this �rst exit do not contribute to the job’s remaining
Y-work.

• If the job is not aY-job, meaning its state is not inY, then its remainingY-work is 0.
• Unlike system work, system Y-work is not scheduling-invariant. As we will see

in Chapter 8, the steady-state distribution of system Y-work depends on, roughly
speaking, the degree to which the scheduling policy prioritizes Y-jobs. With that
said, in this chapter, it is usually clear what scheduling policy is being discussed,
in which case we write, (Y) without a subscript despite its dependence on the
scheduling policy.

How Relevant Work Enters the System

De�nition 7.4. Let Y ⊆ L ×R≥0 be a set of job states.
(a) A Y-job whose state has been in Y for its entire time in the system is called Y-fresh.
(b) The Y-relevant size of a job is its remaining Y-work at age 0. The label-size distribu-

tion (!, () gives the system a Y-relevant size distribution

( (Y) B min{(,Δ!,0(Y)},

where Δℓ,0 (Y) is as in De�nition 7.3(a). We can think of ( (Y) as the amount of
service a generic job receives while it is Y-fresh.

(c) The Y-fresh load of the system is

d (Y) B _E[( (Y)],

namely the average rate Y-work is added to the system due to new arrivals.

De�nition 7.5. Let Y ⊆ L ×R≥0 be a set of job states.
(a) A job is Y-recycled if it is currently Y-relevant but was Y-irrelevant at some point

in the past.
(b) The moment a job switches from Y-irrelevant to Y-relevant is called a Y-recycling

of the job. That is, Y-recyclings are when a job’s state enters Y from outside Y. We
write

(c) TheY-recycling rate, denoted _rcy(Y), is the time-average rate at whichY-recyclings
occur:

_rcy(Y) B _E[number of Y-recyclings of a generic job] .
(d) The Y-recycling size distribution, denoted (rcy(Y), is the distribution of remaining

Y-work of a job immediately after its Y-recycling.
(e) The Y-recycled load of the system, denoted drcy(Y), is the average rate Y-work is

added to the system due to Y-recyclings:

drcy(Y) B _rcy(Y) E[(rcy(Y)] .
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Some clarifying remarks about Y-recyclings:
• Because a job’s state only changes while it is in service (§ 5.2.3), a job’s Y-recycling

must occur while the job is in service.
• A job may undergo zero, a �nite number of, or even in�nitely many Y-recyclings

over the course of its time in service, depending on Y and the label-size pair of the
job in question.

• Spending even an instant outside ofY can cause aY-recycling. For example, consider
the Chk-c policy for scheduling with preemption checkpoints (Pol. 6.13). When a
job passes an isolated checkpoint age without being preempted, it still undergoes a
≤0-recycling, even though its rank is greater than 0 for only an instant.

• We generally assume that _rcy(Y) is �nite for simplicity of exposition and notation,
but this is not essential for any of our results.

7.2.4 Relevant Busy Periods
De�nition 7.6. LetY ⊆ L×R≥0 be a set of job states. AY-relevant busy period (orY-busy
period) started by initial work E is, roughly speaking, a busy period where each new arrival
is “cut short” as soon as it stops being a Y-job, even if it has not yet left the system. More
formally, a Y-busy period consists of the following two entities:

(a) The Y-busy period’s work, denoted �(Y, E), is the sum of the initial work E and the
new work contributed by arrivals in theY-busy period’s tree (see below). Each arrival
contributes its Y-size to new work.

(b) The Y-busy period’s tree is de�ned analogously to the tree of an ordinary busy
period (§ 5.5.2). The root vertex represents the initial work, and non-root vertices
represent arriving jobs, and we draw edges as follows:

• We draw an edge from the root vertex to all jobs that arrive while the initial
work is being served.

• We draw an edge from job K to job L if L arrives “during K’s Y-size”, meaning
while K is both in service and Y-fresh.

A clarifying remark aboutY-busy periods: while new work consists entirely ofY-work,
we allow for the possibility that the initial work is not all Y-work. As an example of why
this is useful, consider the residence time of P-Prio (§ 7.1.3): it is a <A -busy period started
by the tagged job, which has rank exactly A and thus has <A -size 0.

7.3 Handling Rank Increases: The Pessimism Principle

This section and the next analyze the response time of an arbitrary SOAP policy c with rank
function rankc . We continue to use the tagged job approach introduced in Section 7.1.1,
analyzing the response time of a tagged job with label-size pair (ℓ, B) to obtain the condi-
tional response time distribution )c (ℓ, B). We will occasionally consider speci�c policies as
illustrative examples.
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It turns out that increases and decreases in the rank function each present their own
obstacle. This section focuses on handling rank increases, explaining the main obstacle
(§ 7.3.1) and how we overcome it (§ 7.3.2). The result is a characterization of response time
in terms of steady-state relevant system work (§ 7.3.3). However, rank decreases make
analyzing steady-state relevant system work complicated in its own right, so we defer this
last task to Section 7.4.

7.3.1 What Obstacles Do Rank Increases Create?

We illustrate the obstacles created by rank increases with perhaps the simplest example of
an increasing rank function. Let One-Jump be the policy with unlabeled rank function

rankOne-Jump(0) B 1(0 ≥ 1),

where 1 > 0 is a constant. Even though it does not use labels, One-Jump e�ectively divides
jobs into two types: “small”, meaning size at most 1, and “large”, meaning size greater
than 1. Jobs have rank 0 as long as the might be small, but once a job is known to be large,
its rank jumps up to 1.

It turns out that if the tagged job has small size B ≤ 1, then we can proceed nearly
identically to the analysis of P-Prio. This is because the tagged job’s rank is always 0, and
other jobs’ ranks never decrease. Combining the overall strategy we used for P-Prio (§ 7.1)
with the new relevant system de�nitions (§ 7.2), one can show that for all small sizes B ≤ 1,

)wait
One-Jump(B) =st �(<0,, (≤0)),
) resd

One-Jump(B) =st �(<0, B),
)One-Jump(B) =st �(<0,, (≤0) + B) =st , (≤0) + B .

We can make the last simpli�cation because jobs never have rank less than 0, so �(<0, E) = E
for any initial work E .5

Suppose now that the tagged job has large size B > 1. Until the tagged job reaches age 1,
its rank is 0, as if it were small. It thus takes the tagged job, (≤0) + 1 time to reach age 1,
which covers its waiting time and an initial portion of its residence time. At age 1, the
tagged job’s rank jumps up to 1. The rest of the tagged job’s residence time thus involves
serving the rest of the tagged job, which has remaining work B − 1 at age 1, as well as any
new <1-jobs that arrive. This means the remaining portion of the tagged job’s residence
time is a <1-busy period, speci�cally �(<1, B − 1). This gives response time

)One-Jump(B)
?
=st , (≤0) + 1 + �(<1, B − 1).

However, as indicated by the “?”, this expression is not right. What went wrong?

5For the One-Jump policy,, (≤0) is also not too hard to analyze. We discuss this in Section 7.4.1.
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The problem is that when the tagged job’s rank increases to 1 at age 1, other jobs that
are already in the system may begin outranking the tagged job. We call these other jobs
“ghosts”. There are two types of ghosts:6

• Old jobs with rank 1.
• New jobs with rank 0 that arrive before the tagged job reaches age 1.

Accounting for the extra delay due to ghosts creates multiple obstacles, including the
following:

• It is not clear how much relevant work ghosts contribute to residence time.
• Because ghosts include old jobs and new jobs that arrived during waiting time, ghosts

create a dependence between waiting time and residence time.
These present a signi�cant di�culty even for One-Jump, let alone policies with more
complex rank functions. Rather than attack these obstacles head-on, we take a di�erent
approach that avoids them entirely.

7.3.2 Key Insight: Use Worst Future Rank, Not Current Rank

Response Time of “Large” Jobs under the One-Jump Policy

We continue our example from Section 7.3.1, considering a “large” tagged job’s response
time under the One-Jump policy.

Let us consider carefully the amount of service each old job receives while the (large)
tagged job is in the system. Suppose an old job is in arbitrary state (ℓ′, 0′) when the
tagged job arrives. How much service will this job receive before the tagged job completes?
Although the tagged job has rank 0 when it arrives, it will eventually have rank 1. Therefore,
the server will complete the old job’s remaining ≤1-work (ℓ ′,0′ (≤1) by the time the tagged
job leaves the system. This ≤1-work is split between waiting and residence time:

• The old job’s remaining ≤0-work (ℓ ′,0′ (≤0) is served during the tagged job’s waiting
time.

• The rest of the old job’s remaining ≤1-work (ℓ ′,0′ (≤1) − (ℓ ′,0′ (≤0) is served during
the tagged job’s residence time.7

This means that the total amount of service old jobs receive while the tagged job is in the
system is equal to the system ≤1-work, (≤1).

We can go through essentially the same reasoning for new jobs. Even if a new job
arrives while the (large) tagged job has rank 0, because the tagged job will eventually have
rank 1, the new job will be served for time equal to its <1-size before the tagged job leaves.
This means that we can think of the tagged job’s response time as a <1-busy period started
by the system ≤1-work, (≤1) plus the tagged job’s size B . Thus, for all large sizes B > 1,

)One-Jump(B) =st �(<1,, (≤1) + B).
6Recall from Section 7.1.2 that old jobs are those that are present when the tagged job arrives, and new

jobs are those that arrive after the tagged job.
7In the expression (ℓ′,0′ (≤1) − (ℓ′,0′ (≤0), both random variables refer to the same old job, so they are not

independent.
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B

0 0

0

rankc (ℓ, 0)

worstc (B, 0)

Figure 7.2. Relationship between worst future rank (magenta dotted line) and the underlying rank
function (orange solid line) for a job with label-size pair (ℓ, B).

One important aspect of the above argument is the following. Suppose that instead of
following the rank function rankOne-Jump, the (large) tagged job instead had rank 1 for its
entire time in the system. Then we could reason exactly the same way: old ≤1-work and
new <1-work would have priority over the tagged job, resulting in the same response time
distribution �(<1,, (≤1) + B). That is, for the purposes of �guring out the tagged job’s
response time, eventually having rank 1 is equivalent to currently having rank 1.

General Case: The Pessimism Principle

The lesson from the above example is this: when analyzing the tagged job’s response time,
at any given age, we should focus not on the tagged job’s current rank but its worst future
rank. For a tagged job of label-size pair (ℓ, B) under general SOAP policy c , the worst future
rank at age 0, illustrated in Figure 7.2, is

worstc (ℓ, B, 0) B “sup”
0≤1<B

rankc (ℓ, 0).

We put quotes around “sup” because, as we will see later (Defs. 7.8 and 7.9), it turns out we
need to distinguish between the cases where the supremum is attained or not attained.

When the tagged job has age 0, we can, for the purposes of analyzing its response time,
pretend that its rank is worstc (ℓ, B, 0) instead of rankc (ℓ, 0). We call this observation the
Pessimism Principle, stated in full below. It essentially follows from the discussion so far.
For a more formal argument, see Scully et al. [124, Appx. D].

Proposition 7.7 (Pessimism Principle). Consider an M/G/1 under SOAP policy c, and
consider a tagged job with label-size pair (ℓ, B).
(a) Each other job contributes the following amount to the tagged job’s response time.

• Old job: its remaining ≤ worstc (ℓ, B, 0)-work when the tagged job arrives.
• New job: its < worstc (ℓ, B, 0)-size, where 0 is the age of the tagged job when the
new job arrives.
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(b) The tagged job’s response time distribution is )c (ℓ, B) in both of the following scenarios:
• All jobs are assigned ranks by c as usual.
• The tagged job’s rank is modi�ed so that at age 0, its rank is worstc (ℓ, B, 0). No
other jobs’ ranks are modi�ed.

The Pessimism Principle is useful because it e�ectively removes rank increases, at least
for the tagged job, thus alleviating the obstacles discussed in Section 7.3.1.

To formalize the Pessimism Principle, we need to formally de�ne the tagged job’s worst
future rank. As mentioned above, it turns out we need to be careful about whether the
worst future rank actually occurs. To see why, suppose there is an old job in the system
with rank A . If the tagged job ever enters a state of rank at least A , then the old job outranks
the tagged job at that point. But if the tagged job instead approaches rank A from below
without ever reaching it, then the old job never outranks the tagged job. In the latter case,
we say the tagged job has worst future rank “A−” instead of A . The following de�nitions
formalize this.

De�nition 7.8.
(a) A limit rank is an expression of the form A− for some rank A ≥ 0. A limit rank A− is

ordered “just below” rank A . That is, A ′ < A− < A for any ranks A ′ < A .
• We can easily extend SOAP scheduling to the case where jobs can be assigned

limit ranks.8 We make use of this in the Pessimism Principle (Prop. 7.7), in
which the tagged job may be assigned a limit rank.

• The notation from De�nition 7.2(a) can be used with limit ranks: both ≤A− and
<A− are equivalent to <A .

• Formally, we can de�ne the set of ranks and limit ranks to be R≥0 × {−1, 0}
ordered lexicographically, with (A,−1) corresponding to A− and (A, 0) corre-
sponding to A .

(b) The rank maximum of a set of ranks ' ⊆ R, denoted rank max', is

rank max' =

{
sup' if sup' ∈ '
(sup')− if sup' ∉ '.

That is, if A = sup', then the rank maximum is A if the supremum is attained and A−
otherwise.

De�nition 7.9. Let c be a SOAP policy, and consider a job with label-size pair (ℓ, B).
(a) The worst future rank of the job at age 0, denoted worstc (ℓ, B, 0), is

worstc (ℓ, B, 0) B rank max
0≤1<B

rankc (ℓ, 0).

That is, if the job has a maximum future rank A , then its worst future rank is A , but
if instead the job approaches but never attains a supremum future rank A , then its
worst future rank is A− (Def. 7.8). See Figure 7.2 for an illustration.

(b) The worst ever rank of the job is its worst future rank at age 0, namely worstc (ℓ, B, 0).
8It is a special case of using a set of ranks with a richer ordering than R≥0 (§ 6.1.3).
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7.3.3 Using the Pessimism Principle to Compute Response Time
We hereafter consider a modi�ed system, which we call the pessimism-adjusted system, in
which the tagged job’s rank is assigned rank worstc (ℓ, B, 0) at each age 0. We refer to the
system without this modi�cation as the standard system.

By the Pessimism Principle (Prop. 7.7), the tagged job’s response time distribution is the
same in the pessimism-adjusted and standard systems, but working with the pessimism-
adjusted system is simpler. This is because even when rank function is nonmonotonic, the
tagged job’s worst future rank is decreasing as a function of age (Fig. 7.2). The Pessimism
Principle thus partially reduces the problem of analyzing nonmonotonic SOAP policies to
the simpler monotonic case, which has been well studied (§ 2.1.5).

We analyze the tagged job’s response time in the pessimism-adjusted system by splitting
it into waiting and residence times (§ 7.1.1). However, waiting and residence times in the
pessimism-adjusted system may not be the same as in the standard system. Speci�cally,
waiting time is longer, and residence time is shorter. This is because we e�ectively shift
delays due to “ghost” jobs (§ 7.3.1) from residence time to waiting time. Hereafter, the
notations )wait and )wait always refer to the pessimism-adjusted system.

Lemma 7.10. Consider an M/G/1 under SOAP policy c, and consider a tagged job with label-
size pair (ℓ, B). The tagged job’s pessimism-adjusted waiting time )wait

c (ℓ, B) and pessimism-
adjusted residence time )wait

c (ℓ, B) are independent.

Proof. Consider the moment the tagged job enters service, namely the boundary between
its waiting time and residence time. There may be some other jobs in the system at this
time. Call these end-of-waiting jobs. It su�ces to show that the end-of-waiting jobs do not
a�ect the tagged job’s residence time.

Because the tagged job’s residence time starts with the tagged job being served, the
tagged job must outrank all end-of-waiting jobs at the start of its residence time. But the
tagged job’s worst future rank only decreases, so it continues outranking end-of-waiting
jobs for the remainder of its residence time. Moreover, under a SOAP policy, end-of-waiting
jobs have no impact on how any new jobs that arrive during residence time are scheduled.
This means end-of-waiting jobs do not a�ect the tagged job’s residence time. �

Lemma 7.11. Consider an M/G/1 under SOAP policy c, and consider a tagged job with
label-size pair (ℓ, B). The tagged job’s pessimism-adjusted waiting time is

)wait
c (ℓ, B) = �(<A,, (≤A )),

where A B worstc (ℓ, B, 0) is the tagged job’s worst ever rank.

Proof. By the Pessimism Principle (Prop. 7.7), the tagged job is delayed by the remaining
≤A -work of old jobs it observes when it arrives, plus the <A -size of new jobs that arrive
during waiting time. This means that, analogous to our analysis of P-Prio (§ 7.1.2), waiting
time is a <A -busy period started by system ≤A -work. �
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Lemma 7.12. Consider an M/G/1 under SOAP policy c, and consider a tagged job with
label-size pair (ℓ, B). The tagged job’s pessimism-adjusted residence time is

) resd
c (ℓ, B) =st

∫ B

0
�(<A (0), d0),

where A (0) B worstc (ℓ, B, 0) is the tagged job’s worst future rank at age 0.

Proof. We begin by noting that the integral on the right-hand side can be formalized
as integration with respect to a random measure. However, the formality distracts from
the key ideas, so we instead reason informally. We can think of �(<A (0), d0) as simply a
<A (0)-busy period started by an in�nitesimal amount of work d0. Consistent with our
notation conventions (§ 5.6.2), all of these <A (0)-busy periods are mutually independent.

To that end, consider the amount of time it takes the tagged job to go from being served
at age 0 to being served at age 0 + d0 for in�nitesimal d0. Call this amount of time the slice
at age 0, or simply the slice. It su�ces to show that the slice at age 0 is independent of past
slices and has distribution �(<A (0), d0).

Under our assumption that rank functions are piecewise continuous (Asm. 6.3), we
may assume that the tagged job has worst future rank A (0) for the entirety of the slice at
age 0. Because the tagged job is in service at the start of the slice, it outranks all other jobs
present. Reasoning as in the proof of Lemma 7.10, this means those other jobs do not a�ect
the slice at age 0, so the slice is independent of past slices.

Recalling that the tagged job has worst future rank A (0) during the slice at age 0, any
new jobs that arrive during it contribute their <A (0)-size to the slice. This means the slice
is at most a <A (0)-busy period started by initial work d0. We say “at most” because it may
be that the tagged job reaches age 0 + d0 before the end of this <A (0)-busy period. But all
the new <A (0)-jobs in the busy period tree outrank the tagged job, so the tagged job is
only served when none of these <A (0)-jobs are left. This means the tagged job reaches age
0 + d0 at the end of the <A (0)-busy period, as desired. �

7.4 Handling Rank Decreases: Analyzing the Impact
of Recycled Jobs

With Lemmas 7.10–7.12 in hand, only one task remains to determine a SOAP policy’s
response time: given a rank A , determine the steady-state distribution of the system
≤A -work, (≤A ), which determines the tagged job’s waiting time (Lem. 7.11). For P-Prio, we
were able to reduce this task to analyzing the system work of an M/G/1 with a modi�ed size
distribution. However, under general SOAP policies, the fact that jobs’ ranks can decrease
makes, (≤A ) harder to compute (§ 7.4.1). This section explains how we overcome this
obstacle (§ 7.4.2), yielding a formula for steady-state system ≤A -work (§ 7.4.3). We defer
some of the technical details to Chapter 8.



104 Chapter 7 SOAP Analysis: One Response Time Formula for All Rank Functions

7.4.1 What Obstacles Do Rank Decreases Create?
We illustrate the obstacles created by rank decreases with a simple example. Recall the
One-Jump policy from Section 7.3.1, which has rank function

rankOne-Jump(0) B 1(0 ≥ 1),

where 1 > 0 is a constant. We compare One-jump to Two-Jump, the policy with rank
function

rankTwo-Jump(0) B 1(0 ∈ [1, 2)),
where 2 > 1 > 0 are constants. Even though it does not use labels, Two-Jump e�ectively
divides jobs into three types: “small”, meaning size in [0, 1); “medium”, meaning size in
[1, 2); and “large”, meaning size in [2,∞).

Consider the waiting time of a small tagged job under One-Jump or Two-Jump. The
tagged job’s worst future rank is 0, and no jobs are <0-relevant, so by Lemma 7.11, the
waiting time in both cases is simply the system ≤0-work.

The steady-state system ≤0-work of One-Jump, namely,One-Jump(≤0), is simple to
characterize. Under One-Jump, a job is ≤0-relevant until it reaches age 1 and never
again thereafter. That is, all ≤0-relevant jobs are ≤0-fresh (Def. 7.4). We can thus view
,One-Jump(≤0) as the system work in an M/G/1 where we replace the size distribution ( by
( (≤ 0) = min{(, 1}. This means9

,One-Jump(≤0) =st

Geo(1−d (≤0))∑
8=0
(E( (≤0))8 .

In fact, we can reason similarly for any rank A and any increasing SOAP policy c , obtaining

,c (≤A ) =st

Geo(1−d (≤A ))∑
8=0
(E( (≤A ))8 if c is increasing.

However,,Two-Jump(≤0) stochastically dominates,One-Jump(≤0) as long as some jobs
are larger than 2 . This is because large jobs, in addition to being ≤0-relevant before age 1,
also become ≤0-relevant again after age 2 . These large ≤0-recycled jobs (Def. 7.5), meaning
jobs that become ≤0-relevant again after being ≤0-irrelevant, constitute a source of ≤0-work
that we do not have to worry about when computing,One-Jump(≤0), or more generally
when computing,c (≤A ) for increasing SOAP policies c . That is, ≤A -recycled jobs only
exist if the rank function at some point decreases as a function of age.

How do we quantify the impact ≤A -recycled jobs have on system ≤A -work? This question
appears di�cult because it is not a priori clear when ≤A -recyclings occur. Recyclings are
generally not a Poisson process, so we cannot simply treat them as additional arrivals.

9Recall from Section 5.6.2 that Geo(@) is a geometric distribution with parameter @ supported at zero,
namely P[Geo(@) = =] = @(1 − @)= ; and recall from Section 5.6.3 that the (E+ )8 are i.i.d. drawings from E+ ,
the excess of distribution + . See also Appendix A for an index of notation.
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7.4.2 Key Insight: Before Recyclings, No Relevant System Work

The main obstacle to analyzing system ≤A -work is that it is hard to characterize ≤A -recy-
clings as a stochastic process. Nevertheless, we still know something about when ≤A -recy-
clings occur, and fortunately, this turns out to be enough to determine, (≤A ).

Proposition 7.13. Consider an M/G/1 under SOAP policy c, and consider a rank A.
(a) Immediately before an ≤A-recycling occurs, the system ≤A-work is zero.
(b) No two ≤A-recyclings occur simultaneously.

Proof. Consider the instant before an ≤A -recycling. there must be an ≤A -irrelevant job in
service, namely the one that is about to be ≤A -recycled. This means there must be no
≤A -jobs in the system, because any ≤A -job would outrank the ≤A -irrelevant job. Without
≤A -jobs, system ≤A -work is zero, implying (a).

Can two jobs become ≤A -recycled at the same time? For this to happen, the server would
need to be sharing between two ≤A -irrelevant jobs in the instant before an ≤A -recycling.
As described in Algorithm 6.1, sharing occurs only when the rank function is increasing.
But a job’s rank needs to decrease for it to become ≤A -recycled, so only one ≤A -recycling
occurs at a time, implying (b).

There is one corner case glossed over in the argument for (b) that deserves spelling out.
Consider, for example, an unlabeled rank function with a downwards jump at age 0, namely
rankc (0−) > rankc (0+).10 If rank is increasing leading up to age 0, then we might worry
that two jobs share the server as both approach up to age 0, causing them to simultaneously
jump from rankc (0−) to rankc (0+). Fortunately, this is ruled out by our assumption that
rank functions are upper semi-continuous with respect to age (Asm. 6.3). Upper semi-
continuity ensures that at age 0, both jobs have rank rankc (0) ≥ rankc (0−) > rankc (0+).
Therefore, at age 0, both jobs’ ranks are decreasing, so by Algorithm 6.1, their ranks jump
down one at a time, with FCFS tiebreaking controlling which goes �rst. We can argue
analogously in the presence of labels. �

7.4.3 Using Recycled Jobs to Compute Relevant Work

Proposition 7.13 tells us how much system ≤A -work there is immediately before ≤A -re-
cyclings. How does this help us understand steady-state system ≤A -work? Bridging this
gap is the topic of Chapter 8. Its main result, the Relevant Work Decomposition Law, gives
the LST of system ≤A -work in terms of the LST of system ≤A -work at the instants before
≤A -recyclings. Proposition 7.13 characterizes the latter, implying the following result.

10For simplicity, we reason in terms of two jobs approaching the same age 0 in the unlabeled case, but the
argument easily generalizes to the general case of two jobs approaching downward jumps, possibly in two
di�erent states.
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Lemma 7.14. Consider an M/G/1 under SOAP policy c, and consider a rank A. The steady-
state system ≤A-work distribution is11

, (≤A ) =st

Geo(1−d (≤A ))∑
8=0
(E( (≤A ))8 + Bernoulli

(
drcy(≤A )

1 − d (≤A )

)
E(rcy(≤A ),

its LST is

L[, (≤A )] (\ ) =
1 − d (≤A ) − drcy(≤A ) + drcy(≤A ) L[E(rcy(≤A )] (\ )

1 − d (≤A ) L[E( (≤A )] (\ ) ,

and its mean is

E[, (≤A )] =
drcy(≤A ) E[E( (≤A )] + drcy(≤A ) E[E(rcy(≤A )]

1 − d (≤A ) .

Proof. As discussed above, this follows from the Relevant Work Decomposition Law
(Thm. 8.8(a)) and Proposition 7.13. �

7.5 SOAP Response Time Formulas

7.5.1 Main Result
Theorem 7.15. Consider an M/G/1 under SOAP policy c, and consider label-size pair (ℓ, B).
Let A (0) B worst(ℓ, B, 0) and A B A (0).
(a) The conditional response time distribution is

)c (ℓ, B) =st

)wait
c (ℓ,B)︷                                                                         ︸︸                                                                         ︷

�

(
<A,

Geo(1−d (≤A ))∑
8=0
(E( (≤A ))8 + Bernoulli

(
drcy(≤A )

1 − d (≤A )

)
E(rcy(≤A )

)
+

∫ B

0
�(<A (0), d0)︸               ︷︷               ︸
) resd
c (ℓ,B)

.

(b) The LST of conditional response time is

L[)c (ℓ, B)] (\ ) =

L[)wait
c (ℓ,B)] (\ )︷                                                                     ︸︸                                                                     ︷

1 − d (≤A ) − drcy(≤A ) + drcy(≤A ) L[E(rcy(≤A )] ([ (<A, \ ))
1 − d (≤A ) L[E( (≤A )] ([ (<A, \ ))

× exp
(∫ B

0

(
\ + _

(
1 − L[( (≤A )] ([ (<A (0), \ ))

) )
d0

)
︸                                                           ︷︷                                                           ︸

L[) resd
c (ℓ,B)] (\ )

,

11The notation below is de�ned in Section 5.6.2 and De�nitions 7.4 and 7.5. See also Appendix A for an
index of notation.
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where [ (Y, \ ) is the principal solution of 12

[ (Y, \ ) = \ + _
(
1 − L[( (<A )] ([ (Y, \ ))

)
.

(c) The mean conditional response time is

E[)c (ℓ, B)] =

E[)wait
c (ℓ,B)]︷                                                 ︸︸                                                 ︷

d (≤A ) E[E( (≤A )] + drcy(≤A ) E[E(rcy(≤A )]
(1 − d (≤A )) (1 − d (<A )) +

E[)wait
c (ℓ,B)]︷                    ︸︸                    ︷∫ B

0

1
1 − d (<A (0)) d0.

Proof. Combining Lemmas 7.10–7.12 and 7.14 yields (a). From this, (b) and (c) follow from
standard results for M/G/1 busy periods (Prop. 5.5 and Cor. 5.6), because we can view a
Y-busy period as an ordinary busy period in a modi�ed M/G/1 with size distribution ( (Y).

�

7.5.2 More Explicit Formulas for Relevant Size and Recycled Size

Theorem 7.15 is written in terms of the distributions of relevant size ( (≤A ) and recycled
size (rcy(≤A ). These distributions depend on just the label-size distribution (!, () and the
rank function. That is, they can be determined without worrying about queueing at all.
With that said, it is still helpful to have a more explicit formula for these quantities. We
give a few such formulas below, with di�erent formulas being useful in di�erent contexts.

Throughout the following, let A be either a rank or a limit rank (Def. 7.8). This allows
us to focus on the non-strict case ≤A , as the strict case <A for ordinary ranks A is equivalent
to the non-strict case for a limit rank, namely <A−.

The �rst step to writing more explicit formulas for ( (≤A ) and (rcy(≤A ) is to write a more
explicit description of the set of relevant states ≤A , which we recall from De�nition 7.2(a) is

≤A B {(ℓ, 0) ∈ L ×R≥0 | rankc (ℓ, 0) ≤ A }.

The following de�nition writes ≤A in terms of the ages at which the rank function crosses A .

De�nition 7.16. Let ℓ ∈ L be a label, c be a SOAP policy, and A be a rank or limit rank.
(a) The 8th ≤A-relevant interval (or 0th ≤A-interval) of label ℓ , denoted Aℓ,8 (≤A ), is the 8th

interval of ages during which the rank of a job with label ℓ is at most A . For 8 = 0, we
de�ne

1ℓ,0(≤A ) B 0,
2ℓ,0(≤A ) B inf{2 ≥ 0 | rank(ℓ, 2) > A },
Aℓ,0(≤A ) B

[
1ℓ,0(≤A ), 2ℓ,0(≤A )

)
.

12Speci�cally, when \ > 0, there is a unique positive real solution, and taking the analytic continuation
covers other values of \ .
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and for 8 ≥ 1, we de�ne13

1ℓ,8 (≤A ) B inf{1 > 2ℓ,8−1(≤A ) | rank(ℓ, 1) ≤ A },
2ℓ,8 (≤A ) B inf{2 ≥ 1ℓ,8 | rank(ℓ, 0) > A },
Aℓ,0(≤A ) B

(
1ℓ,0(≤A ), 2ℓ,0(≤A )

)
.

If 1ℓ,8 (≤A ) = 2ℓ,8 (≤A ) = ∞, then we de�ne the 8th ≤A -interval to be empty.
(b) The service in the 8th ≤A-relevant interval, denoted 3ℓ,8 (≤A, 0), is the length of the

largest interval (1, 0) such that a job with label ℓ has rank at most A for all ages in
(1, 0):

3ℓ,8 (≤A, 0) B 0 − inf
{
1 ∈ [0, 0]

�� (1, 0) ∩Aℓ (≤A ) = (1, 0)
}
.

For any age 0, it can be that 3ℓ,8 (≤A, 0) > 0 for at most one value of 8 . We call this
value the service while ≤A-relevant:

3ℓ (≤A, 0) B max
8≥0

3ℓ,8 (≤A, 0).

Note that 3ℓ (≤A, 0) = 0 if rankc (ℓ, 0) > A .

We can use De�nition 7.16 to more explicitly de�ne relevant size and recycled size.
The following lemma gives a nice formula for a common case that occurs when computing
mean response time (Thm. 7.15(c)) and higher moments of response time.

Lemma 7.17. Consider an M/G/1 under SOAP policy c, and A be a rank or limit rank. For
any di�erentiable 5 : R≥0 → R such that 5 (0) = 0,

d (≤A ) E[5 (E( (≤A ))] = _E
[∫ ∞

0
5 ′(3!,0(≤A, 0)) P[(! ≥ 0] d0

]
,

d (≤A ) E[5 (E( (≤A ))] + drcy(≤A )E[5 (E(rcy(≤A ))]

= _E
[∫ ∞

0
5 ′(3! (≤A, 0)) P[(! ≥ 0] d0

]
.

In both cases, the expectation is taken over a random label !.

Proof. We prove the formula for d (≤A ) E[5 (E( (≤A ))]. The other formula follows from a
very similar argument, with the main di�erence being that we consider not just ≤A -fresh
jobs but also ≤A -recycled jobs.

Our approach is to interpret d (≤A ) E[5 (E( (≤A ))] as the expectation of a random vari-
able + . Imagine sampling a steady-state system. If the server is idle, we let + B 5 (0) = 0.
Otherwise, the job in service is in state (ℓ, 0). We want+ to be 5 (0) if the job is ≤A -fresh and

13It is worth clarifying the distinction between the 0th and 1st ≤A -intervals. If age 0 has rank at most A ,
then the 0th ≤A -interval is nonempty. If age 0 has rank greater than A , then the 0th ≤A -interval is empty, with
2ℓ,0 (≤A ) = 0. In this latter case, it is still possible for the 1st ≤A -interval to start at age 0, e.g. if there is a jump
discontinuity with rankc (ℓ, 0) > A ≥ rankc (ℓ, 0+).
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5 (0) = 0 otherwise. Using De�nition 7.16(b), one can easily show that + B 5 (3ℓ,0(≤A, 0))
accomplishes this.

We claim that
d (≤A ) E[5 (E( (≤A ))] = E[+ ] . (7.5)

From (7.5), the desired formula follows from computing E[+ ], which, after applying ideas
from the following discussion, is a simple exercise in integration by parts. To show (7.5),
recall from Section 5.6.3 that we can think of the excess E( (≤A ) in the following way.
Imagine a renewal process where each cycle has length distributed as ( (≤A ). If we sample
this process in steady-state, the time since the last cycle start is distributed as E( (≤A ). But
this is exactly the situation we see in de�ning + in the case where the system is busy with
an ≤A -fresh job, which happens with probability d (≤A ). �

We note that both De�nition 7.16 and Lemma 7.17 can be generalized. Both could use
any set of job states Y ⊆ L ×R≥0 instead of one of the form ≤A , and, at the cost of some
additional notation, Lemma 7.17 can be altered to work for functions with 5 (0) ≠ 0.
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Chapter 8

Work Decomposition Laws

The goal of this chapter is to analyze relevant system work (§ 7.2) in the M/G/1, M/G/k,
and other systems. We have two main motivations for doing so:

• The SOAP analysis in Chapter 7 reduces the problem of analyzing a SOAP policy’s
response time to analyzing the system relevant work in an M/G/1 using that SOAP
policy.

• In Part III, we will introduce a technique that allows us to use relevant work to
analyze mean response time in systems beyond the M/G/1, including multiserver
systems like the M/G/k.

As such, in this chapter, we consider general M/G systems, meaning any queueing system
with M/G arrivals (§ 5.2.2). Our results apply not only to relevant system work, but also to
ordinary system work. To emphasize when we are discussing ordinary system work as
opposed to relevant system work, we call the former total system work.

This chapter’s results continue the tradition of work decomposition laws (§ 2.4.1) in the
sense that they all have the form

work in generic M/G system = work in an M/G/1 + some gap,

where the M/G/1 experiences the same arrival process as the generic M/G system. While
the M/G/1 terms is explicit in each case, we can only characterize the gap term implicitly.
Nevertheless, the gap can be tractable to bound for the M/G/k, which will serve us well in
Part III.

We begin by characterizing total system work (§ 8.1). In addition to serving as a nice
warmup, the results are of interest in their own right, as they provide a step towards
characterizing the mean response time of FCFS in the M/G/k (§ 8.2). We then characterize
relevant system work, which is slightly more complicated because we have to account for
recyclings (§ 8.3).

This chapter is based on material from Scully et al. [118], though the results here are
signi�cantly more general.

8.1 Total Work Decomposition

8.1.1 Rate Conservation Law for Total System Work under M/G
Arrivals

System work, goes up and down over time.
• Work increases according to the M/G arrival process.

111
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• Work decreases according to the service rate of the system, namely the sum of the
rates at which each jobs’ remaining work is decreasing. We denote the system’s
service rate by � .

As long as the system is stable and has a steady-state distribution (§ 5.6.1), the average
rate at which system work increases should equal the average rate at which it decreases.
The average increase rate is _E[(] = d , so this tells us

E[� ] = d. (8.1)

This, of course, is a standard result in queueing which can be derived using Little’s law [84].
The key idea of this chapter is that we can apply the above reasoning not just to system

work, , but also to any function of ,. This is an instance of the Rate Conservation from
Palm calculus [95], which is a general statement of the principle that increases balance
decreases in steady-state stochastic processes. Applied to system work under M/G arrivals,
the Rate Conservation Law yields the following.

Proposition 8.1. Let 5 : R≥0 → R≥0 be di�erentiable. In any steady-state system with M/G
arrivals,

E[� 5 ′(, )] = _E[5 (, + () − 5 (, )],

where the job size ( on the right-hand side is independent of the system work,.1

Proof. The left-hand side is the average rate at which 5 (, ) decreases, and by PASTA
(§ 5.4.2), the right-hand side is the average rate at which 5 (, ) increases. The Rate Conser-
vation Law [95, Theorem 2.1] states that these are equal. �

8.1.2 Mean Total Work Decomposition
By applying Proposition 8.1 applied to a quadratic function, we obtain a formula for the
mean amount of work in any system with M/G arrivals.

Theorem 8.2 (Mean Total Work Decomposition). Consider an M/G system. The mean
system work is

E[, ] = E[,min] + E[,gap] =
_
2E[(

2] + E[(1 − � ), ]
1 − d ,

where E[,min] is the mean system work in an M/G/1 under a work-conserving scheduling
policy, namely

E[,min] =
_
2E[(

2]
1 − d =

dE[E(]
1 − d ,

1Speci�cally, in the expectation on the right-hand side,, represents the system work immediately prior
to a job’s arrival, and ( represents the new arrival’s size. The arriving job cannot a�ect the system prior to
its arrival, so ( and, are independent.
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and,gap is a random variable with mean2

E[,gap] = E[, ] − E[,min] =
E[(1 − � ), ]

1 − d .

Proof. We apply Proposition 8.1 with 5 (F) = 1
2F

2, so 5 ′(F) = F . This yields

E[�, ] = _E
[ 1

2 (, + ()
2 − 1

2,
2]

= _
2E[(

2] + _E[(, ] .

Because ( and, are independent above (Prop. 8.1), we have _E[(, ] = dE[, ]. The result
follows from adding E[, ] to both sides and rearranging terms. �

Interpreting Work Decomposition

To understand Theorem 8.2, let us �rst consider an M/G/1 that is not work-conserving but
still stable. We can interpret 1 − � as an indicator of whether the server is idle. We have
E[1− � ] = 1− d by (8.1), which leads to the following interpretation of the mean work gap:

E[, ] − E[,min] = E[, | the server is idle] . (8.2)

More generally,
More generally, consider a system with maximum service rate 1 but that does not

always fully use this maximum service rate. One example is the M/G/k with servers of
service rate 1/: (§ 5.2.4). We can now view 1− � as the “idleness” of the system, meaning the
fraction of the service rate that remains unused. We end up with an interpretation similar
to (8.2), but instead of conditioning on the server being idle, we take an “idleness-weighted”
sample of the work. One way to formalize this is to condition on a coin �ip with probability
determined by the system’s idleness:

E[, ] − E[,min] = E[, | Bernoulli(1 − � ) = 1] . (8.3)

Both of the above interpretations of Theorem 8.2 assume a maximum service rate of 1.
While the result still holds for systems with greater maximum service rate, it may be harder
to characterize the E[(1 − � ), ] term in such cases.

8.1.3 Distributional Total Work Decomposition
We can characterize the distribution of system work in much the same way as its mean.
The key is to apply Proposition 8.1 with an exponential function, as opposed to a quadratic
function. This yields the LST of system work, which happens to factor nicely.

2We de�ne the random variable,gap in Theorem 8.3.
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Theorem 8.3 (Distributional Total Work Decomposition). Consider an M/G system. Let
,min be the system work in an M/G/1 under a work conserving scheduling policy.
(a) The system work can be written as an independent sum3

, =st ,min +,gap,

where,min is the system work in a work-conserving M/G/1, namely

,min =st

Geo(1−d)∑
8=1
(E()8,

and,gap is a random variable with LST given in (b) below. If the system’s maximum
service rate is 1, we may interpret,gap as “idleness-weighted” system work, namely

,gap =st (, | Bernoulli(1 − � ) = 1).

(b) Consider an M/G system. The system work LST is

L[, ] (\ ) = L[,min] (\ ) L[,gap] (\ ) =
E[(1 − � ) exp(−\, )]

1 − dL[E(] (\ ) ,

where,min is the system work in a work-conserving M/G/1, which has LST

L[,min] (\ ) =
1 − d

1 − dL[E(] (\ ) ,

and,gap is the random variable with LST

L[,gap] (\ ) B
E[(1 − � ) exp(−\, )]

1 − d .

Proof. We prove (b), from which standard results for LSTs yield (a). We apply Proposition 8.1
with 5 (F) = exp(−\F), so 5 ′(F) = −\ exp(−\F). This yields

−\E[� exp(−\, )] = _E[exp(−\ (, + ()) − exp(−\, )]
= −_E

[
exp(−\, )

(
1 − exp(−\()

) ]
.

Because ( and, are independent above (Prop. 8.1), we have

E
[
exp(−\, )

(
1 − exp(−\()

) ]
= E[exp(−\, )] E[1 − exp(−\()]
= L[, ] (\ )

(
1 − L[(] (\ )

)
.

After adding L[, ] (\ ) = E[exp(−\, )] and using the fact that

_
(
1 − L[(] (\ )

)
\

= dL[E(] (\ ), [by Prop. 5.3]

rearranging terms yields the desired formula for L[, ] (\ ). �
3The de�nition we give for ,gap is in terms of an expression that itself involves the system work.

Nevertheless, the two terms on the right-hand side are independent random variables. One way to think
about this is that, on the left-hand side and,gap on the right-hand side are each de�ned using independent
copies of the system, and,min is de�ned using an M/G/1 that is independent of both copies.
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8.2 Why Work Decomposition Is Useful for the M/G/k

8.2.1 Mean Response Time of FCFS in terms of System Work

There is no simple expression known for mean response time E[)FCFS-:] of an M/G/k under
FCFS-k, namely the :-server version of FCFS. But Goldberg4 has observed that we can
write E[)FCFS-:] in terms of E[,FCFS-:], the mean system work under FCFS-k:5

E[)FCFS-:] =

E[time in queue]︷                      ︸︸                      ︷
E[,FCFS-:]

d
− :E[E(] +

E[time in service]︷︸︸︷
:E[(] . (8.4)

To see why this holds, �rst note that E[,FCFS-:] −:dE[E(] is the mean total size of jobs in
the queue. All of these jobs have not yet begun service, implying they have expected size
E[(], so dividing by E[(] gives the mean number of jobs in the queue. Applying Little’s
law [84] then yields the mean time jobs spend in the queue. Mean time in service is simply
mean job size E[(] over the service rate 1/: .

Combining Theorem 8.2 and (8.4) reduces the problem of analyzing FCFS-k’s mean
response time to the problem of analyzing E[(1 − �FCFS-:),FCFS-:]. As an example of how
we might do this, we show below how we can sometimes bound the analogue of this term
in an M/G/k under any non-idling scheduling policy c-k, of which FCFS-k is an example.

8.2.2 Bounding System Work with Work Decomposition

Consider an M/G/k with a non-idling scheduling policy c-k, meaning c-k never leaves
servers idle while there are jobs in the queue. We can apply (8.3) to this system. While
E[,c-: | Bernoulli(1−�c-:) = 1] is hard to characterize exactly, we can make an observation
about it: whenever Bernoulli(1 − �c-:) = 1, there must be at least one idle server, in which
case there are at most : − 1 jobs in the system. This means the mean work gap can be
bounded, roughly speaking, as

E[,c-:] − E[,min] ≤ E[“remaining work of : − 1 jobs”] .

For some size distributions, such as exponential distributions, we can uniformly bound the
expected remaining work of a job by some constant Bmax no matter what state the job is in.
In these situations, we can formalize the above bound, obtaining

E[,c-:] − E[,min] ≤ (: − 1)Bmax. (8.5)
4Personal communication with David A. Goldberg, April 2022. The argument below is due to him.
5Unlike in the work-conserving M/G/1, in the M/G/k, the steady-state system work depends on the

scheduling policy, even among non-idling scheduling policies.
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8.2.3 Looking Ahead to Relevant Work Decomposition
Equation (8.5) is only useful if there is a uniform bound Bmax on a job’s expected remaining
work, which is only the case for some size distributions. However, as we will see in
Section 8.3.2, we can derive an analogue of (8.5) for relevant system work which demans a
uniform bound on relevant remaining work. For some sets of relevant states Y, it may be
that a job’s expected remaining Y-work is easy to bound. For example, consider ≤A -work
under SRPT’s rank function. Any job’s remaining ≤A -work is at most A , because jobs with
greater remaining work have rank greater than A and are thus ≤A -irrelevant.

Of course, under policies other than FCFS, it is less clear how to relate total or relevant
system work to response time. Part III introduces a new technique that does exactly this
(Ch. 15), allowing us to analyze SRPT and Gittins in the M/G/k (Ch. 17).

8.3 Relevant Work Decomposition

8.3.1 Rate Conservation Law for Relevant System Work under
M/G Arrivals

Analogous to � , we write � (Y) for the Y-relevant service rate of the system, namely the
total rate at which system Y-work is decreasing, or equivalently the total service rate of
all Y-jobs in the system.

We write Ercy(Y)[+ ] for the expectation of random variable+ , which may be a function
of the system state, sampled at the instants immediately before Y-recyclings.6 Inside such
an expectation, (rcy(Y) represents the recycled size of the job undergoing Y-recycling.

Proposition 8.4. Let Y ⊆ L×R≥0 be a set of job states and 5 : R≥0 → R≥0 be di�erentiable.
In any steady-state system with M/G arrivals,

E
[
� (Y) 5 ′

(
, (Y)

) ]
= _E

[
5
(
, (Y) + ( (Y)

)
− 5 (, (Y))

]
+ _rcy(Y) Ercy(Y)

[
5
(
, (Y) + (rcy(Y)

)
− 5

(
, (Y)

) ]
,

where the jobY-size ( (Y) on the right-hand side is independent of the systemY-work, (Y).7

Proof. The left-hand side is the average rate at which 5 (, (Y)) decreases. By PASTA
(§ 5.4.2), the �rst term on the right-hand side is the average rate at which 5 (, (Y))
increases. The second term on the right-hand side is the average rate at which 5 (, (Y))
increases due to Y-recyclings. The Rate Conservation Law [95, Theorem 2.1] states that
the average decrease rate equals the sum of these average increase rates. �

6If multiple recyclings occur simultaneously, we assume they happen in some order at the same moment
in time. The state immediately after the �rst recycling is the state immediately before the second, the state
immediately after the second is the state immediately before the third, and so on.

7In contrast, the Y-recycled size (rcy (Y) is not necessarily independent of the system Y-work, (Y)
when sampled immediately before the Y-recycling.



8.3 Relevant Work Decomposition 117

Corollary 8.5. Let Y ⊆ L ×R≥0 be a set of job states. In any steady-state system with M/G
arrivals,

E[� (Y)] = d (Y) + drcy(Y) .

Proof. We apply Proposition 8.4 with 5 (F) = F , then simplify the right-hand side using
De�nitions 7.4(c) and 7.5(e). �

8.3.2 Mean Relevant Work Decomposition
De�nition 8.6. Let Y ⊆ L ×R≥0 be a set of job states.

(a) An M/G/1 scheduling policy is Y-relevant-prioritizing (or Y-prioritizing) if
• it always serves a Y-job if there is one in the system, and
• it never causes simultaneous Y-recyclings.

For example, a SOAP policy is ≤A -prioritizing for all ranks A (Prop. 7.13).
(b) The minimal M/G/1 Y-relevant system work (or minimal M/G/1 Y-work), denoted

,min(Y), is the system Y-work in a steady-state M/G/1 under any Y-prioritizing
scheduling policy. That this quantity does not depend on the particularY-prioritizing
scheduling policy chosen follows from Theorem 8.8, which we prove later in this
section.

Theorem 8.7 (Mean Relevant Work Decomposition). Let Y ⊆ L × R≥0 be a set of job
states.
(a) The mean minimal M/G/1 Y-work is

E[,min(Y)] =
_(Y)

2 E[( (Y)2] + _rcy (Y)
2 E[(rcy(Y)2]

1 − d (Y)

=
d (Y) E[E( (Y)] + drcy(Y) E[E(rcy(Y)]

1 − d (Y) .

(b) Consider an M/G system. The mean system Y-work is

E[, (Y)] = E[,min(Y)] +
E
[ (

1 − � (Y)
)
, (Y)

]
+ _rcy(Y) Ercy(Y)

[
(rcy(Y), (Y)

]
1 − d (Y) .

Proof. Throughout, we omit “(Y)” to reduce clutter.
We apply Proposition 8.4 with 5 (F) = 1

2F
2, so 5 ′(F) = F . This yields

E[�, ] = _E
[ 1

2 (, + ()
2 − 1

2,
2] + _rcyErcy

[ 1
2 (, + (rcy)2 − 1

2,
2]

= _
2E[(

2] + _rcy
2 E[(2

rcy] + _E[(, ] + _rcyErcy[(rcy, ] .

Because ( and, are independent above (Prop. 8.4), we have _E[(, ] = dE[, ]. Adding
E[, ] to both sides and rearranging terms, we obtain

E[, ] =
_
2E[(

2] + _rcy
2 E[(2

rcy] + E[(1 − � ), ] + _rcyErcy[(rcy, ]
1 − d .
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The result follows from observing the following facts about an M/G/1 under a relevant-
prioritizing scheduling policy.

• Because the policy always prioritizes relevant jobs if any are present, we have

E[(1 − � ), ] = E[1(, = 0), ] = 0.

• Because the policy never recycles an irrelevant job if a relevant job is present,, = 0
immediately prior to recyclings, so Ercy[(rcy, ] = 0. �

8.3.3 Distributional Relevant Work Decomposition
Theorem 8.8 (Distributional Relevant Work Decomposition). Let Y ⊆ L ×R≥0 be a set of
job states.
(a) The minimal M/G/1 Y-work distribution is

,min(Y) =st

Geo(1−d (Y))∑
8=0
(E( (Y))8 + Bernoulli

(
drcy(Y)

1 − d (Y)

)
E(rcy(Y),

and its LST is

L[,min(Y)] (\ ) =
1 − d (Y) − drcy(Y) + drcy(Y) L[E(rcy(Y)] (\ )

1 − d (Y) L[( (Y)] (\ )
(b) Consider an M/G system. The system Y-work can be written as an independent sum

, (Y) =st ,min(Y) +,gap(Y),

where,gap(Y) is a random variable with LST

L[,gap(Y)] (\ ) B

©«
E
[ (

1 − � (Y)
)

exp(−\, (Y))
]

+ drcy(Y) Ercy(Y)
[

1−exp(−\(rcy (Y))
\E[(rcy (Y)] exp(−\, (Y))

]ª®¬
1 − d (Y) − drcy(Y) + drcy(Y)L[E(rcy(Y)] (\ )

.

Proof. We apply Proposition 8.4 with 5 (F) = exp(−\F), incorporating recyclings as in
the proof of Theorem 8.7. We then compute similarly to the proof of Theorem 8.3. The
result follows from the fact that in an M/G/1 under a Y-prioritizing scheduling policy, we
have L[,gap(Y)] (\ ) = 1, and thus,gap(Y) =st 0, by reasoning similar to the end of the
proof of Theorem 8.7. �

8.3.4 A Useful Corollary: Relevant-Prioritizing Policies Minimize
Relevant Work

Corollary 8.9. Let Y ⊆ L × R≥0 be a set of job states. In the M/G/1, system Y-work is
stochastically minimized, and thus its mean is minimized, by any Y-prioritizing scheduling
policy. That is, letting c be a Y-prioritizing policy and c ′ be another policy,

,min =st ,c (Y) ≤st ,c ′ (Y).
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In particular, for any SOAP policy c, any other policy c ′, and any rank A,

,c (rankc ≤ A ) ≤st ,c ′ (rankc ≤ A ),
,c (rankc < A ) ≤st ,c ′ (rankc < A ),

where “ rankc ≤ A” is “≤A” with c’s rank function, and similarly with < in place of ≤.8

Proof. The result for a general set of states Y follows immediately from Theorem 8.8 and
a fact used in its proof, namely that,gap(Y) =st 0 under any Y-prioritizing scheduling
policy. The SOAP policy result then follows from the fact that any SOAP policy c is
(rankc ≤ A )-prioritizing and (rankc < A )-prioritizing. �

8We write “rankc ≤ A” as opposed to simply “≤A” to emphasize that it is c ’s rank function being used on
both sides of the inequality. We formally de�ne this notation in Chapter 15 (Def. 15.1).
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Chapter 9

Practical Preemption Limitations

When it comes to job preemption, most queueing theory literature studies one of two
extreme cases: either preemption is completely unrestricted and incurs no overhead,1
or preemption is entirely disallowed. However, many practical systems lie somewhere
between these two extremes. This chapter numerically applies the SOAP analysis from
Chapter 7 to two case studies with intermediate limitations on preemption.

• (§ 9.1) We study scheduling in settings where the scheduler can only use a limited
number of priority levels. Jobs in the same priority level cannot preempt each other,
so having limited priority levels restricts preemption.

• (§ 9.1) We study scheduling in settings where jobs can only be preempted at certain
checkpoints. We assume that each checkpoint incurs some overhead. This creates a
tricky tradeo�: more frequent checkpoints allow for more �exibility in preempting
jobs, but at the cost of additional load due to overhead.

This chapter is based on material from Scully and Harchol-Balter [123].

9.1 Limited Priority Levels

Many practical computer systems permit only a small �nite number of priority levels. For
example, network switches have a small number of priority levels, typically at most 8, built
into their hardware [96]. Similarly, the Linux kernel packet scheduler has a con�gurable
number of priority levels, with a default of 3 [57]. We call this the Limited-Priority-Level
(LPL) setting.

When using a SOAP policy (Ch. 6), a priority level corresponds to a rank. Unfortunately,
many SOAP policies assume a continuum of ranks. For example, under SRPT (Pol. 6.10),
a job’s rank is its remaining work, for which there are in�nitely many possible values.
System designers who would like to implement policies like SRPT in LPL settings are
thus confronted with the challenge of approximating their policy using a �nite number of
possible ranks. LAS (Pol. 6.4), SERPT (Pol. 6.11), Gittins (Pol. 6.12), and other SOAP policies
su�er from the same problem.

Given an “ideal” SOAP policy, such as SRPT, a common approach to scheduling in
the LPL setting is to categorize jobs into levels based on their rank under the ideal policy
[54, 57, 86, 96]. However, it is not clear how best to do this. Continuing with the SRPT
example, if one has only two priority levels, we can assign rank 1 to jobs smaller than a size
cuto� 2 and rank 2 to jobs larger than 2 , but this begs the question: how do we choose 2?

1A notable case of queueing theory accounting for some kind of switching overhead is the literature on
polling systems, for which Boon et al. [19] and Borst and Boxma [21] provide recent surveys. However, the
type of switching overhead is di�erent than preemption overhead

121
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21

22

23

0 0

0

rankc (ℓ, 0)

(a) Rank function of generic SOAP policy c .

1

2

3

0 0

0

rankLPL-c (ℓ, 0)

(b) Rank function of LPL-c , with rank of c
shown for reference (dashed orange line).

Figure 9.1. Given a SOAP policy c and a set of rank cuto�s {21, 22, 23}, we construct LPL-c , a policy
that uses only four ranks, and can thus be implemented with just four priority levels.

In this section, we give guidelines for designing scheduling policies in LPL settings.
We tackle the following system design questions:

• How many priority levels do we need to rival the performance of ideal policies?
• How should we choose the rank cuto�s between levels?
• Which ideal policy works best when adapted to the LPL setting?

We spend most of this section addressing the above questions in LPL settings with known
job sizes (§ 9.1.2) and unknown job sizes (§ 9.1.3). But before diving in, we brie�y review
how one adapts scheduling policies to the LPL setting in general (§ 9.1.1).

9.1.1 Adapting SOAP Policies to the LPL Se�ing

Policy 6.14 gives a general way of constructing an LPL policy from a generic SOAP policy c
and set of rank thresholds '. The resulting policy is called LPL-c. Below, we brie�y review
the construction from Policy 6.14, which is also illustrated in Figure 9.1.

Consider a SOAP policy c which uses a continuum of priority levels. We create LPL-c
by restricting c ’s rank function to one of �nitely many values in the following way. Suppose
our system allows = priority levels. We choose a number of rank cuto�s 21, 22, . . . , 2=−1,
de�ning 20 = 0 and 2= = ∞ as edge cases. Whenever c would assign a job a rank between
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Table 9.1. Highly variable job size distributions.

Name Density Function Coefficient of Variation

Bounded Pareto 5( (G) ≈ 1/G2 for 1 ≤ G < 100000 �2
(
≈ 753

Weibull 5( (G) = G−3/4 exp(−G1/4)/4 for G ≥ 0 �2
(
= 69

28−1 and 28 , LPL-c assigns the job rank 28 . That is,2

rankLPL-c (ℓ, 0) B



0 if rankc (ℓ, 0) ∈ [0, 21)
1 if rankc (ℓ, 0) ∈ [21, 22)
...

= − 2 if rankc (ℓ, 0) ∈ [2=−2, 2=−1)
= − 1 if rankc (ℓ, 0) ∈ [2=−1,∞).

Figure 9.1 illustrates this rank function. Note that its range includes only = ranks, meaning
it can be implemented in a system that has only = priroity levels.

9.1.2 LPL Scheduling with Known Job Sizes: LPL-SRPT
We now address the question of how to minimize mean response time in the LPL setting
when job sizes are known to the scheduler. Inspired by SRPT’s optimality, we investigate
LPL-SRPT. We can think of LPL-SRPT as assigning rank 8 to jobs with remaining work
between cuto�s 28−1 and 28 .

Figure 9.2 compares LPL-SRPT to SRPT as a function of the number of priority levels
for two di�erent job size distributions, which are described in Table 9.1. For brevity, we
show only moderate load d = 0.8, but the trends are virtually identical at other loads.
Optimizing LPL-SRPT’s mean response time amounts to tuning the cuto�s 21, 22, . . . , 2=−1.
We consider two strategies for tuning the cuto�s:

• Heuristic cuto�s: we set the rank cuto�s to split load evenly between the ranks, a
simple heuristic which has been used in practice [57, 96]. More formally, this means
equalizing E[(1(( ∈ [28, 28+1))] for 8 ∈ {0, . . . , = − 1}. The resulting cuto�s thus
depend on the size distribution ( but not on the load d .

• Optimal cuto�s: we numerically optimize the rank cuto�s to yield minimal mean
response time. The resulting cuto�s depend on both the job size distribution ( and
the load d .

The job size distributions in Table 9.1 are both high-variance job size distributions.
We expect our conclusions generalize to other high-variance job size distributions. The
low-variance case turns out to be less interesting, because FCFS, which use only a single
priority level, already o�ers reasonable performance.

2Policy 6.14 uses 28 instead of 8 in its de�nition of rankc , but this does not a�ect the scheduling policy,
because only the relative ordering of ranks matters.
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Figure 9.2. Mean response time of LPL-SRPT as a function of number of levels. Heuristic cuto�s
are chosen so an equal load of jobs has size between each pair of thresholds. Optimal cuto�s are
numerically optimized to minimizes mean response time.

How Many Priority Levels Do We Need?

We see that roughly 6 priority levels is enough to approach the mean response time of SRPT,
the optimal ideal policy in the size-aware setting. Even with the heuristic cuto�s, 6 levels
gives mean response time within 21% of SRPT’s at the moderate load d = 0.8. This supports
the empirical �ndings of LPL system designers: Harchol-Balter et al. [57] use 6 levels, and
Montazeri et al. [96] use up to 7 levels.

With this said, we note that using just 2 priority levels is still an order-of-magnitude
improvement over FCFS. This is because FCFS has very poor mean response time for the
high-variance job size distributions, because small and medium jobs can get stuck behind
very long jobs [55].

How Should We Choose Rank Cuto�s?

We see that the load-balancing heuristic cuto�s serve as a good rule of thumb. In additional
numerical experiments, omitted for brevity, we tried several other simple heuristics, such
as evenly splitting the number of arrivals in each bucket or using a geometric sequence
for the rank cuto�s 28 . None of these alternatives performed well as consistently as the
load-balancing heuristic used in Figure 9.2.

Additional examples at other loads, omitted for brevity, show that the gap between
the heuristic and optimal cuto�s becomes more important under higher load, especially
for small numbers of priority levels. However, using optimal cuto�s presents a practical
di�culty: the optimal cuto�s depend on the load d . Fortunately, if we optimize the cuto�s
for d = 0.8, additional numerical experiments, omitted for brevity, show that we achieve
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Figure 9.3. Mean response time of LPL-PSJF as a function of number of levels. Note that whether
cuto�s are heuristic or optimized, LPL-PSJF outperforms LPL-SRPT. This is surprising given that
(ideal) SRPT minimizes mean response time and thus outperforms (ideal) PSJF.

near-optimal performance for all but the highest loads.

Which Ideal Policy Should We Start With?

We began this section by focusing on LPL-SRPT. However, even though SRPT is the optimal
policy with in�nite priority levels, LPL-SRPT turns out not to be the best policy in the LPL
setting.

Recall that SRPT assigns ranks using remaining work Policy 6.10. This means that
LPL-SRPT “upgrades” jobs to the next priority level when they become small enough.
Unfortunately, because of the limited number of priority levels, this can cause smaller
(new) jobs to have to wait behind larger (recently upgraded) jobs. Fortunately, it turns
out that a simple alteration to LPL-SRPT can avoid this issue: never change a job’s rank.
This results in a policy we call LPL-PSJF.3 The name comes from the Preemptive Shortest
Job First (PSJF) policy (Pol. 6.9), in which a job’s rank is its original size, as opposed to
its remaining work. Figure 9.3 shows that, counter to intuition, LPL-PSJF outperforms
LPL-SRPT.

It is also possible to improve upon LPL-PSJF. However, LPL-PSJF is already an appealing
choice for practice [96], so we leave exploring this to future work.

3One can view LPL-PSJF as a version of the P-Prio policy (Pol. 6.8).
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Figure 9.4. Mean response time of LPL-LAS as a function of number of levels. As in Figure 9.2,
heuristic cuto�s equalize load of jobs with sizes between each pair of thresholds, and optimal
cuto�s numerically optimize to minimize mean response time.

9.1.3 LPL Scheduling with Unknown Job Sizes

We now turn to LPL settings with unknown job sizes. For low-variance job size distributions,
FCFS already performs well (§ 5.5.1), so we once again focus on the high-variance job size
distributions from Table 9.1. For these distributions, LAS has either optimal or near-optimal
mean response time, so LPL-LAS is a promising policy for the LPL setting. We can think
of LPL-LAS as assigning rank 8 to a job with age between cuto�s 28−1 and 28 .

Figure 9.4 compares LPL-LAS to LAS as a function of the number of priority levels for
two di�erent job size distributions, which are described in Table 9.1. We consider the same
two strategies for tuning the cuto�s as in Section 9.1.2: load-balancing heuristic cuto�s and
numerically-solved optimal cuto�s.

How Many Priority Levels Do We Need?

We reach a conclusion similar to the setting of known job sizes: roughly 5 priority levels is
enough to approach the mean response time of LAS, which is optimal or near-optimal for
the job size distributions in Table 9.1. Even with the heuristic cuto�s, 5 levels gives mean
response time within 23% of LAS’s at the moderate load d = 0.8.

With this said, as with known job sizes, using just 2 priority levels is still an order-of-
magnitude improvement over using FCFS.
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How Should We Choose Rank Cuto�s?

We see again that load-balancing heuristic cuto�s serve as a good rule of thumb, as in the
known-size setting. In particular, this heuristic outperformed the other simple heuristics
we tried. Using optimal cuto�s again becomes more important at higher load.

Which Ideal Policy Should We Start With?

We have not found an LPL policy that signi�cantly improves upon LPL-LAS when job sizes
are unknown, at least for the job size distributions in Table 9.1. This is not too surprising:
both job size distributions have “mostly” decreasing hazard rate,4

9.1.4 Summary of LPL Scheduling: 5 or 6 Levels with
Load-Balancing Cuto�s Is Good Enough

We have seen that when job sizes are highly variable (Tab. 9.1), one can obtain good mean
response time in the LPL setting with 5 or 6 priority levels, using LPL-SRPT or LPL-PSJF
with known sizes and LPL-LAS with unknown sizes. Even just 2 priority levels gives an
order-of-magnitude improvement over FCFS. A simple load-balancing heuristic su�ces for
choosing the rank cuto�s between priority levels, though it is possible to improve upon
this already-good heuristic.

Can We Theoretically Support Our LPL Scheduling Conclusions?

While we do not have any direct theoretical analysis of the LPL setting, we prove theorems
elsewhere in this thesis that support some of the same themes we see in this chapter,
particularly with regards to choosing LAS and PSJF as underlying ideal policies. Speci�cally,
both of these policies have the property that a job’s rank never improves (i.e. never
decreases), an idea which we see in two theoretical chapters later on.

• In Chapter 11, we propose a policy for unknown job sizes in which a job’s rank
never improves, and we show its mean response time is always within a factor of 5
of optimal.

• In Chapter 12, we study scheduling using noisily estimated job sizes instead of exact
job sizes. One can naively adapt both SRPT and PSJF to this setting by using the
same rank function, but plugging in the noisy estimates in place of the true sizes.
While the noisy version of SRPT can perform poorly with even a small amount of
noise, the noisy version of PSJF is much more robust.

4The Weibull distribution has decreasing hazard rate. The Bounded Pareto distribution has decreasing
hazard rate up to some age threshold, but jobs that reach this threshold are very rare.
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9.2 Preemption Checkpoints

Queueing theorists, very much including the author, often assume that jobs may be freely
preempted, but this is far from the case in practical computer systems. Programs can
have temporary state at all levels of the memory hierarchy, from registers to RAM. For
cloud-based jobs, even the disk may be temporary state. Before preempting a job, we must
either save or discard its state.

Checkpointing is one solution used to combat lost state. Every job occasionally saves
its transient state, and we allow preemptions only immediately after saving. We refer
to ages when a job saves its work as checkpoints. Because saving work takes time, each
checkpoint adds to a job’s size.

A very similar situation occurs when scheduling packet �ows in networks, e.g. at a
network switch. In this setting, each packet �ow is a job, and serving a job corresponds to
sending its packets. Packets are indivisible, and each packet incurs overhead in the form of
its header. We can think of packet boundaries as analogous to checkpoints.

When scheduling in a system with checkpointing, the key question is: how much service
should occur between checkpoints? Or, in the context of packet �ows: how large should
packets be? Answering this question requires balancing a delicate tradeo�.

• On one hand, less service between checkpoints allows for quicker preemptions. This
decreases mean response time because small jobs are less likely to get stuck during
long uninterruptible periods between checkpoints.

• On the other hand, checkpointing takes time, so the less service between checkpoints
add more to the system load. This in turn can increase mean response time or even
cause instability.

We give a rule of thumb for balancing this tradeo�. After discussing in more detail how
we model checkpoints (§ 9.2.1), we determine how frequently checkpoints should occur
to minimize mean response time (§ 9.2.2). Throughout, we focus on the case of unknown
job sizes. In additional numerical experiments, omitted for brevity, we have observed the
same results in the setting with known job sizes.

9.2.1 Jobs with Preemption Checkpoints

We consider a system where jobs cannot be preempted unless their work is saved. Jobs
save their work at speci�c ages called checkpoints. Upon reaching a checkpoint, a job takes
a deterministic amount of overhead time W to save its work, after which the job may be
preempted.

For simplicity, we study the case where checkpoint ages are distributed evenly with
service quantum X . That is, checkpoints occur at ages 0, X, 2X, . . .. Our main task is to
optimize the service quantum X given the job size distribution ( , load d , and overhead W .

Overhead time does not represent real progress towards completing the job. To model
this, we consider a system with an overhead-altered job size distribution. Given original
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Figure 9.5. Using LAS (Pol. 6.4) but preempting only at age checkpoints yields Chk-LAS (Pol. 6.4).
In our setting, there is a gap of X + W between checkpoints: after a service quantum X , an overhead
W occurs, and only after that can the job be preempted.

size distribution ( , we de�ne the overhead-altered distribution by

(̌ B ( + W
⌊
(

Δ

⌋
. (9.1)

For consistency with our de�nitions of other SOAP policies, we de�ne scheduling poli-
cies in terms of overhead-altered ages, too. In particular, after accounting for overheads,
checkpoints actually occur ate ages 0, X + W, 2(X + W), . . ..

A job can only be preempted at checkpoint ages. Given a scheduling policy, we can
express this constraint by modifying the scheduling policy’s rank function. Speci�cally, we
leave the rank function as-is for checkpoint ages, but for intermediate ages, we set the rank
to a low value. This gives a job between checkpoints priority over jobs at checkpoints. We
can in principle do this to any SOAP policy c , resulting in a policy we call Chk-c (Pol. 6.13).
In this section, we focus speci�cally on Chk-LAS, which is illustrated in Figure 9.5.5

9.2.2 Choosing the Right Service �antum
We focus on a setting with unknown job sizes and high-variance job size distributions,
speci�cally those from Table 9.1.6 For these job size distributions, LAS has near-optimal
mean response time, so we schedule using Chk-LAS (Fig. 9.5).

5If we were adapting a generic SOAP policy c , we would want to account for the fact that a job’s age
includes overheads, but this consideration is not important for LAS. Speci�cally, if a job’s age with overheads
is 0, then without overheads, the job has received service for 0 − b 0

X+W c time, resulting in rank function
rank(ℓ, 0) = rankc (ℓ, 0 − W b 0

X+W c) 1(0/(X + W) ∈ N).
6To make the analysis numerically tractable, we actually truncate the distributions at size 5000 and

discretize them into increments of size 0.125. The trends we observe are not sensitive to these values.
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Figure 9.6.Mean response time of Chk-LAS as a function of the normalized service quantum X/E[(]
for a system with large checkpoint overhead, namely W = 0.1E[(]. We use LAS in a system without
checkpoints or overhead as a baseline for comparison. We consider Bounded Pareto and Weibull
job size distributions (Tab. 9.1) and load d = 0.8. As we decrease X , mean response time decreases
approximately linearly until a critical value “left wall” value of X , at which point the system becomes
unstable and mean response time approaches in�nity. The vertical lines show a conservative
estimate, given by (9.2), of where the left wall is.

We show in Figure 9.6 how mean response time varies as a function of the service
quantum X . The �gure shows the case of relatively large overhead W = 0.1E[(] at load
d = 0.8. As we will show later, the trends are similar for small overhead and other loads
(Fig. 9.7).

For large enough X , Figure 9.6 shows that mean response time is a roughly linear
function of X on at least a portion of the domain, where smaller X is better. However, there
is a vertical asymptote as X approaches a small value, which we call the “left wall”. This
leaves us in a precarious situation: smaller values of X generally yield lower mean response
time, but if X becomes too small, mean response time suddenly becomes in�nite. In the
remainder of this section, we explain how to choose a value of X that is small enough but
not too small.

Ensuring Stability with a Safe Service �antum

As a �rst step towards optimizing X , we must �gure out the value Xleft wall at which the left
wall asymptote occurs. The asymptote at the left wall is caused by checkpoints becoming
so frequent that the overheads make the system unstable, which sends mean response
time to in�nity.

It turns out that Xleft wall has a complicated formula, but there is a simpler formula that
bounds it. Let

Xsafe =
Wd

1 − d . (9.2)

Plugging X = Xsafe into (9.1) and computing the overhead-altered load ď B _E[(̌], we see
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that X = Xsafe ensures ď < 1 and thus stability. This holds not just for this example but
under any scheduling policy and any job size distribution.

Optimizing the Service �antum

We want to choose a service quantum X that is not just stable but also optimizes mean
response time. We see from Figure 9.6 that the optimal value of X is slightly larger than
Xsafe, but it is not clear how much larger is optimal. Through a number of examples, we
have found the following rule of thumb to give near-optimal performance in the typical
case when the overhead W is at most the mean job size E[(]:7

Xrule of thumb =
1

1 − d

√
WE[(]
d

. (9.3)

Figure 9.7 show that this rule-of-thumb service quantum yields near-optimal performance
for a range of loads d and overheads W .

The intuition behind (9.3) is as follows. We see in Figure 9.7 that mean response time
has a “bathtub” shape when plotted as a function of X on a log scale. Each bathtub is
approximately symmetrical near its minimum. This suggests that if we can �nd the values
of X corresponding to the “walls” of the bathtub, then their geometric mean would be a
good rule of thumb. This is exactly the approach we take.

• Left wall: we use Xsafe as an approximation for the left wall.
• Right wall: through additional numerical experiments, omitted for brevity, we have

found that the formula E[(]/(d2(1 − d)) is a good approximation for the right wall.
Our search for a good approximation was guided by the observation that the right
wall is virtually una�ected by the overheadW , as we see by comparing Figure 9.7. This
makes sense: when the service quantum X is large, there are very few preemptions,
so the overhead W has little impact of mean response time.

9.2.3 Summary: Rule-Of-Thumb Formula
When scheduling in systems with checkpointing, there is a tradeo� between making check-
points less frequent, which avoids checkpoint-associated overhead, and more frequent,
which enables smarter scheduling. In (9.3), we propose a rule-of-thumb formula that yields
a near-optimal service quantum. Although we focus throughout on unknown job sizes, we
have observed that this rule of thumb also works well when using Chk-SRPT with known
job sizes.

What About Non-Constant Service �anta?

One can use SOAP to analyze checkpointing with di�erent amounts of service between
each pair of checkpoints. In fact, Policy 6.13 is written in a general way that allows for this

7One could replace W by max{W, E[(] in (9.3) to obtain a formula that works even with W > E[(].
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Figure 9.7.Mean response time of Chk-LAS as a function of the normalized service quantum X/E[(]
(log scale) for two systems with di�erent checkpoint overheads. We consider Bounded Pareto and
Weibull job size distributions (Tab. 9.1) for several values of load d . We highlight the rule-of-thumb
value of X given by (9.3).
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possibility, and exploring this is a possible direction for future work. With that said, there
are two reasons we focus on the case of constant service quanta.

• The �rst reason is practical: having a constant service quantum, or perhaps a small
number of di�erent possible service quanta, is likely the most feasible option in
many systems. One example is scheduling packet �ows in networks, where packet
sizes are generally standardized.

• The second reason is theoretical: in Chapter 13, we show that if the service quanta
grow to large as a job’s age increases, it can cause poor tail of response time for
heavy-tailed job size distributions.
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Chapter 10

Gi�ins vs. Simpler Substitutes

The Gittins policy (Pol. 6.12) minimizes mean response time in the M/G/1 [44]. However,
the practicality of actually implementing Gittins is often questioned.

Why might Gittins be impractical? Let us �rst recall how Gittins is de�ned. In the
unlabeled case, meaning when the scheduler knows no information about any speci�c
job’s size (§ 5.2.3), Gittins has rank function

rankGittins(0) = inf
1>0

E[min{(, 1} − 0 | ( > 0]
P[( ≤ 1 | ( ≥ 0] . (10.1)

Notice that Gittins’s rank function involves solving an optimization problem at every age 0,
where the optimization depends on the job size distribution ( .

This brings us to our �rst reason Gittins may be impractical: solving the optimization
problem in (10.1) can be di�cult. While it is known to be solvable in polynomial time for
discrete size distributions [24], to the best of our knowledge, it is an open question whether
Gittins’s rank function can be computed e�ciently for continuous size distributions.

A second reason Gittins may be impractical is its dependence on the size distribution ( .
In fact, when jobs have informative labels, then Gittins depends on the entire joint label-size
distribution (!, (). But this joint distribution may not always be known exactly in practice.
For example, suppose jobs are labeled with noisy size estimates. Even if we have a good
idea of what the size distribution is, we may not know have enough data to build a precise
model of the noise.

In light of these obstacles, the goal of this chapter is to determine whether simpler
policies than Gittins can serve as a reasonable substitute, achieving near-optimal mean
response time. We study three di�erent settings:

• (§ 10.1) Unlabeled: The scheduler knows no speci�c information about any particular
job, and in particular does not know job sizes.

• (§ 10.2) Class-labeled: Jobs come from one of a small number of classes, and each job
is labeled with a class.

• (§ 10.3) Estimate-labeled: We have some way of estimating a job’s size when it arrives,
and each job is labeled with its estimate.

In each setting, we take a computational approach, numerically applying the SOAP analysis
(Ch. 7) to a variety of examples. Our �ndings inspire theoretical investigations that appear
in Chapters 11 and 12.

Finally, we note that another reason Gittins may be impractical to implement is that
it is a preemptive policy. Practical systems can have a variety of preemption limitations,
making it impossible to implement the theoretically ideal Gittins. We study this issue in
Chapter 9.

Section 10.1 is based on material from Scully and Harchol-Balter [123], but Section 10.3
is new material.

135
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Figure 10.1. Example job size distribution ( . For each possible size B , we show the probability that
an arriving job’s size is B . We can imagine that this size distribution arises from serving jobs from
four di�erent applications, each of which has an approximately Gaussian size distribution. For
simplicity, in this example, the possible sizes are discretized in increments of 1/16.

10.1 Unknown Sizes: Use SERPT

10.1.1 Imitating Gi�ins’s Rank Function
Looking at (10.1), we see that the Gittins rank function trades o� between two ideas. The
�rst is that we want to favor jobs which have small expected remaining work, which is
captured by the numerator of. The second is that we want to favor jobs that are likely to
complete soon, which is captured by the denominator. Figure 10.1 shows an example of a
job size distribution, and Figure 10.2(a) shows what the Gittins rank function looks like for
it in the unlabeled case.

How might we simplify Gittins? One idea is to worry just about a job’s expected
remaining work, without worrying about the probability it will complete soon. After all, if
a job will likely complete soon, that a�ects its expected remaining work. The policy that
always serves the job of least expected remaining work to schedule is SERPT (Pol. 6.11):

rankSERPT(0) = E[( − 0 | ( > 0] .

Put another way, rankSERPT is like rankGittins, but instead of optimizing the parameter 1
that appears in rankGittins, we simply set 1 = ∞.

We show an example of SERPT’s rank function in Figure 10.2(b). Comparing it to
Gittins’s rank function for the same distribution in Figure 10.2(a), we see that the Gittins
and SERPT rank functions are rather similar. Both, roughly speaking, have two “hills”, and
the rank functions are exactly the same after the second “hill”.1

1This is not a coincidence but rather an instance of a more general result [3, Lem. 8].
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Figure 10.2. Rank functions of (a) Gittins and (b) SERPT in the unlabeled case for the job size
distribution shown in Figure 10.1. Similarly to the distribution, both rank functions are discretized
in age increments of 1/16.

10.1.2 How Does SERPT Compare to Gi�ins?

Given that SERPT’s rank function seems so similar to Gittins’s, it is natural to ask: does
SERPT also perform similarly to Gittins? This is certainly true for the job size distribution
from Figure 10.1. We show in Figure 10.3 the mean response times of several policies
for this distribution. We observe that SERPT is nearly optimal, with mean response time
within 3% of Gittins’s at all loads. Other common policies that work with unknown job
sizes, such as FCFS (Pol. 6.5) and LAS (Pol. 6.4), have much worse performance relative to
Gittins. It thus seems that SERPT has near-optimal mean response time.

Are These Observations Robust to Parameter Changes?

One might worry that our observations are speci�c to the size distribution from Figure 10.1.
To test whether SERPT is near-optimal under broader conditions, we repeated this section’s
analysis for 100 di�erent randomly generated scenarios with the goal of �nding the worst
case scenario for SERPT. Each scenario is similar to Figure 10.1 in that the overall job size
distribution is a mixture of jobs from four applications, each with a discretized Gaussian
distribution, but we randomly generated the parameters of each Gaussian.

Figure 10.4 summarizes the results by showing the worst observed mean response time
ratio between several policies and Gittins across all 100 scenarios. We focus on high load
d = 0.95 to emphasize the di�erences between the scheduling policies.2 To clarify what
Figure 10.4 represents, consider the SERPT bar, which has value 1.072. This means that for
the size-oblivious setting at load d = 0.95, across all 100 generated scenarios, the maximum
ratio E[)SERPT]/E[)Gittins] was 1.072. The bars for FCFS and LAS are computed similarly.

2We actually computed the ratio at all loads, but Figure 10.4 shows only d = 0.95 for simplicity. Accounting
for other loads increased SERPT’s worst observed mean response time ratio increases by no more than 0.01.
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Figure 10.3. Mean response times of several scheduling policies for the job size distribution from
Figure 10.1. We show both mean response times (left) and the mean response time ratios relative to
Gittins (right), which minimizes mean response time when job sizes are unknown. SERPT performs
nearly as well as Gittins, and in particular much better than either FCFS or LAS. We show SRPT as
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Figure 10.4. Worst observed mean response time ratios relative to Gittins at load d = 0.95. Each
bar is the maximum ratio out of 100 randomly generated scenarios, each of which is a variation
of Figure 10.1 with di�erent parameters. Speci�cally, the job size distribution is a mixture of four
applications’ distributions, each of which is a Gaussian with uniformly distributed mean and
standard deviation, discretized and restricted to the interval [0, 16]. We ensure that in each scenario,
one application’s mean is in each of the intervals [0, 4], [4, 8], [8, 12], and [12, 16].
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10.1.3 Can We Theoretically Bound SERPT’s Performance?

One might hope to use the SOAP analysis (Ch. 7) to give a theoretical bound on SERPT’s
mean response time that holds for all job size distributions, not just those we have tested.
We have not yet been able to prove such a result for SERPT. However, there is hope that
such a bound may be provable, because we prove such a bound in Chapter 11 not for
SERPT, but for a simple modi�cation of it we call monotonic SERPT (M-SERPT). We show
in Chapter 11 that M-SERPT’s mean response time ratio compared to Gittins is at most 5
for all job size distributions at all loads: E[)M-SERPT]/E[)Gittins] ≤ 5.

We conjecture that a similar result holds for (unmodi�ed) SERPT. The worst-case
scenario we have found so far is a particular pathological job size distribution which is
unlikely to occur in practice (Ch. 11). Even in this worst-case scenario, SERPT’s mean
response time ratio compared to Gittins is only 2, whereas FCFS and LAS both have
unbounded mean response time ratio compared to Gittins.

10.2 Multiclass Systems: Again, Use SERPT

We have seen in Section 10.2 that when job sizes are unknown, SERPT can serve as a
simple substitute for Gittins that performs nearly as well. But it is often the case that we
have some amount of information about jobs’ sizes. Can we use simpler substitutes for
Gittins in these cases? The rest of this chapter studies this question. This section considers
a multiclass setting, where jobs come from one of two classes and are labeled with their
class, which indirectly gives us some information about the job’s size. Section 10.3 below
considers the case where each job’s size is noisily estimated. This can be thought of as a
limiting case of the multiclass setting considered here, with each size estimate constitutes
a class of jobs, but the speci�cs are di�erent enough that we give it is own section.

We can use both Gittins and SERPT in multiclass settings. The only di�erence is
that instead of using the overall size distribution ( to compute a job’s rank, we use the
appropriate label-conditional size distribution (ℓ (Pols. 6.11 and 6.12), where a job’s label is
its class. After describing the speci�c multiclass scenarios we study (§ 10.2.1), we ask two
questions:

• (§ 10.2.2) How does SERPT compare to Gittins in the multiclass setting?
• (§ 10.2.3) Can a policy even simpler than SERPT still be near-optimal in the multiclass

setting?

10.2.1 Three Multiclass Systems

To compare di�erent multiclass scheduling policies, we consider the following running
example. Consider a system with jobs as illustrated in Figure 10.1. Jobs from four applica-
tions, which we call A, B, C, and D. If we have one job from each application, it is likely
that their size ordering from smallest to largest is A < B < C < D.
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Figure 10.5. Mean response time ratios relative to Gittins for each of SERPT and P-Prio (§ 10.2.3).
We consider each of the multiclass systems described in Section 10.2.1. We see that SERPT is
consistently near-optimal in all three systems. However, P-Prio is less consistent. It performs well
in System 1122, where class 1 jobs are consistently smaller than class 2 jobs. But in System 1221,
where class 1 jobs “sandwich” class 2 jobs, P-Prio performs poorly. System 1212 is between these
extremes.

In the rest of this section, we consider three ways of splitting the four applications into
two classes.

• System 1122: class 1 is A and B, and class 2 is C and D.
• System 1212: class 1 is A and C, and class 2 is B and D.
• System 1221: class 1 is A and D, and class 2 is B and C.

For example, in System 1212, the scheduler knows that a class 2 job comes from application
B or D.

10.2.2 Comparing Gi�ins and SERPT in the Class-Labeled Se�ing
Figure 10.5 compares the mean response times of Gittins and SERPT in all three multiclass
systems described in Section 10.2.1. We see that SERPT is a good substitute for Gittins, as
it maintains mean response time within 12% of Gittins’s throughout.

That SERPT is near-optimal in this setting is unsurprising if we compare its rank
function to that of Gittins. As in the size-oblivious setting, the two rank functions are
rather similar. Figure 10.6 demonstrates this for System 1221. Both policies initially assign
class 1 jobs low rank, because most class 1 jobs in System 1221 are from application A.
However, once a class 1 job has run for long enough, it becomes most likely that it is from
application D, meaning it is likely to be large, so both policies’ rank functions increase
accordingly.

10.2.3 Even Simpler than SERPT: P-Prio
Perhaps the simplest scheduling policy that uses class information is the Preemptive Priority
(P-Prio) policy (Pol. 6.8). Given an ordering of the classes from best to worst priority, P-Prio
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Figure 10.6. Comparison of the rank functions of Gittins, SERPT, and P-Prio (§ 10.2.3) in Sys-
tem 1221 (§ 10.2.1), in which class 1 jobs come from application A or D, and class 2 jobs come from
application B or C (Fig. 10.1).

always serves the job in the best possible priority class, serving jobs within each class
in FCFS order. One can make P-Prio favor short jobs by ordering the classes in order of
expected size.

Can we use P-Prio as a Gittins substitute? To answer this question, we compare P-Prio
to SERPT and Gittins in the three multiclass systems described in Section 10.2.1. In all
cases, P-Prio prioritizes class 1 over class 2, as class 1 jobs have lower expected size.

Section 10.2.1 shows that P-Prio sometimes performs comparably to SERPT and Gittins,
but sometimes SERPT and Gittins are clearly superior. We discuss each of the three systems
in more detail below. In additional numerical experiments, we also evaluated NP-Prio
(Pol. 6.8), the nonpreemptive cousin of P-Prio. But it turns out P-Prio outperforms NP-Prio
in all three systems at all loads, so we omit the NP-Prio results for brevity.

System 1122: P-Prio Is Nearly Optimal

In System 1122, all three of P-Prio, SERPT, and Gittins have very similar mean response
time. This makes sense because in this system, the scheduler knows a class 1 job is smaller
than a class 2 job with high probability, so strictly prioritizing class 1 jobs is an excellent
heuristic.

System 1212: P-Prio Is Okay

In System 1212, P-Prio has worse mean response time than SERPT and Gittins, but only
by 10–15%. This makes sense because in this system, the scheduler knows a class 1 job is
more likely than not to be smaller than a class 2 job. However, exceptions occur frequently
enough that strictly prioritizing class 1 jobs is not as e�ective as in System 1122.
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Figure 10.7. Worst observed mean response time ratios relative to Gittins at load d = 0.95. Each
bar represents the maximum ratio out of 100 randomly generated scenarios, each of which is a
variation of Figure 10.1 with di�erent parameters. See Figure 10.4 for details of how we generate
the parameters. We label the applications in order of increasing mean as A, B, C, and D, from which
we de�ne Systems 1122, 1212, and 1221, as described in Section 10.2.

System 1221: P-Prio Is Poor

In System 1221, SERPT and Gittins signi�cantly outperform P-Prio. In fact, using P-Prio
turns out to be even worse than using the size-oblivious version of SERPT or Gittins. This
makes sense because in this system, given a class 1 job and a class 2 job, it is not clear to
the scheduler which is larger. P-Prio prioritizes class 1 over class 2 because class 1 jobs are
smaller on average. However, once a class 1 job reaches a large enough age, its remaining
work is likely to be large. As shown in Figure 10.6, SERPT and Gittins deal with this by
updating a class 1 job’s rank during service, but P-Prio is limited by its static priorities.

Are These Observations Robust to Parameter Changes?

As in Section 10.1.2, we want to check that these trends are not too sensitive to the exact
parameters of Figure 10.1. We therefore again repeat our analysis with 100 randomly
generated variations of the same setup. And once again, as we show in Figure 10.7, our
conclusions appear to be robust to changes in the parameters.

10.2.4 Summary: Stick to SERPT

We have seen that SERPT consistently achieves mean response time close to that of Gittins,
despite having a signi�cantly simpler rank function. We therefore recommend SERPT
as a substitute for Gittins for most situations. In some speci�c cases, an even simpler
policy such as P-Prio may su�ce, but there are plenty of cases where Gittins and SERPT
outperform these even simpler heuristics.
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10.3 Size Estimates: Use PSJF-E for Low Noise, Ignore
Estimates for High Noise

We now consider a setting in which the scheduler, rather than being given each job’s exact
size, is given a noisy estimate of the job’s size. Speci�cally, letting f ≥ 0 be a noise level,
we suppose that a job of size B is labeled by an estimate

(! | ( = B) B B exp(Normal(0, f)) .

That is, we assume unbiased log-normal multiplicative noise that is independent of the job
size.

Throughout this section, we consider job size distributions ( that are Weibull with
varying shape parameter : . This family of size distributions and noise models has com-
monly been used to study scheduling with size estimates in the literature (§ 2.4.2). What
distinguishes our work from these past works is that, thanks to the SOAP analysis, we can
evaluate SERPT and Gittins in addition to simpler heuristics.

One can de�ne SERPT and Gittins for any label-size distribution (!, () (Pols. 6.11
and 6.12), including the noisy size estimate model described above. It is natural to ask
whether SERPT is again a good substitute for Gittins. Numerical experiments, which we
omit for brevity, con�rm that the answer is again yes.

However, both SERPT and Gittins require knowledge of the exact label-size distribu-
tion (!, (), namely an exact description of the noise model. However, in practice, we may
not know the exact noise model. Can we achieve near-optimal mean response time using
size estimates, but without relying on the speci�cs of the noise model?

10.3.1 Simple Heuristics for Scheduling with Size Estimates
When we know job sizes exactly, SRPT minimizes mean response time, and PSJF is often
nearly as good [55]. One would expect that, at least for low noise f , naive analogues SRPT
and PSJF to work with noisy size estimates would yield good performance. We formally
de�ne these analogues below.

Policy 10.1. The SRPT with Estimates (SRPT-E) policy is the policy one obtains by plugging
possibly noisy size estimates into SRPT’s rank function (Pol. 6.10):3

rankSRPT-E(ℓ, 0) = (ℓ − 0)+.

Policy 10.2. The PSJF with Estimates (PSJF-E) policy is the policy one obtains by plugging
possibly noisy size estimates into PSJF’s rank function (Pol. 6.9):

rankPSJF-E(ℓ, 0) = ℓ .

That is, PSJF-E is simply P-Prio (Pol. 6.8) where a job’s class is its size estimate.
3We take the positive part because De�nition 6.1 de�nes ranks to be nonnegative. This choice is not

essential, but it makes for simpler notation, especially in Chapter 6.
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One advantage of SRPT-E and PSJF-E is that they do not depend on the noise model,
or even on the job size distribution. However, we cannot expect good performance from
them when noise is very high. In particular, in the f →∞ limit, the size estimates become
useless. In this case, the best performance we can hope for is that of Gittins in the unlabeled
case, namely unknown job sizes. To prevent confusion, we call this Unlabeled Gittins, to
distinguish it from the size-estimate-aware version of Gittins. For the Weibull distributions
we consider, Unlabeled Gittins takes a particularly simple form: it is LAS for : < 1, and it
is FCFS for : ≥ 1.

10.3.2 Evaluating SRPT-E, PSJF-E, and Unlabeled Gi�ins
Figure 10.8 compares the mean response times of SRPT-E, PSJF-E, and Unlabeled Gittins to
size-estimate-aware Gittins, with SRPT’s performance as a baseline. For brevity, we show
only representative noise levels f ∈ {0.5, 1.0, 1.5} and shape parameters : ∈ {0.25, 1.0},
but the discussion below is supported by additional numerical experiments with other
values of f and : , which we omit for brevity.

What Performance Is Achievable for a Given Noise Level?

Gittins (with access to size estimates) represents the minimum possible mean response time
we can hope to achieve. When f = 0, meaning job sizes are exactly known, Gittins reduces
to SRPT. As f increases, Gittins’s mean response time increases, but never exceeding that
of Unlabeled Gittins. In the examples we have observed, including those in Figure 10.8,
Gittins’s mean response time is very close to that of Unlabeled Gittins when f ≈ 1. That
means when f ≈ 1, the size estimates are e�ectively useless, because ignoring them, as
Unlabeled Gittins does, does not hurt performance.

How Close to Optimal Are SRPT-E and PSJF-E?

We see in Figure 10.8 that for shape : = 1, SRPT-E has near-optimal performance for a
range of noise levels. But for shape : = 0.25, SRPT-E performs poorly, even at low noise.
We can explain why this is using the SOAP analysis, speci�cally the mean response time
formula (Thm. 7.15(c)). Because the estimation noise is multiplicative, there is a positive
probability that a job spends a constant fraction of its service time at rank 0. Using the
SOAP analysis (Thm. 7.15(c)), one can show that this means there is a constant 2f , which
depends on f but not on the size distribution ( , such that

E[)SRPT-E] ≥ 2fdE[(2]

for all loads d and size distributions ( . We formalize a version of this statement in Chapter 12.
The takeaway is that for high-variance job size distributions, SRPT-E is a bad choice.

The story is much better for PSJF-E. Like SRPT-E, it is near-optimal for shape : = 1.
But unlike SRPT-E, it is also near-optimal for : = 0.25, at least for low-to-medium noise
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(a) High-variance job size distribution, namely Weibull with small shape parameter : = 0.25. Even
under low noise, SRPT-E performs poorly. PSJF-E is near-optimal for low noise, and Unlabeled
Gittins (which in this case is simply LAS) is near-optimal for high noise. The switch between “low”
and “high” noise happens at f ≈ 1.0.
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(b) Low-variance job size distribution, namely Weibull with small shape parameter : = 1.0 (i.e.
exponential). Here the story is less interesting than the high-variance case: SRPT-E and PSJF-E are
both near-optimal for a large range of noise levels f .

Figure 10.8. Mean response time ratios relative to SRPT (without noise) for several noise levels f .
The job size distribution is a (discretized) Weibull distribution with shape parameter : . We consider
both (a) high-variance : = 0.25 and (b) low-variance : = 1.0. To clarify, (ordinary) Gittins uses the
size estimates, while Unlabeled Gittins ignores the size estimates.
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f ≤ 1. This is good news, because as discussed above, this is exactly the range of noise
levels for which we have something to gain from using size estimates. The takeaway is
that when noise is low enough, we can use the very simple PSJF-E, and when noise is high
enough, we can simply ignore the estimates and use Unlabeled Gittins.

10.3.3 Can We Theoretically Bound PSJF-E’s Performance?
One might hope to use the SOAP analysis (Ch. 7) to give a theoretical bound on PSJF-E’s
mean response time that holds for a large class of label-size distributions (!, () that goes
beyond what we have tested here. We address this question in Chapter 12. Speci�cally, the
result we show for PSJF-E is that if the noise is multiplicatively bounded above and below
by constants, meaning ! ∈ [V(, U(] with probability 1, then PSJF-E’s mean response time is
within a constant factor of PSJF’s when given exact size information: E[)PSJF-E] ≤ U

V
E[)PSJF].

Whether a similar bound holds for unbounded multiplicative noise, such as the log-normal
model considered in this section, remains an open question.



Chapter 11

Monotonic SERPT (M-SERPT)

We have seen through several numerical examples in Chapter 10 that in the M/G/1, SERPT
has near-optimal mean response time, namely close to that of Gittins, in a wide variety of
situations. This raises the question: can we prove that SERPT satis�es a mean response time
guarantee? This would be a useful result because SERPT’s rank function is substantially
simpler than Gittins’s (Pols. 6.11 and 6.12). Unfortunately, comparing SERPT to Gittins for
all job size distributions is di�cult, even with the SOAP analysis (§ 11.1). We have not yet
been able to prove a mean response time guarantee for SERPT.

What we have been able prove is a guarantee for a new variant of SERPT, which we
call Monotonic SERPT (M-SERPT). Speci�cally, we show that for an M/G/1 with unknown
job sizes (i.e. the unlabeled case), M-SERPT is a 5-approximation for minimizing mean
response time, meaning its mean response time is a most 5 times that of Gittins (§ 11.2).
This is the �rst result showing a constant approximation ratio for any scheduling policy
other than Gittins itself.1

We suspect that these results are not the end of the story for SERPT and M-SERPT. We
have observed in numerical experiments similar to those in Chapter 10, omitted for brevity,
that M-SERPT generally has mean response time similar to SERPT, with each sometimes
outperforming the other. Moreover, both policies generally perform much better than 5
times Gittins’s mean response time. We therefore conjecture that both policies are actually
2-approximations for mean response time, and we provide a lower bound showing such a
result would be tight (§ 11.3).

This chapter is a summary of Scully et al. [125], to which we refer the reader for proofs.

11.1 Problem: Bounding SERPT’s Mean Response
Time

Our goal is to compare E[)SERPT] to E[)Gittins]. Speci�cally, we conjecture that the ratio
E[)SERPT]/E[)Gittins] is bounded by a constant for all job size distributions and loads. In
principle, the SOAP analysis gives a formula for the mean response time under any SOAP
policy (Thm. 7.15(c)). Why is bounding E[)SERPT]/E[)Gittins] still challenging?

The short answer is that while the SOAP analysis gives us a way to compute E[)SERPT]
and E[)Gittins] for any particular size distribution and load, it does not immediately yield a
bound that holds for all size distributions and loads. Moreover, SERPT and Gittins have rank
functions that change depending on the job size distribution, which further complicates

1We show another approximation ratio result in Chapter 16. But that result is for policies whose rank
functions are close to Gittins’s, whereas M-SERPT’s rank function can have signi�cant di�erences from
Gittins’s.
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matters (§ 11.1.1). To work around this, we introduce M-SERPT, a variant of SERPT that
ends up having a slightly simpler mean response time formula (§ 11.1.2). As evidenced by
the existence of this chapter, this slight simpli�cation makes all the di�erence.

11.1.1 Why Comparing SERPT and Gi�ins Is Hard
Examining the mean response time formula as given by combining Theorem 7.15(c)
and Lemma 7.17, we see that the mean response time of an M/G/1 using SOAP policy c
depends on two things:2

• The arrival process, speci�cally via the arrival rate _ and the size distribution’s tail
P[( > C].

• The rank function rankc of the SOAP policy c , speci�cally via the worst future
rank function (Def. 7.9) and ≤A -intervals (Def. 7.16(a)). Recall that an ≤A -interval is a
maximal interval of ages 0 during which rankc (0) ≤ A .

While the E[) ] formula depends on both the arrival process and the rank function, the
dependence on the rank function is much more complicated. For instance, if the job size
distribution has support on a �nite set, then for a �xed rank function, E[) ] is a rational
function of _ and the probabilities of each of the �nitely many possible sizes. A similar
statement holds for general size distributions, though with a continuous analogue of a
rational function.

What makes SERPT and Gittins di�cult to analyze for all size distributions is that their
rank functions depend on the size distributions. That is, to be precise, SERPT and Gittins
are not really individual SOAP policies but rather SOAP policy constructions: given a size
distribution, they yield a rank function tuned to that distribution.

11.1.2 M-SERPT Simplifies the Story
We have seen that comparing SERPT to Gittins for all job size distributions is di�cult
because both policies’ rank functions depend on the size distribution. To overcome this
obstacle, we de�ne a new policy that, while still having a rank function that depends on
the job size distribution,

Policy 11.1. The Monotonic SERPT (M-SERPT) policy is the SOAP policy with rank function

rankM-SERPT(0) B max
0≤1≤0

rankSERPT(1) = max
0≤1≤0

E[( − 1 | ( > 1] .

As suggested by its name, M-SERPT is indeed monotonic, as a job’s rank only increases
with age.

One could easily generalize Policy 11.1 to de�ne M-SERPT in the labeled case, or more
generally to de�ne a monotonic version of any SOAP policy, but our focus here is on
M-SERPT in the unlabeled case.

2The discussion below focuses on the unlabeled case, as does the rest of this chapter.
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Why is there hope of comparing M-SERPT to Gittins? After all, SERPT and M-SERPT
depend on the size distribution ( in similar ways. What makes M-SERPT simpler? The key
is M-SERPT’s eponymous monotonicity, which simpli�es the way its mean response time
depends on the rank function in two important ways:

• For any size B , the worst future rank of a job of size B is the same at all ages. Speci�cally,
for all B > 0 ≥ 0, we have3

worstM-SERPT(B, 0) = rankM-SERPT(B).

• Because a job’s rank never decreases, jobs are never recycled (Def. 7.5). This means
that for any rank A , there is at most one ≤A -interval, which always begins at age 0
and ends at the earliest age with rank greater than A .

Of course, these properties of M-SERPT do not immediately solve the problem of bounding
its mean response time relative to Gittins, but they represent a helpful �rst step.

11.2 Main Result: M-SERPT Is a 5-Approximation for
Mean Response Time

Theorem 11.2. Consider an M/G/1 with any job size distribution and load d in the unlabeled
case. The mean response time ratio between M-SERPT and Gittins is bounded by4

E[)M-SERPT]
E[)Gittins]

≤



4
1 + √1 − d

if 0 ≤ d < 0.9587

1
d

log
1

1 − d if 0.9587 ≤ d < 0.9898

1 + 4
1 + √1 − d

if 0.9898 ≤ d < 1.

In particular, the ratio is at most 5, so M-SERPT is a 5-approximation for the problem of
minimizing mean response time with unknown job sizes.

See Scully et al. [125, Thm. 5.1] for the proof of Theorem 11.2. The rest of this section
discusses two corollaries of Theorem 11.2, each of which resolves an open problem in
queueing theory.

11.2.1 LAS for Increasing Mean Residual Lifetime
Job size distributions ( where the expected remaining size of a job E[( − 0 | ( > 0] is
(strictly) increasing as a function of age 0 are said to have the (strictly) Increasing Mean

3For simplicity of exposition, we neglect details to do with limit ranks (Def. 7.8) throughout this chapter.
4The numbers 0.9587 and 0.9898 are approximations accurate to four decimal places.
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Residual Lifetime (IMRL) property. For strictly IMRL size distributions, SERPT and M-SERPT
both reduce to a simple, familiar policy: LAS (Pol. 6.4).

LAS was thought for some time to minimize mean response time for IMRL size distri-
butions [111], though it turned out there was an error in the proof [2]. Nevertheless, it has
been observed that LAS generally performs well for IMRL size distributions, leaving open
the question: can we prove a response time guarantee on LAS for IMRL size distributions?
Thus far, it has only been shown that LAS outperforms PS (§ 5.3.1) in this case.

Theorem 11.2 resolves a signi�cant special case of this question, namely the perfor-
mance of LAS for strictly IMRL size distributions. This is because M-SERPT reduces to
LAS in this case.
Corollary 11.3. Consider an M/G/1 with any strictly IMRL job size distribution and any
load in the unlabeled case. LAS is a 5-approximation for minimizing mean response time.

11.2.2 Performance Achievable by MLPS Policies
Aside from SOAP, there are few M/G/1 analyses that apply to an entire classes of policies.
One of these is the analysis of the Multi-Level Processor Sharing (MLPS) policy class [74].
MLPS policies are speci�ed by a list of threshold ages 01, 02, . . ., with 00 = 0, where interval
[08, 08+1) is called the 8th level. Roughly speaking, an MLPS policy prioritizes jobs by the
level, with lower levels having priority, and uses one of FCFS, LAS, or PS used within each
level.

An MLPS policy is parameterized by the threshold ages 08 and the choice of which
policy to use within each level. While there has been signi�cant work on MLPS policies
[1, 4, 9], a question remains open: how should one optimize the parameters of an MLPS
policy to minimize mean response time? This is an important question because in some
applications, implementing MLPS policies may be simpler than implementing general
SOAP policies like Gittins.

Theorem 11.2 takes a signi�cant step towards resolving this question, because it turns
out M-SERPT is an MLPS policy: age intervals where M-SERPT’s rank is strictly increasing
are levels that use LAS, and age intervals where M-SERPT’s rank is constant are levels that
use FCFS. This means that MLPS policies can achieve within a constant factor of optimal
mean resposne time.
Corollary 11.4. Consider an M/G/1 with any job size distribution in the unlabeled case.
There exists an MLPS policy which for all loads is a 5-approximation for minimizing mean
response time.

11.3 Approximation Ratio Lower Bounds for SERPT
and M-SERPT

We have shown that M-SERPT is a 5-approximation for minimizing mean response time. Is
this bound tight? That is, is there a size distribution such that E[)M-SERPT]/E[)Gittins] = 5,
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or at least a sequence of distributions such that E[)M-SERPT]/E[)Gittins] approaches 5? Or
is the true approximation ratio lower?

We conjecture that M-SERPT is actually a 2-approximation for mean response time,
and we conjecture the same for SERPT. This is based on exploring the performance
of SERPT and M-SERPT on a wide range of numerical examples, including the use of
numerical optimization to �nd the worst-case ratio relative to Gittins within a class of size
distributions. Throughout all this exploration, the maximum ratios E[)SERPT]/E[)Gittins]
and E[)M-SERPT]/E[)Gittins] I have observed are no more than 2. We describe the scenario
that achieves this below. It implies that SERPT and M-SERPT both have approximation
ratio at least 2.

The worst mean response time ratios I have observed come from distributions of the
form

( =


1 − X w.p. 1 − X
1 w.p. X − X2

X−1 + 1 w.p. X2,

where X ≈ 0 is a small positive number. One can compute using the SOAP analysis [125,
§ 7] that at high load d ≈ 1,

E[)SERPT]
E[)Gittins]

≈ E[)M-SERPT]
E[)Gittins]

≈ 2X3 + 2X (1 − d) + (1 − d)2
X3 + X (1 − d) + (1 − d)2 .

If we set X = (1 − d)2/3, the right-hand side approaches 2 in the d → 1 limit.
Curiously, for any �xed value of X in the example above, the right-hand side approaches

1 in the heavy-tra�c d → 1 limit. This leaves open the possibility that SERPT and
M-SERPT could be heavy-tra�c optimal for mean response time. However, the example
does show that even if limd→1 E[)SERPT]/E[)Gittins] = 1 (or similarly for M-SERPT) for any
size distribution, the convergence cannot be uniform in the size distribution.
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Chapter 12

Adapting SRPT to Noisy Job Size
Estimates

This chapter studies the problem of scheduling in an M/G/1 where job sizes are uncertain,
but we learn an estimate for each job’s size when it arrives. Scheduling in this setting
has been the subject of several simulation and numerical studies, including our own in
Chapter 10, but there are no strong theoretical bounds on scheduling with size estimates
in the M/G/1 (§ 2.4.2).

When scheduling with size estimates, a natural idea is to naively use the rank function
of SRPT or PSJF to schedule, but plugging the estimated size into the rank function instead
of the true size. This results in policies we call SRPT with Estimates (SRPT-E) and PSJF with
Estimates (PSJF-E), respectively (Pols. 10.1 and 10.2).

Do SRPT-E and PSJF-E have good mean response time? We have seen in Chapter 10
that while PSJF-E seems to perform nearly optimally under low-to-moderate noise, SRPT-E
can perform poorly even under low noise (§ 12.1). This prompts two questions:

• Can we prove a mean response time bound for PSJF-E that explains its robustness to
noise?

• Is there a variant of SRPT other than SRPT-E that is as robust to noise as PSJF-E?
This chapter provides positive answers to both of these questions (§ 12.2). In particular,
we introduce a new variant of SRPT, which we call SRPT with Bounce (SRPT-B), whose
performance matches SRPT’s when noise is zero but gracefully degrades as noise increases.
We also show that PSJF-E has a similar relationship with PSJF (§ 12.3).

We have already mentioned �ve scheduling policies in this introduction, and a sixth
policy plays a crucial role in our analysis. To aid the reader in keeping track of the main
policies discussed in this chapter, Figure 12.1 illustrates all of their rank functions.

This chapter is a summary of Scully et al. [120], to which we refer the reader for proofs.

12.1 Problem: SRPT-E Can Perform Poorly Even
under Low Noise

We have seen in Chapter 10 that SRPT-E can have poor mean response time, even when
size estimate noise is relatively low. After introducing the noise model we consider in
this chapter (§ 12.1.1), we show that SRPT-E can have very performance for arbitrarily
low noise levels (§ 12.1.2). This motivates us to come up with criteria we might want a
policy for size estimates to satisfy (§ 12.1.3). We use the resulting criteria as benchmarks
for evaluating policies in the remainder of the chapter.
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Figure 12.1. Rank functions of policies discussed in this chapter. Throughout, B denotes a job’s
true size, and I denotes a job’s estimated size.
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12.1.1 The Bounded Noise Model

We study a model we call (U, V)-bounded size estimate noise, or simply bounded noise.
Here U ≥ V > 0 are constants measuring maximum possible estimation error. In this
model, a job’s true size and estimated size are drawn i.i.d. from a joint truth-estimate
distribution ((, / ), where ( denotes true size as usual, and / denotes estimated size. A job’s
true and estimated sizes are guaranteed obey1

V( ≤ / ≤ U(. (12.1)

Aside from (12.1), we make no additional assumptions on the truth-estimate distribution.
Note that we do not require U ≥ 1 or V ≤ 1.

The bounded noise model serves as a good starting point for theoretical analysis, but
it is admittedly not always realistic. Studying models with unbounded noise, such as the
log-normal noise model used in Chapter 10, is a potential direction for future research.

How Size Estimates Relate to Labels

For the purposes of formally specifying a label-size distribution and de�ning SOAP policies,
we label jobs with either their true size, estimated size, or possibly both, depending on the
policy in question. Of course, if only job size estimates are known, we can only implement
policies where a job’s label is its estimated size, such as SRPT-E. But policies that use a
job’s true size still play an important role in our analysis (§ 12.2.1).

12.1.2 Lower Bound for SRPT-E in the Bounded Noise Model

Theorem 12.1. Consider an M/G/1 with (U, V)-bounded size estimate noise, and suppose
V < 1. For every job size distribution (, there exists a truth-estimate distribution ((, / ),
namely / = V(, such that the mean response time of SRPT-E is at least

E[)SRPT-E] ≥ (1 − V)2dE[E(] + E[(] = (1 − V)2 _2E[(
2] + E[(] .

The key observation behind Theorem 12.1 is that under SRPT-E, a job can have rank 0,
and thus be nonpreemptible, for a 1−V fraction of its time in service. From this observation,
the result follows quickly from the SOAP analysis (Thm. 7.15(c)) [120, Thm. 6.1].

Theorem 12.1 implies that SRPT-E’s mean response time is sensitive to the variance
of the job size distribution. This means that SRPT-E’s mean response time is not even
necessarily �nite. In contrast, SRPT’s mean response time is always �nite, and it can be
bounded by expressions that depend on only the mean of the job size distribution [146].

1The intended mnemonic is that U stands for “above”, and V stands for “below”.
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12.1.3 What Does Good Performance Look Like under Bounded
Noise?

We have seen that SRPT-E can perform poorly for even arbitrarily small noise, namely
for U and V arbitrarily close to 1. We would like to �nd a policy with better performance,
but this prompts a question: what does good performance look like in the bounded noise
model?

One possibility is to compare to the Gittins policy (Pol. 6.12). Gittins uses the truth-
estimate distribution ((, / ) to design a rank function that minimizes mean response time
for that speci�c truth-estimate distribution. We might look at the approximation ratio of a
policy c relative to Gittins, namely an upper bound on E[)c ]/E[)Gittins]. However, there
are two concerns that make this approach unappealing.

• The fact that Gittins’s rank function depends on the truth-estimate distribution makes
it di�cult to use the SOAP analysis to prove theorems about its mean response time
(§ 11.1).

• In practice, we may not have a very clear idea of what the truth-estimate distribu-
tion actually is. Without knowing the exact distribution ((, / ), we cannot actually
implement Gittins, so it is not clear that Gittins is a reasonable benchmark.

Instead of comparing to Gittins, we take inspiration from the growing literature on
algorithms with predictions [10, 11, 92, 110] and compare to SRPT, the policy that would
minimize mean response time if size estimates were perfect. The key idea is that rather
than looking for constant bounds on the approximation ratio relative to SRPT, namely
E[)c ]/E[)SRPT], we look for bounds that depend on the noise level, which in our case
means depending on U and V .

De�nition 12.2. Consider any scheduling policy c in an M/G/1 with (U, V)-bounded
size estimate noise. Suppose there exists a function 5 such that for all U ≥ V > 0, c ’s
approximation ratio relative to SRPT is bounded by

E[)c ]
E[)SRPT]

≤ 5 (U, V).

We say that c is
(a) 2-consistent if lim supU,V→1 5 (U, V) = 2 ,
(b) 2-graceful if 5 (U, V) ≤ 2 U

V
for all U ≥ V > 0, and

(c) 2-robust if 5 (U, V) ≤ 2 for all U ≥ V > 0.
Note that 2-robustness implies 2-gracefulness, which in turn implies 2-consistency. We
sometimes omit the “2-” pre�x.

We can de�ne the same concepts relative to c ′ for another policy c ′ taking SRPT’s
place, but we compare to SRPT by default.

Ideally, we would like to �nd a policy that is 2-consistent, 6-graceful, and A -robust for
some small constants 2 < 6 < A . Even better would be if the policy works with no tuning,
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meaning that, unlike Gittins, it works the same way for any truth-estimate distribution
and any values of U and V .

We have seen in Theorem 12.1 that SRPT-E does not satisfy any of the above desiderata,
not even consistency. It also turns out that constant-factor robustness is unachievable [120,
Appx. B]. Fortunately, we are able to achieve all the other criteria, namely with PSJF-E and
SRPT-B.

12.2 Main Result: Adding a “Bounce” to SRPT Ensures
Graceful Degradation

Our main result concerns the SRPT-B policy, de�ned formally below.

Policy 12.3. The SRPT with Bounce (SRPT-B) policy is the SOAP policy with rank function

rankSRPT-B(I, 0) = min{|I − 0 |, I}.

See Figure 12.1(e) for an illustration.

Theorem 12.4. Consider an M/G/1 with (U, V)-bounded size estimate noise. The approxima-
tion ratio of SRPT-B is bounded by

E[)SRPT-B]
E[)SRPT]

≤ U
V
+

(
3
2
U1(V < 1) + 1

)
min

{
1,max

{
1 − 1

U
,

1
V
− 1

}}
≤ 3.5

U

V
.

so SRPT-B is 1-consistent and 3.5-graceful.

We give a high-level sketch of the proof of Theorem 12.4 later in this section (§§ 12.2.1–
12.2.3). See [120, Thm. 8.1] for the full proof.

There are a few essential characteristics of SRPT-B’s rank function that are essential
for Theorem 12.4, but there are other characteristics that could likely be altered without
a�ecting consistency and gracefulness. Consider SRPT-B’s rank function for a job with
estimated size I.

• The rank being I − 0 prior to the bounce helps achieve 1-consistency, because it
ensures agreement with SRPT when U = V = 1. However, it is likely that the rank
need not be precisely I − 0 prior to the bounce, provided it still approaches SRPT’s
rank as U and V approach 1.

• The bounce is necessary to avoid jobs being nonpreemptible for a fraction of their
service time, which is the issue SRPT-E has. However, it is likely that the bounce
could occur at an age other than I, provided the bounce location approaches the
true size as U and V approach 1.
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• The rank function having �nite upward slope after the bounce is necessary to ensure
1-consistency. Otherwise, jobs with slightly underestimated sizes could be preempted
at age I when they are close to completing. However, it is likely that we could use a
slope other than 1.

• Limiting the bounce to stay below the initial rank I is important for gracefulness.
Otherwise, jobs become likely to be preempted at age 2I, when the job reaches ranks
worse than any it had previously.2 However, it is likely that we could instead limit
the bounce to WI for some constant W ∈ (0, 1).

12.2.1 Main Idea: Use SRPT-SE as an Intermediate
We might think to prove Theorem 12.4 by applying the SOAP analysis to each of SRPT-B
and SRPT and comparing the resulting mean response time formulas. This may in principle
be possible, but the rank functions of SRPT-B and SRPT are di�erent enough that a direct
comparison is di�cult. We have found it simpler to take a di�erent approach: we compare
both SRPT-B and SRPT to a policy whose rank function shares some characteristics with
each.

Policy 12.5. The SRPT with Scaling Estimates (SRPT-SE) policy is the SOAP policy with
rank function

rankSRPT-B((B, I), 0) =
I

B
(B − 0).

See Figure 12.1(e) for an illustration. Note that SRPT-SE uses both a job’s true size B and
estimated size I, so it cannot be implemented using size estimates alone.

SRPT-SE is a useful intermediate because it has some properties in common with
SRPT-B and others in common with SRPT.

• SRPT-SE is similar to SRPT-B in that both initially assign a job rank equal to its esti-
mated size, and both never increase the job’s rank beyond this initial rank (Figs. 12.1(e)
and 12.1(f)).

• SRPT-SE is similar to SRPT in that both assign jobs rank proportional to their
remaining work (Figs. 12.1(a) and 12.1(f)).

The rest of the proof thus proceeds in two steps: compare SRPT-B to SRPT-SE (§ 12.2.2),
then compare SRPT-SE to SRPT (§ 12.2.2).

12.2.2 Comparing SRPT-B to SRPT-SE: Use SOAP
We compare SRPT-B to SRPT-SE using the SOAP analysis. This involves separate compu-
tations for each of waiting time and residence time (§ 7.1.1).

Lemma 12.6. Consider an M/G/1 with (U, V)-bounded size estimate noise.

2This is an instance of the Pessimism Principle (Prop. 7.7): without limiting the bounce, a job with ( > 2/
has a greater worst ever rank than one with ( ≤ 2/ .
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(a) The mean waiting time of SRPT-B is bounded above by

E[)wait
SRPT-B] ≤ E[)wait

SRPT-SE] +
3
2
U (1 − V)+

(
1
d

log
1

1 − d

)
E[(] .

(b) The mean residence time of SRPT-B is bounded above by

E[) resd
SRPT-B] ≤ E[) resd

SRPT-SE] +min
{
1,max

{
1 − 1

U
,

1
V
− 1

}} (
1
d

log
1

1 − d

)
E[(] .

The quantity
( 1
d

log 1
1−d

)
E[(] shows up in both bounds. A result of Wierman et al. [146,

Thm. 5.8] implies that this is less than E[)SRPT].

12.2.3 Comparing SRPT-SE to SRPT: Use WINE
To compare SRPT-SE to SRPT, we actually need to peek ahead into Part III. One of the
main results in Part III concerns what we call (U, V)-approximate Gittins policies (Def. 16.3),
which are policies whose rank functions are within a constant factor of Gittins’s rank
function. Speci�cally, we show that such a policy is a U

V
-approximation for mean response

time relative to Gittins (Thm. 16.5). This result is exactly what we need to compare SRPT-SE
to SRPT, because SRPT-SE’s rank function is always within a constant factor of SRPT’s,
and SRPT can be seen as a special case of Gittins (Pol. 6.12).

Lemma 12.7. Consider an M/G/1 with (U, V)-bounded size estimate noise. The approximation
ratio of SRPT-SE is bounded by

E[)SRPT-SE]
E[)SRPT]

≤ U
V
.

Proof. Under (U, V)-bounded size estimate noise, if SRPT would assign a job rank A ,
SRPT-SE would assign the job a rank in [VA, UA ]. This makes SRPT-SE an (U, V)-approximate
Gittins policies, so the result follows from Theorem 16.5. �

12.3 PSJF Has Natural Graceful Degradation
We have seen in Section 12.2 that with the right tweak, SRPT can be turned into SRPT-B, a
policy that is consistent and graceful. But we saw in Chapter 10 that the natural analogue
of PSJF for estimated sizes, namely PSJF-E, has near-optimal mean response time. Can we
show that PSJF-E is consistent and graceful like SRPT-B? The following result answers
this a�rmatively.

Theorem 12.8. Consider an M/G/1 with (U, V)-bounded size estimate noise. The approxima-
tion ratio of PSJF-E relative to PSJF is bounded by

E[)PSJF-E]
E[)PSJF]

≤ U
V
.

This implies PSJF-E is
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(a) 1-consistent and 1-graceful relative to PSJF, and
(b) 1.5-consistent and 1.5-graceful relative to SRPT.

The comparison to SRPT follows from the comparison to PSJF and a result of Wierman
et al. [146, Thm. ].See Scully et al. [120, Thm. 9.1] for the rest of the proof of Theorem 12.8.
While the analysis of PSJF-E is quite di�erent from the analysis of SRPT-B, it also involves
a cocktail of SOAP and WINE.



Chapter 13

Response Time Tail of SOAP Policies

The last several chapters have all focused on the metric of mean response time E[) ]. But
this is far from the only metric a system designer might hope to optimize. For example, it
may be important to ensure that jobs do not have especially long response times. The most
relevant metric for this situation is the response time tail P[) > C], which is the subject of
this chapter.

In the interest of theoretical tractability, we focus on the asymptotic tail, meaning we
characterize the behavior of P[) > C] in the C →∞ limit. The asymptotic tails of a handful
of scheduling policies have been analyzed in the past (§ 2.1.3), and there has also been work
on deriving general conditions under which a scheduling policy has certain asymptotic
tail characteristics [101, 149]. However, we lack simple conditions for determining the tail
asymptotics of a scheduling policy.

This chapter studies the tail asymptotics of SOAP policies. Focusing on SOAP policies
prompts the following question: can we easily determine a policy’s tail asymptotics from
its rank function (§ 13.1)? We obtain results that take promising �rst steps in this direction:
we give conditions under which a SOAP policy is asymptotically tail-optimal, meaning
P[) > C] decays in some sense as quickly as possible in the C →∞ limit (§ 13.2). We apply
our results to answer two questions:

• (§ 13.3) Can we simultaneously achieve optimal or near-optimal mean response time
and asymptotic tail optimality? In particular, when is Gittins (Pol. 6.12), the optimal
policy for mean response time, also asymptotically tail-optimal?

• (§ 13.4) When scheduling with preemption checkpoints (Pol. 6.13), how frequent do
checkpoints need to be to ensure asymptotic tail optimality?

We consider both heavy-tailed and light-tailed job size distributions throughout.
All of our results focus on an M/G/1 in the unlabeled case. All SOAP policies mentioned

in this chapter should be understood as having rank functions that depend only on age.
This chapter is a summary of Scully et al. [127] and Scully and van Kreveld [126], to

which we refer the reader for proofs.

13.1 Problem: Analyzing the Asymptotic Response
Time Tail

Our goal is to characterize the asymptotic response time tail of a SOAP policy in terms
of its rank function. The step we take towards this goal is giving conditions on a policy’s
rank function that imply asymptotic tail optimality. Before we can state our results in
Section 13.2, we need to de�ne what asymptotic tail optimality means. We do this below
for heavy-tailed (§ 13.1.1) and light-tailed (§ 13.1.2) job size distributions.

161
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13.1.1 Definitions for Heavy-Tailed Size Distributions
We begin by de�ning the class of heavy-tailed job size distributions we consider. We
emphasize that these are not the only distributions that are generally referred to as “heavy-
tailed”, but we still call them simply “heavy-tailed” to reduce clutter.

De�nition 13.1. We call a job size distribution ( heavy-tailed if

lim inf
Y↓0

lim inf
B→∞

P[( > (1 + Y)0]
P[( > B] = 1

and there exist V ≥ U > 1 such that for su�ciently large C ≥ B ,1

Ω

((
C

B

)−V )
≤ P[( > C]

P[( > B] ≤ $
((
C

B

)−U )
.

De�nition 13.2. A scheduling policy c is asymptotically tail-optimal for heavy-tailed job
sizes (or simply tail-optimal) if for all heavy-tailed size distributions ( and loads d , its
M/G/1 response time distribution )c satis�es

lim
C→∞

P[)c > C]
P[( > (1 − d)C] = 1.

Roughly speaking, for a policy c to be tail-optimal for heavy-tailed sizes, it needs to
ensure that very large jobs have response time roughly proportional to their size [149].
Some examples of policies that are tail-optimal for heavy-tailed sizes are LAS, SRPT, and
PS [101].

13.1.2 Definitions for Light-Tailed Size Distributions
De�nition 13.3. The decay rate of a random variable + , denoted 3 (+ ), is

3 (+ ) B lim
C→∞
− log P[+ > C]

C
.

That is, if the decay rate 3 (+ ) is �nite, then P[+ > C] = exp(−3 (+ ) C ± > (C)). Roughly
speaking, higher decay rates correspond to lighter tails.

The class of light-tailed distributions we consider are a subclass of those with positive
decay rate.

1We formally de�ne the multivariable $ (·) and Ω(·) notations as follows. Suppose G1, . . . , G= are non-
negative variables. The notation $ (5 (G1, . . . , G=)) stands for an unspeci�ed expression 6(G1, . . . , G=) ≥ 0
for which there exist constants �,~0, . . . , ~= ≥ 0 such that for all G1 ≥ ~1, . . . , G= ≥ ~= , we have
6(G1, . . . , G=) ≤ �5 (G1, . . . , G=). The Ω(·) notation is the same but with the inequality reversed.
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De�nition 13.4. Given a job size distribution ( , let

\ ∗ B inf{\ ∈ R | L[(] (\ ) < ∞}.

We call ( light-tailed if either of the following holds:
• \ ∗ = −∞, or
• −∞ < \ ∗ < 0 and lim\↓\∗ L[(] (\ ) = ∞.

In either case, one can show \ ∗ = −3 (() [90, 97, 98].

De�nition 13.5. We classify scheduling policies c as follows based on their M/G/1 re-
sponse time distribution )c .

(a) A policy c is log-tail-optimal for light-tailed job sizes (or simply tail-optimal) if it
maximizes 3 ()c ) among all scheduling policies.

(b) A policy c is log-tail-pessimal for light-tailed job sizes (or simply tail-pessimal) if it
minimizes 3 ()c ) among all scheduling policies.

(c) A policy c is log-tail-intermediate for light-tailed job sizes (or simply tail-intermediate)
if it is neither tail-optimal nor tail-pessimal.

It is known that FCFS is tail-optimal in the light-tailed case [23, 133]. In contrast, policies
like LAS, SRPT, and PS that are tail-optimal in the heavy-tailed case are tail-pessimal in
the light-tailed case [149].

13.2 Main Results: Conditions on a Rank Function
that Ensure Tail Optimality

13.2.1 Results for Heavy-Tailed Size Distributions
We de�ne two conditions on a rank function that su�ce for tail optimality in the heavy-
tailed case. The �rst condition is a simpler special case of the second. Both conditions give
a “asymptotic sketch” of the rank function of a SOAP policy c in terms of a small number
of parameters.

Condition 13.6. There exist X ≥ W > 0 such that the rank function of SOAP policy c
obeys

Θ(0W ) ≤ rankc (0) ≤ $ (0X ).

Condition 13.7. There exist Z , b ∈ [0,∞) and j ∈ [max{1, Z + b},∞] such that the rank
function of SOAP policy c obeys the following properties for any size B and interval of
ages (1, 2) where rankc (0) ≤ worstc (B) for all 0 ∈ (1, 2):2

(a) 2 ≤ $ (B j ); and
(b) if 1 ≥ B , then 2 − 1 ≤ $ (1ZBb ).

2Recall from De�nition 7.9 that worstc (B) is the worst ever rank attained by a job of size B .
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Our main result for the heavy-tailed case speci�es ranges of the parameters such that
Conditions 13.6 and 13.7 imply tail-optimality. The ranges depend on the tail exponents U
and V of the job size distribution (Def. 13.1).

Theorem 13.8. Consider an M/G/1 with heavy-tailed size distribution in the unlabeled case.
(a) A SOAP policy c is tail-optimal if it satis�es Condition 13.6 with

X

W
− W
X
<
U − 1
V

.

(b) A SOAP policy c is tail-optimal if it satis�es Condition 13.7 with

Z + (b − 1)+ − (1 − b)
+

j
<
U − 1
V

.

See Scully et al. [127, Thm. 3.1] for the proof of Theorem 13.8(a), and see Scully and
van Kreveld [126, Thm. 4.4] for the proof of Theorem 13.8(b).

13.2.2 Result for Light-Tailed Size Distributions

In the light-tailed case, the response time tail asymptotics of a SOAP policy (in the unlabeled
case) turn out to be determined by a single quantity: the age at which a job attains the
maximum possible rank, and how that compares to the maximum possible job size.

De�nition 13.9. The maximum job size for size distribution ( , denoted Bmax, is

Bmax B inf{B ≥ 0 | P[( > B] = 0}.

Note that Bmax = ∞ for many size distributions.

De�nition 13.10. The worst age under SOAP policy c , denoted 0∗c , is the least age at
which the rank function has a global maximum:

0∗c B inf{0 ≥ 0 | rankc (0) ≥ rankc (1) for all 1 ≥ 0}.

If the rank function has no global maximum, we let 0∗c B Bmax.

Theorem 13.11. Consider an M/G/1 with light-tailed size distribution in the unlabeled case.
(a) A SOAP policy c is tail-optimal if and only if 0∗c = 0.
(b) A SOAP policy c is tail-intermediate if and only if 0 < 0∗c < Bmax.
(c) A SOAP policy c is tail-pessimal if and only if 0∗c = Bmax.

See Scully and van Kreveld [126, Thm. 4.7] for the proof of Theorem 13.11.
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Improving the Leading Constant

Note that any policy c with 0∗c = 0 must actually be FCFS, meaning FCFS is the only tail-
optimal SOAP policy in the unlabeled case. In fact, it is likely that the proof of Theorem 13.11
can be generalized beyond the unlabeled case. However, even though FCFS is tail-optimal,
Grosof et al. [53] show that its response time tail can be asymptotically improved by a
constant factor. The policy they use to do so, called Nudge, is not a SOAP policy. This
suggests that in the light-tailed case, SOAP policies cannot provide the best possible leading
constant for the asymptotic response time tail.

13.3 Simultaneously Optimizing the Mean and Tail of
Response Time

When scheduling with unknown job sizes, Gittins is known to minimize mean response
time [44]. Therefore, simultaneously optimizing the mean and asymptotic tail of response
time essentially boils down to determining when Gittins is tail-optimal.

The results of Section 13.2 are a big step towards answering this question, but they fall
slightly short of fully answering it. This is because they apply to speci�c rank functions,
whereas Gittins’s rank function varies depending on the size distribution. However, they
do substantially reduce the problem: to determine whether Gittins is tail optimal, we just
need to determine for which size distributions its rank function satis�es certain conditions.

By applying Theorems 13.8 and 13.11 and carefully analyzing Gittins’s rank function,
we show the following results:

• (§ 13.3.1) In the heavy-tailed case, Gittins is always tail-optimal.
• (§ 13.3.2) In the light-tailed case, Gittins can be any of tail-optimal, tail-intermediate,

or tail-pessimal. However, if Gittins is tail-pessimal, we can often slightly adjust
Gittins’s rank function to obtain a new SOAP policy that is tail-intermediate while
still having near-optimal mean response time.

Many of these results also apply to SERPT and M-SERPT (Pols. 11.1 and 6.11), two simpler
policies which also have good mean response time.

13.3.1 Gi�ins in the Heavy-Tailed Case
In the heavy-tailed case, both SERPT and M-SERPT satisfy the simple Condition 13.6.

Theorem 13.12. Consider an M/G/1 with heavy-tailed size distribution in the unlabeled
case. SERPT and M-SERPT both satisfy Condition 13.6 with W = X = 1, so both are tail-optimal.

See Scully et al. [127, Cor. 3.6] for the proof of Theorem 13.12.
It turns out that Gittins does not satisfy Condition 13.6 for general heavy-tailed size

distributions. This is because Gittins’s rank function can drop to near 0 at large ages,
which SERPT’s and M-SERPT’s do not do in the heavy-tailed case. Fortunately, Gittins does
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satisfy the somewhat more complicated Condition 13.7. Roughly speaking, even though
its rank function can drop to near 0, it never does so for too long, meaning jobs at high
ages do not delay jobs at low ages for too long.

Theorem 13.13. Consider an M/G/1 with heavy-tailed size distribution in the unlabeled
case. Gittins satis�es Condition 13.7 with Z = 0, b = 1, and j = ∞, so it is tail-optimal.

See Scully and van Kreveld [126, Thm. 4.5] for the proof of Theorem 13.13.

13.3.2 Gi�ins in the Light-Tailed Case
In the light-tailed case, Theorem 13.11 tells us that asymptotic tail performance is deter-
mined by the worst age (Def. 13.10). One common way of classifying size distributions has
to do with the worst age of SERPT.

De�nition 13.14.
(a) We say a size distribution ( isNewBetter than Used in Expectation (NBUE) if0∗SERPT = 0,

meaning a job’s expected remaining work is maximized at age 0. That is, for all
0 ∈ [0, Bmax),

E[(] ≥ E[(0] = E[( − 0 | ( > 0] .
(b) We say a size distribution ( is Eventually New Better than Used in Expectation (ENBUE)

if (0 B (( − 0 | ( > 0) is NBUE for some age 0 ≥ 0, or equivalently 0∗SERPT < Bmax.

Whether the size distribution is NBUE, ENBUE but not NBUE, or not ENBUE immedi-
ately characterizes the asymptotic tail performance of SERPT. It also does so for M-SERPT,
which clearly has the same worst age as SERPT (Pol. 11.1). Less obviously, results of Aalto
et al. [3, 4] imply that Gittins also has the same worst age as SERPT, so it has the same
asymptotic tail performance.

Theorem 13.15. Consider an M/G/1 with light-tailed size distribution ( in the unlabeled
case.
(a) Gittins, SERPT, and M-SERPT are tail-optimal if ( is NBUE.
(b) Gittins, SERPT, and M-SERPT are tail-intermediate if ( is ENBUE but not NBUE.
(c) Gittins, SERPT, and M-SERPT are tail-pessimal if ( is not ENBUE.

See Scully and van Kreveld [126, Thm. 4.10] for a proof of the Gittins case of Theo-
rem 13.15. The SERPT and M-SERPT cases follow from the above discussion.

13.4 Ensuring Tail Optimality when Scheduling with
Preemption Checkpoints

One can see from either prior work [101] or Theorem 13.8 that LAS is tail-optimal in the
heavy-tailed case. However, LAS assumes that we can preempt jobs whenever we like,
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which is not possible in some systems. For example, in Chapter 9 we considered scheduling
with preemption checkpoints, where jobs are only preemptible at certain checkpoint ages.
Can LAS still be tail-optimal in the presence of preemption checkpoints? If so, how often
do checkpoints need to occur to maintain tail optimality? For the heavy-tailed case, we
can answer the above questions using Theorem 13.8.

To model preemption checkpoints using rank functions, one sets the rank to 0 at
all non-checkpoint ages. This transforms LAS into a policy we call Checkpointed LAS
(Chk-LAS) (Pol. 6.13), whose asymptotic tail performance we characterize below.

Theorem 13.16. Consider an M/G/1 with heavy-tailed size distribution in the unlabeled
case, and consider the Chk-LAS policy with checkpoint ages 0, 01, 02, . . . . If 0=+1 = $ (0Z=),
then Chk-LAS is tail-optimal if

Z ≤ U − 1
V

.

In particular, for constant or uniformly bounded checkpoint gaps, we have Z = 0, so Chk-LAS
is always tail-optimal.

Proof. One can check that Chk-LAS satis�es Condition 13.7 with b = 0, j = ∞, and the
given value of Z , so the result follows from Theorem 13.8(b). �
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Chapter 14

The Markov-Process Job Model

There is a great deal of work in queueing theory on scheduling under uncertainty. Much of
this work is on the Gittins policy, which optimizes mean response time and similar metrics
for a variety of stochastic uncertainty models. However, as discussed in Section 2.2, this
prior work on Gittins is fragmented, with di�erent uncertainty models being considered
one-by-one.

The aim of this chapter is to present a very �exible job model that can model many
types of uncertainty, and in particular the types of stochastic uncertainty for which we
might hope to de�ne a version of Gittins. We call our model the Markov-process job model
(§ 14.1). The basic idea is that each job is a continuous-time Markov process whose state
evolves during service. By varying the state space and dynamics of the Markov process,
we obtain di�erent types of uncertainty.

In addition to modeling di�erent types of uncertainty, we will see that Markov-process
jobs also allow us to model di�erent types of preemption constraints and holding cost
metrics. For example, by carefully choosing the holding cost function, we can model the
problem of minimizing mean slowdown with unknown or partially known job sizes (§ 14.2),
a problem previously solved only under certain restrictive technical assumptions [122, 136].

We conclude the chapter by de�ning a general version of Gittins for Markov-process
jobs (§ 14.3). This new version of Gittins subsumes most, if not all, other versions of Gittins
introduced in the M/G/1 scheduling literature.

This chapter is based on material from Scully and Harchol-Balter [122].

14.1 Markov-Process Jobs

We model jobs as absorbing continuous-time strong Markov processes. The state of a job
encodes all information that the scheduler knows about the job. Without loss of generality,
we assume all jobs share a common state spaceX and follow the same stochastic Markovian
dynamics. However, the realization of the dynamics may be di�erent for each job. In
particular, the initial state of each job is drawn from a distribution -new, so di�erent jobs
may start in di�erent states.

While a job is in service, its state stochastically advances according to the Markovian
dynamics. This evolution is independent of the arrival process and the evolution of other
jobs. The rate of evolution is scaled by the job’s service rate, so the states of two jobs
sharing the server equally will each evolve half as quickly as either being served alone. A
job’s state does not change while waiting in the queue.

In addition to the main job state spaceX, there is one additional �nal state, denotedGdone.
When a job enters state Gdone, it completes and exits the system. One can think of a size (
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as the stochastic amount of time it takes for a job to go from its initial state, which is drawn
from -new, to the �nal state Gdone. Because we assume E[(] < ∞, every job eventually
reaches Gdone with probability 1. For ease of notation, we follow the convention that
Gdone ∉ X.

14.1.1 Preemptible and Nonpreemptible States
Every job state is either preemptible or nonpreemptible. The job in service can only be
preempted if it is in a preemptible state. We write XP for the set of preemptible states and
XNP = X \XP for the set of nonpreemptible states. Naturally, we assume the scheduler
knows which states are preemptible.

We assume all jobs start in a preemptible state, meaning -new ∈ XP with probability 1.
This means that all jobs in the queue are in preemptible states, and only the job in service
can be in a nonpreemptible state.

We assume preemption occurs with no cost or delay. Because a job’s state only changes
during service, our model is preempt-resume, meaning that preemption does not cause
loss of work.

During service, a job alternates between preemptible and nonpreemptible. We call an
amount of service during which a job is nonpreemptible a nonpreemptible segment. We
assume that the length distribution of a job’s nonpreemptible segments has �nite variance,1
because otherwise, the mean holding cost is in�nite [55, § 31.4].

14.1.2 System State and Scheduling
The state of the system can be described by a list (G1, . . . , G=), where = is the number of jobs
in the system, and G8 ∈ X is the state of the 8th job. We denote the equilibrium distribution
of the system state as (-1, . . . , -# ), where # is the equilibrium distribution of the number
of jobs.

We can still use rank functions to represent scheduling policies in much the same way
as explained in Chapter 6. The main di�erence is that the domain of a rank function is the
set of preemptible states:

rank : XP → R≥0.

A rank function represents the scheduling policy that
• prioritizes jobs in nonpreemptible states over those in preemptible states, and
• prioritizes among jobs in preemptible states in rank order, where lower rank is

better.2
It may be that a job is served at a rate less than the full service capacity of 1. This could

be because of multiple jobs sharing a single server (§ 5.3.2) or because of our convention
1Adapting the notation of Chapters 7 and 8 to Markov-process jobs, we can write this more formally as

Ercy (XNP)[((rcy (XNP))2] < ∞.
2Unlike the SOAP-based results in Part II, the WINE-based results in Part III do not rely on any particular

tiebreaking rule.
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that the multiserver M/G/k has servers of speed 1/: (§ 5.2.4). In either case, while a job
is being served at rate D, its state evolves at rate D, analogous to a job’s age increasing at
rate D in label-age job model of Chapter 5.

14.1.3 Holding Costs
The main metric we study in the Markov-process job model is mean holding cost. A job’s
holding cost is a cost we pay for each unit of time it is not complete. We allow a job’s
holding cost to depend on its state, so it may change during service. A job’s holding cost is
thus determined by a function

ℎ : X→ R>0.

For ease of notation, we also de�ne ℎ(Gdone) = 0. We assume that holding costs are
deterministic, positive, and known to the scheduler. We can think of holding costs as
having dimensions cost rate B cost/time.

The system holding cost, or simply “holding cost” when unambiguous, is the total
holding cost of jobs in the system, namely

� B
#∑
8=1

ℎ(-8).

We also de�ne the preemptible and nonpreemptible system holding costs, which only count
jobs in preemptible or nonpreemptible states:

�P B
#∑
8=1

ℎ(-8) 1(-8 ∈ XP),

�P B
#∑
8=1

ℎ(-8) 1(-8 ∈ XNP).

Our objective is generally to schedule to minimize mean system holding cost E[� ]. It
turns out that for the systems we consider, the mean nonpreemptible holding cost E[�NP]
is independent of the scheduling policy (Ch. 16), in which case this reduces to minimizing
the mean preemptible holding cost E[�P].

14.1.4 What Does the Scheduler Know?
The scheduler also knows, at every moment in time, the current state of all jobs in the
system. This assumption is natural because the intuition of our model is that a job’s state
encodes everything the scheduler knows about the job.

We assume the scheduler knows a description of the job model: the state spaceX, the
subset of preemptible statesXP ⊆ X, and the Markovian dynamics that govern how a job’s
state evolves. This assumption is necessary for the Gittins policy, as the policy’s de�nition
depends on the job model.
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We assume that the scheduler knows the holding cost ℎ(G) of each state G ∈ X.
However, it is often possible to transform some problems with unknown holding costs
into problems with known holding costs. We discuss how to do this in Section 14.2.1. A
notable example is minimizing mean slowdown when sizes are unknown to the scheduler
(Ex. 14.3).

14.1.5 Technical Foundations
We have thus far avoided discussing technical measurability conditions that the job model
must satisfy. For example, if the job Markov process has uncountable state spaceX, one
should make some topological assumptions onX,XP, andXNP, as well as some continuity
assumptions on holding costs. As another example, when discussing sets of states Y ⊆ X,
we should always restrict our attention to measurable subsets.

As discussed in Section 5.6.5, we consider measure theoretic technicalities outside the
scope of this thesis. Below, we brie�y describe what would be necessary to rigorize the
foundations. See Scully et al. [118, Appendix D] for additional discussion.

Our results in Part III are predicated on being able to apply basic optimal stopping
theory to solve a single-job optimal stopping problem called the Gittins game (Ch. 15).
Optimal stopping of general Markov processes is a broad �eld, and the theory has been
developed under many di�erent types of assumptions [106, 129]. Rather than choosing a
speci�c set of assumptions under which the optimal stopping theory for the Gittins game
can be developed, we treat our results on Gittins as reductions, applying to any job model
for which some intuitive but technical properties of the Gittins game can be veri�ed.

14.2 Examples of Markov-Process Jobs and Holding
Costs

Example 14.1. To model known sizes, let a job’s state be its remaining size. The state
space isX = R>0, the initial state distribution -new is the size distribution ( , and the �nal
state is Gdone = 0. During service, a job’s state decreases at rate 1.

Example 14.2. To model unknown sizes, let a job’s state be its age, meaning the amount
of time it has been served so far. The state space isX = R≥0, all jobs start in initial state
-new = 0, and the �nal state Gdone is an isolated point. During service, a job’s state increases
at rate 1, but it also has a chance to jump to Gdone. The jump probability depends on the
size distribution ( : the probability a job jumps while being served from state G to state
~ > G is P[( ≤ ~ | ( > G].

14.2.1 Mean Slowdown and Unknown Holding Costs
Recall from Section 14.1.3 that we assume that the holding cost of every job state is known
to the scheduler. However, some scheduling problems involve unknown holding costs.
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An important example is minimizing mean slowdown, in which a job’s holding cost is
the reciprocal of its service time. Unless all service times are known to the scheduler, this
involves unknown holding costs.

Fortunately, we can transform many problems with unknown holding costs into prob-
lems with known holding costs. Suppose a job’s current unknown holding cost depends
only on its current and future states. Then for all job states G ∈ X, let

ℎ(G) = E[unknown holding cost of a job in state G | job reached state G], (14.1)

where the expectation is taken over a random realization of a job’s path through the state
space. The mean holding cost of nonclairvoyant policies is una�ected by this transforma-
tion.

Example 14.3. Consider the system from Example 14.2. It has unknown service times, and
a job’s state G is its age. Suppose all states are preemptible. To minimize mean slowdown,
we give a job with service time B holding cost B−1. This turns (14.1) into

ℎ(G) = E[(−1 | ( > G] .

More generally, if the holding cost of a job of size B is ℎ̂(B), then (14.1) becomes

ℎ(G) = E[ℎ̂(() | ( > G] .

One can generalize Example 14.3 to any scenario where a job’s holding cost depends on
only its current and future states, namely by taking an expectation over the future states.

14.3 The Gi�ins Policy with Markov-Process Jobs

14.3.1 Gi�ins Rank Ingredients: Relevant Work, Holding Cost
Change

All of the relevant system de�nitions in Section 7.2 apply virtually verbatim to the Markov-
process job model. The only di�erence is that instead of states being label-size pairs, states
inhabit a general space X, implying the following changes:

• We consider sets of general states Y ⊆ X instead of sets of label-size pairs L ×R≥0.
• We consider general states G ∈ X instead of label-size pairs (ℓ, 0) ∈ L ×R≥0.

We can similarly generalize Relevant Work Decomposition and its associated de�nitions
from Section 8.3.

The relevant system de�nition that is most important for de�ning Gittins is a job’s
relevant remaining work (Def. 7.3). We denote by (G (Y) the remaining Y-work of a job in
state G .
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De�nition 14.4. Let Y ⊆ X be a set of job states and G ∈ X be a job state. The Y-exit
state of G , denoted /G (Y), is the random state of a job when it �rst exits Y, given that it
starts in state G .3 In particular, if the job completes before exiting Y, then /G (Y) = Gdone.

14.3.2 The Gi�ins Rank Function

Policy 14.5. TheGittins policy is the policy represented by the rank function rankGittins : XP → R>0
de�ned by

rankGittins(G) = inf
Y⊇XNP

E[(G (Y)]
ℎ(G) − E[ℎ(/G (Y))]

,

where the in�mum is taken over all sets of states Y such that XNP ⊆ Y ⊆ X and the
denominator is nonzero.

Because nonpreemptible states have priority over preemptible states, we only need to
de�ne the rank function for preemptible states. But for convenience of notation, we let
rankGittins(G) = 0 for G ∈ XNP.

A job’s rank under Gittins has dimensions time/cost rate = time2/cost. Intuitively,
we can think of a state’s Gittins rank as a measure of how long on average it takes to
decrease the holding cost of a job starting at that state. We can think of the special case
where we aim to minimize mean number in system as being the case of dimensionless
holding costs, meaning cost rate = 1. A job’s rank then has dimensions time, which
should feel familiar from (Part II)’s presentation of Gittins (Pol. 6.12).

14.3.3 Examples of the Gi�ins Rank Function

Example 14.6. Consider scheduling jobs with known sizes, as in Example 14.1, to minimize
mean response time. As discussed in Policy 6.12, Gittins reduces to SRPT in this case,
meaning a job with remaining work G has rank

rankGittins(G) = G .

More generally, suppose that a job’s state consists of its remaining workF and a constant
holding cost 2 . That is, we have ℎ(F, 2) = 2 . In this case, Gittins reduces to Weighted SRPT,
which has rank function

rankGittins(F, 2) =
F

2
.

That is, jobs with less remaining work and greater holding cost are prioritized. One can
view this as an instance of the 2` rule (Ex. 14.8).

3It may be that /G (Y) ∈ Y with positive probability, such as if the job Markov process has continuous
trajectories and Y is a closed set.



14.3 The Gi�ins Policy with Markov-Process Jobs 177

Example 14.7. Consider scheduling jobs with unknown sizes, as in Example 14.2, to
minimize mean slowdown, as in Example 14.3. A job’s state G is its age, and a job’s holding
cost at age G is ℎ(G) = E[(−1 | ( > G], so the Gittins rank function is

rankGittins(G) = inf
~>G

E[min{(,~} − G | ( > G]
E[(−11(( ≤ ~) | ( > G] .

Example 14.8. The celebrated 2` rule [28], where we prioritize jobs in order of increasing
holding cost times expected size, can be viewed as a special case of Gittins. The 2` rule is
known to minimize mean holding cost in two cases: preemptive multiclass systems with
exponential job size distributions for each class, and nonpreemptive multiclass systems
with general job size distributions for each class, where in both cases a job’s holding cost
depends on its class and does not change during service. Both of these systems can be
modeled using the Markov-process job model. Moreover, we can model combinations of
them. Our Gittins optimality result (Ch. 16) thus generalizes the 2` rule’s optimality to
systems where each class can be either preemptible with exponential size distribution, or
nonpreemptible with general size distribution. One can even mix in jobs with known sizes,
as in Example 14.6.
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Chapter 15

WINE: Relating Gi�ins-Flavored
Relevant Work to Holding Cost

This chapter introduces a new queueing identity, called WINE: Work Integral Number
Equality, that gives a new way of characterizing the number-in-system# , or more generally
system holding cost � , in essentially any queueing system. In combination with Little’s
law [84], WINE gives a new way to analyze a system’s mean (weighted) response time.

The primary motivation for WINE is to be able to analyze policies like SRPT and Gittins
in multiserver systems, such as the M/G/k. As discussed in Chapter 4, the SOAP analysis
strategy that is successful for the M/G/1 does not generally work in the M/G/k. Because
WINE applies even in multiserver systems, it opens up a new avenue for analyzing SRPT
and Gittins in multiserver systems. We carry out such analyses in Chapter 17.

With that said, WINE is also useful in the simpler setting of single-server scheduling.
One speci�c application has to do with proving Gittins’s optimality. In Chapter 14, we
introduced a highly general job model and de�ned a generalization of the Gittins policy
for it. In light of prior work on the Gittins policy [44], it is a foregone conclusion that our
new generalization of it minimizes mean holding cost in the M/G/1. However, proving this
rigorously for such a general job model is challenging, as evidenced by the fact that the
numerous prior proofs of Gittins’s optimality [18, 28, 29, 43, 76, 79, 116, 128, 128, 136, 141]
consider only special cases and require restrictive technical assumptions.

WINE turns out to be the missing ingredient for proving Gittins’s optimality in the
M/G/1. WINE reduces proving Gittins’s optimality to a relatively simple question about
relevant work, thus dodging the technical obstacles that prior proofs had to contend with.
More generally, as we show in Chapter 16, WINE allows us to easily show that approximate
Gittins policies are approximately optimal, where here “approximate” means within a
constant multiplicative factor.

We begin the chapter by presenting the simplest version of WINE, which we call
“SRPT-�avored” due to its connection to SRPT’s rank function (§ 15.1). Just as Gittins can
be viewed as a generalization of SRPT, the full version of WINE, which we call “Gittins-
�avored”, generalizes SRPT-�avored WINE. Proving Gittins-�avored WINE amounts to
proving properties of the Gittins rank function, which is signi�cantly more complicated
than the SRPT rank function. To do so, we present an alternative de�nition for the Gittins
rank function based on an optimization problem called the Gittins game (§ 15.2), from
which Gittins-�avored wine follows relatively easily (§ 15.3).

This chapter is based on material from Scully and Harchol-Balter [122], though the
name “WINE” is new as of this thesis.
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15.1 SRPT-Flavored WINE

As a warmup to proving the full “Gittins-�avored” version WINE, this section proves a
special case called “SRPT-�avored” WINE. We note that this special case was independently
derived by Banerjee et al. [12] (§ 2.2.3).

Throughout this section, we work with perhaps the simplest possible Markov-process
job model: a job’s state is its remaining work, and jobs have constant holding cost ℎ(G) = 1.
In this setting, Gittins reduces to SRPT (Pol. 6.12), which has rank function rankSRPT(G) = G :
a job’s rank is its remaining work.

15.1.1 Clearer Notation for Relevant Work
SRPT-�avored WINE is de�ned using relevant work, where the set of “relevant” states
are those whose rank under SRPT is at most some threshold A . In Chapter 7, we denoted
this set of states by simply “≤A”, which is unambiguous as long as only one scheduling
policy is being discussed. However, it turns out that SRPT-�avored WINE holds under
any scheduling policy, not just SRPT. As such, we introduce some more verbose but less
ambiguous notation for specifying relevant state sets.

De�nition 15.1. Let func : X→ R≥0 be a function on states, typically a rank function of
some policy, and 2 ≥ 0 be a constant. The notation (func ≤ 2) denotes the set

(func ≤ 2) B {G ∈ X | func(G) ≤ 2}.

Some notes about this de�nition:
• We drop the parentheses when the grouping is unambiguous, as in, (func ≤ 2).
• We de�ne other function inequality notation similarly, such as (func1 < 2 ≤ func2).
• To prevent ambiguity between functions and constants, we always use sans-serif

font to denote functions in the context of this notation.
• In informal discussion, we use the phrase c-�avored relevant as a synonym for
(rankc ≤ A )-relevant or (rankc < A )-relevant, as in “Gittins-�avored relevant
remaining work”.

15.1.2 Proof of SRPT-Flavored WINE
Recall that WINE stands for Work Integral Number Equality. For SRPT-�avored WINE,
this means we somehow integrate SRPT-�avored relevant system work and obtain the
number-in-system. How can we count the number of jobs via relevant work? The key step
is to “count” a single job via its relevant remaining work.

Proposition 15.2. For any amount of remaining work G > 0,

1 =

∫ ∞

0

(G (rankSRPT ≤ A )
A 2 dA .
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1/G

G

0 1/A
0

(G (rankSRPT ≤ A ) = G1(G ≤ A )

area 1

(a) Integrating remaining (rankSRPT ≤ A )-work
of single job of remaining work G (Prop. 15.2).

1/G1 1/G2 1/G3 1/G4

0 1/A
0

, (rankSRPT ≤ A )

area 1

area 1

area 1
area 1

total area
# = 4

(b) Integrating system (rankSRPT ≤ A )-work
with # = 4 jobs present (Thm. 15.3).

Figure 15.1. Geometry of SRPT-�avored WINE. Plots (a) and (b) both put 1/A on the horizontal
axis because 1/A 2 dA = d(1/A ). We see in (a) that a single job’s relevant remaining work integrates
to 1, which means that relevant system work integrates to the number-in-system # in (b).

Proof. If G ≤ A , then the job has rank at most A for the rest of its service, so its relevant
remaining work is G . If instead G > A , then the job is irrelevant, so its relevant remaining
work is 0. This means

(G (rankSRPT ≤ A ) = G1(G ≤ A ),

from which the result follows. Figure 15.1(a) geometrically interprets this integral. �

From the single-job relevant work integral above, the multi-job relevant work integral
below follows easily.

Theorem 15.3 (SRPT-Flavored WINE). In any queueing system using any scheduling pol-
icy c, the number-in-system can be expressed as an integral of SRPT-�avored relevant work:

#c =

∫ ∞

0

,c (rankSRPT ≤ A )
A 2 dA .

In particular, provided the steady-state expectations are well de�ned,

E[#c ] =
∫ ∞

0

E[,c (rankSRPT ≤ A )]
A 2 dA .

Proof. We omit the subscript c throughout. Relevant system work is the sum of each job’s
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relevant remaining work, so1∫ ∞

0

, (rankSRPT ≤ A )
A 2 dA =

∫ ∞

0

∑#
8=1 (-8 (rankSRPT ≤ A )

A 2 dA

=

#∑
8=1

∫ ∞

0

(-8 (rankSRPT ≤ A )
A 2 dA

= # . [by Prop. 15.2]

Figure 15.1(b) geometrically interprets this integral. The expected value version follows
from Tonelli’s theorem. �

Scope of SRPT-Flavored WINE’s Validity

The statement of SRPT-�avored WINE (Thm. 15.3) mentions “any” queueing system and
“any” scheduling policy. The suspicious reader will be excused for asking: what is the
precise scope of “any”?

The best way to understand WINE is to observe that it is not really about queueing at all.
Instead, WINE is a statement that holds for any list of numbers: if we have a list of= positive
reals (G1, . . . , G=) and de�neF (A ) B ∑=

8=1 G81(G8 ≤ A ), then we have
∫ ∞

0 F (A )/A 2 dA = =. In
this sense, WINE really does hold for any queueing system using any scheduling policy,
provided that some notion of remaining work can be de�ned.

We can even use SRPT-�avored WINE in systems where the scheduler does not know
job sizes. The scheduler might not know the current value of, (rankSRPT ≤ A ). But from
the perspective of analysis, we may be able to compute, say, its expectation, in which case
WINE yields the mean number-in-system E[# ].

15.1.3 Why Is WINE Useful?
By now, it should be clear that SRPT-�avored WINE (Thm. 15.3) is a strangely simple fact
to form the foundation of half a thesis, with Figure 15.1(b) telling essentially the entire
story. How can an identity as simple as SRPT-�avored WINE be useful?

The key to WINE’s usefulness is that relevant system work can be much simpler than
number-in-system. In particular, Relevant Work Decomposition Theorem 8.7 gives a formula
for relevant system work, which is useful in both the M/G/1 and M/G/k.

In the M/G/1, WINE and Relevant Work Decomposition give a very brief proof that
SRPT minimizes mean response time.

• Because SRPT is (rankSRPT ≤ A )-prioritizing for all A ≥ 0, by Corollary 8.9, SRPT
minimizes mean system (rankSRPT ≤ A )-work in the M/G/1 for all A ≥ 0.

• Therefore, by SRPT-�avored WINE (Thm. 15.3) and Little’s law [84], SRPT minimizes
mean response time in the M/G/1.

1Recall from Section 14.1.2 that -8 is the state of the 8th job in the system.
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SRPT’s optimality in the M/G/1 is, of course, a well known result [116]. But essentially
the same argument with Gittins-�avored WINE proves Gittins’s optimality in the M/G/1,
which is a novel result in a setting as general as the Markov-process job model (Ch. 16).

In the M/G/k, WINE and Relevant Work Decomposition are again a potent combination:
Relevant Work Decomposition relates SRPT- or Gittins-�avored relevant work in the M/G/k
to that in the M/G/1, and WINE turns this into a relationship between SRPT’s or Gittins’s
mean response time in the M/G/k to that in the M/G/1. Relevant Work Decomposition
introduces a term that is intractable to analyze exactly, but we are able to bound it well
enough to give meaningful bounds on mean response time (Ch. 17).

15.2 The Gi�ins Game

Having gotten a taste of WINE’s utility in Section 15.1.3, we would like to generalize
SRPT-�avored WINE, which is useful for analyzing SRPT, to Gittins-�avored WINE, which
is useful for analyzing Gittins. The main di�culty in doing so is that Gittins’s rank func-
tion is de�ned in terms of a potentially di�cult optimization problem (§ 14.3). The goal
of this section is therefore to better understand Gittins’s rank function. From our new
understanding, Gittins-�avored WINE quickly follows (§ 15.3).

Our tool for understanding Gittins’s rank function is an optimization problem that
we call the Gittins game (§ 15.2.1). The Gittins game can be seen as an alternative way of
de�ning the Gittins rank function [35, 44, 140]. Most importantly for our purposes, the
Gittins game exposes a new connection between the Gittins rank function and Gittins-
�avored relevant work (§ 15.2.2).

For this section, we return to the general setting of the Markov-process job model
(Ch. 14), with a general state spaceX, general Markovian dynamics, and a general holding
cost function ℎ : X→ R>0.

15.2.1 Defining the Gi�ins Game

The Gittins game is an optimization problem2 concerning serving a single job. It has two
parameters:

• the initial state G ∈ X of the job, which is usually a preemptible state; and
• a penalty A ≥ 0, which has dimensions time2/cost.

The goal of the game is to end the game in as little time as possible in expectation. There
are two possible actions:

• By default, we serve the job. During service, the job’s state changes according to its
usual Markovian dynamics. If the job completes by entering state Gdone, then the
game ends immediately.

2The optimization problem has a single decision maker, so the Gittins game is not a game in the game-
theoretic sense. Caught in con�ict between being completely correct and alliterating, alas, alliteration allured
this thesaurus-attached author.
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• If the job’s current state is preemptible, then we may choose to give up. If we decide
to give up when the job is in some state I, then we immediately stop serving the job,
but the game ends anyway after a delay of Aℎ(I) additional time.

That is, the Gittins game involves serving the job until it either completes or we decide to
give up, with the penalty A determining how bad giving up is.

Because the job’s state evolution is Markovian, the Gittins game is a Markovian optimal
stopping problem. This means there is an optimal policy of the following form: for some
give-up set Z ⊆ XP, we give up when the job’s state �rst enters Z. Moreover, this set need
not depend on the starting state. We use this observation to formally de�ne the Gittins
game. To match our existing notation, we phrase the de�nition in terms of the service set
Y = X \ Z instead of the give-up set Z, but the idea is the same.

De�nition 15.4. The Gittins game is an optimization problem. The parameters are a
starting state G ∈ X and penalty A ≥ 0, and the control is a service set Y ⊇ XNP.

(a) The disutility of service set Y for state G and penalty A is3

gameG (A,Y) B E[(G (Y)] + AE[ℎ(/G (Y))] .

The objective of the Gittins game is to choose Y to minimize gameG (A,Y).
(b) The minimal disutility for state G and penalty A is

gameG (A ) B inf
Y⊇XNP

gameG (A,Y).

(c) The optimal service set for penalty A is4

Y∗(A ) B XNP ∪ {~ ∈ XP | game~ (A ) < Aℎ(~)}.

Some notes about this de�nition:
• When we discuss a penalty A , it is understood that A ≥ 0.
• When we discuss a service set Y, it is understood that XNP ⊇ Y ⊇ X.

As suggested by its name, for any state G and penalty A , the optimal service set does
indeed solve the Gittins game:

gameG (A ) = gameG (A,Y∗(A )) . (15.1)

Intuitively, (15.1) is almost trivial, because De�nition 15.4(c) de�nesY∗(A ) to be exactly the
set of states for which giving up is either disallowed or strictly suboptimal. To formalize
(15.1), and moreover to formalize the De�nition 15.4, one needs the job Markov process to
satisfy some reasonable topological conditions, so we implicitly assume these (§ 14.1.5).

3See Section 14.3.1 for the de�nitions of (G (Y) and /G (Y).
4There may actually be multiple service sets that are all optimal, but for simplicity of language, we still

refer to this one as “the” optimal service set.
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Bounding Minimal Disutility

Lemma 15.5. For all G ∈ XP and A ≥ 0,5

E[(G (Y∗(A ))] ≤ gameG (A ) ≤ min{Aℎ(G), E[(G ]}.

Proof. De�nition 15.4 and (15.1) implies (G (Y∗(A )) ≤ gameG (A,Y∗(A )) = gameG (A ), which
is the lower bound. The upper bound follows from, roughly speaking, giving up as early
or late as possible in the Gittins game.

• Giving as early as possible means giving up immediately, which is possible because
G is preemptible. It takes time Aℎ(G) to give up from G , so gameG (A ) ≤ Aℎ(G).

• Giving up as late as possible means never giving up. It takes expected time E[(G ] to
complete the job from G , so gameG (A ) ≤ E[(G ]. �

15.2.2 Relating the Gi�ins Game to Relevant Work
To relate the Gittins game to Gittins-�avored relevant work, we �rst need to relate the
Gittins game to the Gittins rank function.

Lemma 15.6.
(a) For all A ≥ 0,

Y∗(A ) = (rankGittins < A ) B {G ∈ X | rankGittins(G) < A }.

(b) For all G ∈ XP,

rankGittins(G) = sup{A ≥ 0 | G ∈ Y∗(A )} = sup{A ≥ 0 | gameG (A ) < Aℎ(G)}
= inf{A ≥ 0 | G ∉ Y∗(A )} = inf{A ≥ 0 | gameG (A ) = Aℎ(G)}.

Proof. By De�nition 15.4(c), it su�ces to show that for all G ∈ XP and A ≥ 0,

rankGittins(G) < A if and only if gameG (A ) < Aℎ(G).

But by Policy 14.5 and De�nition 15.4, both of these are equivalent to the existence of a
service set Y ⊇ XNP such that

E[(G (Y)] < A (ℎ(G) − E[ℎ(/G (Y))]). �

Lemma 15.7. For all G ∈ XP, the minimal disutility gameG : R≥0 → R≥0 is continuous,
concave, and almost everywhere di�erentiable with

d
dA

gameG (A ) = E[ℎ(/G (rankGittins < A ))] .
5The result generalizes to all G ∈ X if we replace ℎ(G) with E[ℎ(/G (XNP))], but we do not need this

generality.
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Proof. For any service set Y, De�nition 15.4(a) tells us the disutility of service set Y is
linear in the penalty A . Because a minimum of linear functions is concave, De�nition 15.4(b)
implies gameG is concave. Concavity implies continuity for A > 0, and Lemma 15.5 implies
continuity at A = 0. Concavity also implies di�erentiability almost everywhere, and an
envelope theorem [88] gives the derivative where it exists:

d
dA

gameG (A ;Y∗(A )) =
d
dA

gameG (A ;Y∗(A )) [by (15.1)]

=
d
dA

gameG (A ;Y∗(@))
����
@=A

[by Milgrom and Segal [88, Theorem 1]]

= E
[
ℎ
(
/G (Y∗(@))

) ] ���
@=A

[by Def. 15.4(a)]

= E
[
ℎ
(
/G (rankGittins < A )

) ]
. [by Thm. 15.6(a)] �

15.3 Gi�ins-Flavored WINE

15.3.1 Relevant Work of Preemptible Jobs
De�nition 15.8. Let Y ⊆ X. The Y-relevant work of preemptible jobs is

, P(Y) =
#∑
8=1

(-8 (Y) 1(-8 ∈ XP).

Similarly, the Y-relevant work of nonpreemptible jobs is

, NP(Y) =
#∑
8=1

(-8 (Y) 1(-8 ∈ XNP).

15.3.2 Proof of Gi�ins-Flavored WINE

Proposition 15.9. For all G ∈ XP,

ℎ(G) =
∫ ∞

0

E[(G (rankGittins < A )]
A 2 dA .

Proof. By Lemma 15.7,

d
dA

gameG (A )
A

=
A d

dA gameG (A ) − gameG (A )
A 2 =

−E[(G (rankGittins < A )]
A 2 ,

so the integral is∫ ∞

0

E[(G (rankGittins < A )]
A 2 dA = lim

A→0

gameG (A )
A

− lim
A→∞

gameG (A )
A

.
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The A →∞ limit is 0 by Lemma 15.5, and the A → 0 limit is ℎ(G) by Theorem 15.6(b) and
the fact that ranks of preemptible states are positive (Pol. 14.5). �

Theorem 15.10 (Gittins-Flavored WINE). In any queueing system using a nonclairvoyant
scheduling policy c, meaning one that does not depend on the future states of any jobs, the
preemptible holding cost can be expressed as an integral of expected Gittins-�avored relevant
work:6

�P
c =

∫ ∞

0

E[, P
c (rankGittins < A ) | -1, . . . , -# ]

A 2 dA .

In particular, provided the steady-state expectations are well de�ned,

E[�P
c ] =

∫ ∞

0

E[, P
c (rankGittins < A )]

A 2 dA .

Proof. We omit the subscript c throughout. Gittins-�avored relevant system work is the
sum of each job’s relevant remaining work, so∫ ∞

0

E[, P(rankGittins < A ) | -1, . . . , -# ]
A 2 dA

=

∫ ∞

0

E[∑#
8=1 (-8 (rankGittins < A ) 1(-8 ∈ XP) | -1, . . . , -# ]

A 2 dA

=

#∑
8=1
1(-8 ∈ XP)

∫ ∞

0

E[(-8 (rankGittins < A ) | -1, . . . , -# ]
A 2 dA

=

#∑
8=1
1(-8 ∈ XP)

∫ ∞

0

E[(-8 (rankGittins < A ) | -8]
A 2 dA [by nonclairvoyance]

=

#∑
8=1
1(-8 ∈ XP)ℎ(G) [by Prop. 15.9]

= �P. [by Def. 15.8]

The expected value version follows from Tonelli’s theorem. �

There is one subtle di�erence between Theorems 15.3 and 15.10: the former uses a
non-strict inequality, while the latter uses a strict inequality. One can easily verify that
Theorem 15.3 still holds if we instead use a strict inequality. One can also show that
Theorem 15.3 still holds if we instead use a non-strict inequality, though this takes some
more e�ort.

6Recall from Section 14.1.2 that -8 is the state of the 8th job in the system. In particular,
E[, (rankGittins < A ) | -1, . . . , -# ] takes expectation only over the future evolution of each job, because we
condition on the entire system state.
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Chapter 16

(Approximate) Gi�ins’s (Approximate)
Optimality in the M/G/1

The goal of this chapter is to prove that the Gittins policy minimizes mean holding cost in
the M/G/1 under essentially any Markov-process job model (Ch. 14). In light of substantial
prior work on Gittins [18, 28, 29, 43, 76, 79, 116, 128, 128, 136, 141], this result is not
surprising. However, technical obstacles have a general result di�cult to prove in the
past. See Scully and Harchol-Balter [122] for a detailed review of prior proofs and their
limitations.

Combining WINE (Ch. 15) and Relevant Work Decomposition (Ch. 8) makes proving
Gittins’s optimality easy, overcoming these past technical limitations (§ 16.1). In fact, we
can prove something even stronger: if a policy assigns ranks within a constant factor of
Gittins’s, then it is in some sense within a constant factor of optimal (§ 16.2).

Section 16.1 is based on material from Scully and Harchol-Balter [122], but Section 16.2
is new material.

16.1 Optimality of Gi�ins
This section proves the following result.

Theorem 16.1. Consider an M/G/1 under any Markov-process job model with any holding
cost function. The Gittins policy minimizes mean preemptible holding cost E[�P] and mean
system holding cost E[� ] among all nonclairvoyant scheduling policies.

In the case where all states are preemptible, Theorem 16.1 follows almost immediately
from WINE (Thm. 15.10), which relates holding cost to Gittins-�avored relevant work, and
Corollary 8.9, which implies that Gittins itself minimizes Gittins-�avored relevant work.
However, this is not the complete story when some states are nonpreemptible, because
WINE (Thm. 15.10) accounts only for jobs in preemptible states. Fortunately, it turns out
that both the holding cost and relevant work caused by jobs in nonpreemptible states is
the same across all scheduling policies.

Lemma 16.2. Consider an M/G/1 under any Markov-process job model with any holding
cost function.
(a) The mean nonpreemptible holding cost E[�NP] is the same under all scheduling policies.
(b) Let Y ⊆ X be a set of states. The mean nonpreemptible relevant work E[, NP(Y)] is

the same under all scheduling policies.
In both cases, we restrict attention to scheduling policies that are work-conserving, or more
generally those that do not destabilize the system.
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Proof. We �rst observe that (b) is a special case of (a): simply let the holding cost of a non-
preemptible state G be its expected relevant remaining work, namely ℎ(G) B E[(G (Y)].1

It thus su�ces to prove (a). The important observation is that there is that if a job is
in a nonpreemptible state, it must be in service, because all jobs start in a preemptible
state (§ 14.1.1). Because the system is stable, a job is in service with probability d , and
conditional on a job being in service, its steady-state distribution -eq is the same under
any scheduling policy.2 We therefore have E[�NP] = E[ℎ(-eq) 1(-eq ∈ XNP)] under any
scheduling policy. �

Now that we know that scheduling does not impact how nonpreemptible states con-
tribute to holding cost or relevant work, we are ready to prove Gittins’s optimality using
WINE.

Proof of Theorem 16.1. Let c be any nonclairvoyant scheduling policy. In light of Theo-
rem 16.2(a), it su�ces to prove E[�P

Gittins] ≤ E[�P
c ]. We compute3

E[�P
Gittins] =

∫ ∞

0

E[, P
Gittins(rankGittins < A )]

A 2 dA [by Thm. 15.10]

=

∫ ∞

0

E[,Gittins(rankGittins < A )] − E[, NP
Gittins(rankGittins < A )]

A 2 dA

≤
∫ ∞

0

E[,c (rankGittins < A )] − E[, NP
c (rankGittins < A )]

A 2 dA
[by Cor. 8.9 and Thm. 16.2(b)]

=

∫ ∞

0

E[, P
c (rankGittins < A )]

A 2 dA

= E[�P
c ] . [by Thm. 15.10] �

16.2 Approximate Optimality of Approximate Gi�ins

16.2.1 Approximate WINE
De�nition 16.3. A scheduling policy is a (V, U)-Gittins policy for U > V > 0 if it is
represented by a rank function rank that satis�es

V rankGittins(G) ≤ rank(G) ≤ U rankGittins(G).
1This works for the same reason that we can reduce some unknown holding cost problems to known

holding cost problems by looking at conditional expected holding cost (§ 14.2.1). Speci�cally, we would like
to set “ℎ(G) B (G (Y)”, but we require holding costs to be deterministic, so we take an expectation over the
job’s remaining Y-work.

2One can view -eq as the stationary distribution of the Markov process that “loops” serving jobs forever.
This is the same as the job Markov process, except if the job’s state would become Gdone, we instead “restart”
the job by having it jump to a state distributed as -new.

3We implicitly assume here that E[, NP
c (rankGittins < A )] is �nite. It is possible to show that if it were

in�nite, then by our assumption that all states have positive holding cost (§ 14.1.3), all policies, including
Gittins, would have in�nite mean holding cost.
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We also call such a policy a W-Gittins policy for W = U/V , because scaling all ranks by the
same factor does not a�ect the scheduling policy. We typically denote a W-approximate
Gittins policies by W-G.

Theorem 16.4 (Approximate WINE). Let U > V > 0 and W = U/V. Consider any (V, U)-ap-
proximately Gittins policy W-G. In any queueing system using a nonclairvoyant scheduling
policy, the preemptible holding cost can be bounded using an integral of expected W-G-�avored
relevant work:

�P
c

U
≤

∫ ∞

0

E[, P
c (rankW-G < A ) | -1, . . . , -# ]

A 2 dA ≤
�P
c

V
.

In particular, provided the steady-state expectations are well de�ned,

E[�P
c ]

U
≤

∫ ∞

0

E[, P
c (rankW-G < A )]

A 2 dA ≤
E[�P

c ]
V

.

Proof. We omit the subscript c throughout. By De�nition 16.3, for all A ≥ 0,

(rankGittins < A/U) ⊆ (rankW-G < A ) ⊆ (rankGittins < A/V),

so De�nition 7.3 implies that in any system state,

, P(rankGittins < A/U) ≤, P(rankW-G < A ) ≤, P(rankGittins < A/V). (16.1)

The lower and upper bounds then follow from two very similar computations, so we show
just the lower bound computation:∫ ∞

0

E[, P(rankW-G < A ) | -1, . . . , -# ]
A 2 dA

≥
∫ ∞

0

E[, P(rankGittins < A/U) | -1, . . . , -# ]
A 2 dA [by (16.1)]

=
1
U

∫ ∞

0

E[, P(rankGittins < @) | -1, . . . , -# ]
@2 d@ [by letting @ = A/U]

=
�P

U
. [by Thm. 15.10]

The expected value version follows from Tonelli’s theorem. �

16.2.2 Using Approximate WINE to Prove Approximate
Optimality

Theorem 16.5. Consider an M/G/1 under any fully preemptible Markov-process job model,
meaning X = XP, with any holding cost function. Any W-Gittins policy W-G has mean
preemptible holding cost within a factor of W of optimal:

E[�P
W-G] ≤ WE[�

P
Gittins] .
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Proof. The result follows from Approximate WINE (Thm. 16.4) and the fact that W-G
minimizes W-G-�avored relevant work (Cor. 8.9). Speci�cally, letting U > V > 0 be such
that W-G is (V, U)-approximately Gittins (i.e. W = U/V), we compute4

E[�P
W-G] ≤ U

∫ ∞

0

E[, P
W-G(rankW-G < A )]

A 2 dA [by Thm. 16.4]

≤ U
∫ ∞

0

E[, P
Gittins(rankW-G < A )]

A 2 dA [by Cor. 8.9 and Thm. 16.2(b)]

≤ U
V
E[�P

W-G] = WE[�W-G] . [by Thm. 16.4] �

4The step where we apply Corollary 8.9 and Theorem 16.2(b) uses the same trick as the proof of Theo-
rem 16.1



Chapter 17

Response Time of Gi�ins in the M/G/k

This chapter bounds the mean response time of the Gittins policy in the M/G/k, namely
Gittins-k. We consider an arbitrary fully preemptible Markov-process job model with constant
holding cost (Ch. 14). That is, every state is preemptible, meaning XP = X, and has the
holding cost, which we arbitrarily set to ℎ(G) = 1. The state space and dynamics are
unrestricted, so our results apply to settings with known job sizes (in which Gittins-k
reduces to SRPT-k), unknown job sizes, and a wide range of scenarios with partial job size
information.

17.1 Main Result: Mean Response Time Bound for
Gi�ins-k

We follow our usual convention that each of the : servers in the M/G/k has speed 1/: ,
giving the system maximum service rate 1 (§ 5.2.4). Under this convention, we prove the
following result.

Theorem 17.1. Consider an M/G/k with any fully preemptible Markov-process job model
with constant holding cost. The mean response time of Gittins-k is bounded by

E[)Gittins-:] ≤ E[)Gittins-1] +
( ≈3.7746︷      ︸︸      ︷

9
8 log 3

2
+ 1

)
(: − 1)E[(]

d
log

1
1 − d .

Proof. The result follows from Propositions 17.3, 17.6, and 17.9, which appear later in this
section. �

The bound in Theorem 17.1 implies that for (roughly speaking) �nite-variance job size
distributions, Gittins-k has the best possible mean response time in the heavy-tra�c limit,
because in that setting, the E[)Gittins-1] term dominates.

Corollary 17.2. Consider an M/G/k with any fully preemptible Markov-process job model
with constant holding cost. If E[(2(log ()+] < ∞, then

lim
d→1

E[)Gittins-:]
E[)Gittins-1]

= 1,

and thus Gittins-k is optimal for mean response time in the heavy-tra�c limit.
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Proof. The limit of mean response time ratios follows from Theorem 17.1 and prior results
on the heavy-tra�c scaling of mean response time under SRPT-1, which is a lower bound
on the scaling of Gittins-1. Speci�cally, Scully et al. [118, Appx. B.2] show using results
from Lin et al. [83] that when E[(2(log ()+] < ∞,

E[)SRPT-1] > l
(
log

1
1 − d

)
.

That the limit of mean response time ratios implies heavy-tra�c optimality follows
from the fact that Gittins-1 minimizes mean response time in the M/G/1 (Thm. 16.1).
Speci�cally our convention of scaling M/G/k server speeds to 1/: each, one can view the
M/G/k as a restricted version of the M/G/1, so the best possible mean response time in the
M/G/k is at least that of Gittins-1 in the M/G/1. �

17.1.1 Comparison with Previous Publication
This chapter is based on work published in Scully et al. [118]. However, the bound in
Theorem 17.1 di�ers slightly from the main result of Scully et al. [118, Thm. 1.1 and 1.2].
The version in Theorem 17.1 has a major advantage over the prior work: the bound on the
gap E[)Gittins-:] − E[)Gittins-1] is insensitive to the job size distribution beyond its mean. In
contrast, the bound shown by Scully et al. [118] depends on higher moments of the job
size distribution. In particular, they require E[(U ] < ∞ for some U > 1, and their bound
has a 1

U−1 logE[(U ] term, meaning it diverges as U → 1.
With that said, the bound shown by Scully et al. [118] does have the advantage that it

may be tighter for some size distributions. In particular, it implies that for size distributions (
with E[(U ] < ∞ for all U ≥ 1, the mean response time gap between Gittins-k and Gittins-1
grows as (: − 1) >

(
log 1

1−d
)
. We leave the question of tightening the bound to future work.

17.2 Proof: Combining WINE and Relevant Work
Decomposition

We illustrate our approach in Figure 17.1. The main idea is to use Relevant Work Decom-
position (Ch. 8) to compare the mean relevant system work of Gittins-k to that of Gittins-1.
WINE (Ch. 15) and Little’s law [84] combine to convert this into a comparison of mean
response time, yielding an expression for E[)Gittins-:] − E[)Gittins-1].

In Figure 17.1, and more generally in the rest of this section, we write <A as shorthand
for (rankGittins < A ) throughout, as the only rank function under consideration is that of
Gittins. When we omit the subscript on a quantity, we are referring by default to that
quantity in the M/G/k under Gittins-k.

Proposition 17.3. Consider an M/G/k with any fully preemptible Markov-process job model
with constant holding cost. The mean response time gap between Gittins-k and an M/G/1
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M/G/k
(server speed 1/:)

M/G/1
(server speed 1)

E[)Gittins-: ] E[)Gittins-1]

E[#Gittins-: ] E[#Gittins-1]

E[,Gittins-: (<A )] E[,Gittins-1(<A )]

Goal

Little’s lawLittle’s law

WINEWINE

Relevant Work Decomposition

Figure 17.1. Our strategy for analyzing the mean response time of Gittins-k, of which SRPT-k is a
special case, in the M/G/k. We use WINE to relate mean response time to relevant work, then use
Relevant Work Decomposition to bound relevant work in the M/G/k.

using Gittins-1 is1

E[)Gittins-:] − E[)Gittins-1]

=
1
_

∫ ∞

0

E[(1 − � (<A )), (<A )] + _rcy(<A ) Ercy(<A )[(rcy(<A ), (<A )]
A 2(1 − d (<A )) dA,

where quantities on the right-hand side refer to Gittins-k.

Proof. The result is immediate from combining Theorems 8.7(b) and 15.10 then applying
Little’s law [84], namely E[# ] = _E[) ]. �

One can actually generalize Proposition 17.3 beyond the Gittins-k. The proof only
assumes that we are comparing a system with M/G arrivals, of which an M/G/k using
Gittins-k is a special case, to an M/G/1 using Gittins-1. Nevertheless, we hereafter work
exclusively with Gittins-k, and thus usually omit the subscript.

The main remaining challenge is that the right-hand side of Proposition 17.3 is in-
tractable to analyze exactly. Bounding this expression is the main technical accomplishment
of this chapter. The expression can be separated into two terms.

• (§ 17.2.1) Relevant idleness: the term containing E[(1 − � (<A )), (<A )] measures
<A -work while the system has <A -idle servers.

1See Section 8.3 for the de�nitions of � (<A ), _rcy (<A ), and Ercy (<A )[·]. More generally, see Appendix A
for an index of notation.
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• (§ 17.2.2) Recycling: the term containing _rcy(<A ) Ercy(<A )[(rcy(<A ), (<A )] measures
<A -work at the moments immediately after <A -recyclings occur.

17.2.1 Bounding the Relevant Idleness Term
Lemma 17.4. Consider an M/G/k with any fully preemptible Markov-process job model with
constant holding cost. Under Gittins-k,∫ ∞

0

E[(1 − � (<A )), (<A )]
A 2(1 − d (<A )) dA ≤ (: − 1) inf

=∈Z≥1
=

(
1

1 − d

)1/=
.

Proof. At a high level, our approach is as follows. In the M/G/k, 1 − � (<A ) is the fraction
of servers that are <A -idle. Because Gittins-k prioritizes <A -jobs, whenever 1 − � (<A ) > 0,
there are at most : − 1 <A -jobs in the system, or else all servers would be <A -busy. Roughly
speaking, we would like to use WINE inside the expectation, because the, (<A ) represents
the <A -work of at most : − 1 jobs. However, it is not so straightforward to do this because
of the other factors which depend on A .

Observe that the sets (Def. 7.2(a))

<A B {G ∈ X | rankGittins(G) < A },
≤A B {G ∈ X | rankGittins(G) ≤ A }

are monotonic, namely growing, as functions of A . This means<A -fresh load d (<A ) (Def. 7.4(c))
is increasing in A , with d (<0) = 0 and d (<∞) = d . Our idea is to break the integral into
= ≥ 1 “chunks” with boundaries at

0 C A0 < A1 < . . . < A=−1 < A= B ∞.

Using the monotonicity of <A , we obtain∫ ∞

0

E[(1 − � (<A )), (<A )]
A 2(1 − d (<A )) dA =

=∑
8=1

∫ A<

A<−1

E[(1 − � (<A )), (<A )]
A 2(1 − d (<A )) dA

≤
=∑
8=1

∫ A<

A<−1

E[(1 − � (≤A<−1)), (<A )]
A 2(1 − d (<A<))

dA .

Let

W B

(
1

1 − d

)1/=
.

It su�ces to show that each of the= chunks, namely each term in the sum, is at most (:−1)W .
To facilitate doing so, we choose the values of A1, . . . , A=−1 such that for all< ∈ {1, . . . , =},2

1 − d (≤A<−1)
1 − d (<A<)

≤ W, (17.1)

2The numerator uses ≤A<−1 instead of <A<−1 to account for the fact that d (<A ) may have discontinuities.
One can show that ≤A<−1 is equivalent to the right limit < (A<−1+).
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which is possible by the de�nition of W and monotonicity of d (<A ).
In the M/G/k, 1 − � (<A ) is the fraction of servers that are <A -idle. If this is nonzero,

then because Gittins-k prioritizes <A -jobs, there can be at most : − 1 <A -jobs. Therefore,
without loss of generality, we can index jobs such that whenever 1 − � (<A ) > 0, all <A -jobs
are among jobs 1, . . . , : − 1. This means, by Tonelli’s theorem,∫ A<

A<−1

E[(1 − � (≤A<−1)), (<A )]
A 2(1 − d (<A<))

dA =
:−1∑
8=1

∫ A<

A<−1

E[(1 − � (≤A<−1)) (-8 (<A )]
A 2(1 − d (<A<))

dA

=

:−1∑
8=1

E
[
1 − � (≤A<−1)
1 − d (<A<)

∫ A<

A<−1

(-8 (<A )
A 2 dA

]
.

It su�ces to show each term of the sum is at most W . Because Gittins-k is nonclairvoyant,
the distribution of (-8 (<A ) depends only on -8 , so

E
[
1 − � (≤A<−1)
1 − d (<A<)

∫ A<

A<−1

(-8 (<A )
A 2 dA

]
= E

[
1 − � (≤A<−1)
1 − d (<A<)

∫ A<

A<−1

E[(-8 (<A ) | -8]
A 2 dA

]
= E

[
1 − � (≤A<−1)
1 − d (<A<)

]
. [by Prop. 15.9 and ℎ(G) = 1]

=
1 − d (<A<−1) − drcy(<A<−1)

1 − d (<A<)
[by Cor. 8.5]

≤ W . [by (17.1) and drcy (<A ) ≥ 0] �

Lemma 17.5. Consider an M/G/k with any fully preemptible Markov-process job model with
constant holding cost. Under Gittins-k,∫ ∞

0

E[(1 − � (<A )), (<A )]
A 2(1 − d (<A )) dA ≤ (: − 1) d

1 − d .

Proof. Let � and � be two random servers, each independently and uniformly sampled
(with replacement) from the : servers in the M/G/k. Let -� and -� be the states of jobs at
servers A and B, respectively, setting the state to Gdone if the server is idle. By reasoning
about (1− � (<A )), (<A ) similarly to the proof of Lemma 17.5, we can write its expectation
in terms of -� and -� :

E[(1 − � (<A )), (<A )] = :E[(-� (<A ) 1(rankGittins(-�) ≥ A )] .

For any state G , we have

(G (<A ) 1(rankGittins(G) ≥ A ) = 0,
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which means

E[(1 − � (<A )), (<A )] = :E[(-� (<A ) 1(rankGittins(-�) ≥ A, � ≠ �)]
= (: − 1)E[(-� (<A ) 1(rankGittins(-�) ≥ A ) | � ≠ �]
≤ (: − 1)E[(-� (<A ) | � ≠ �]
= (: − 1)E[(-� (<A )]
= (: − 1)dE[(-� (<A ) | -� ≠ Gdone] .

Because Gittins-k is nonclairvoyant, the distribution of (-� (<A ) depends only on -�.
Bounding d (<A ) ≤ d and applying the single-job version of WINE (Prop. 15.9) yields the
desired result. �

Proposition 17.6. Consider an M/G/k with any fully preemptible Markov-process job model
with constant holding cost. Under Gittins-k,∫ ∞

0

E[(1 − � (<A )), (<A )]
A 2(1 − d (<A )) dA ≤ 9

8 log 3
2
(: − 1) log

1
1 − d .

Proof. After combining the bounds from Lemmas 17.4 and 17.5 by taking their minimum,
all that remains is to �nd a multiple of log 1

1−d that upper bounds this minimum. One can
easily verify that

d ∈ [0, 0.83] ⇒ d

1 − d ≤
9

8 log 3
2

log
1

1 − d ,

d ∈
[
1 −

(
4
9

)=
, 1 −

(
8
27

)=]
⇒ =

(
1

1 − d

)1/=
≤ 9

8 log 3
2

log
1

1 − d .

The union of the load intervals above is [0, 1), so the desired bound holds at all loads. �

17.2.2 Bounding the Recycling Term
Lemma 17.7. Consider an M/G/k with any fully preemptible Markov-process job model with
constant holding cost. Under Gittins-k,

_rcy(<A ) Ercy(<A )[(rcy(<A ), (<A )] ≤ (: − 1)Adrcy(<A ).

Proof. In the instant before an <A -recycling (Def. 7.5) occurs, the job undergoing <A -re-
cycling is <A -irrelevant but in service, so at least one server is <A -idle. Because Gittins-k
prioritizes <A -jobs, it must be that at immediately before the <A -recycling, there are at most
: − 1 <A -jobs. Without loss of generality, we can index jobs such that those <A -jobs are
among jobs 1, . . . , : − 1. This lets us write

_rcy(<A ) Ercy(<A )[(rcy(<A ), (<A )] =
:−1∑
8=1

_rcy(<A ) Ercy(<A )[(rcy(<A ) (-8 (<A )] .
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Because Gittins-k is nonclairvoyant, the distribution of (-8 (<A ) depends only on -8 . Using
this, we obtain

_rcy(<A ) Ercy(<A )[(rcy(<A ) (-8 (<A )]
= _rcy(<A ) Ercy(<A )

[
(rcy(<A ) E[(-8 (<A ) | -8]

]
≤ A_rcy(<A ) Ercy(<A )[(rcy(<A )] [by Lem. 15.5]

= Adrcy(<A ). [by Def. 7.5] �

Lemma 17.8. Consider an M/G/k with any fully preemptible Markov-process job model with
constant holding cost. For all A ≥ 0,3

drcy(<A ) ≤ _AE[ℎ(/-new (<A ))],
d (<A ) + drcy(<A ) ≤ _E[game-new

(<A )] B _E[(-new (<A )] + _AE[ℎ(/-new (<A ))] .

Proof. By De�nition 7.4(c), it su�ces to prove the second inequality. Our approach is to
bound the expected amount of service a job receives while it is <A -fresh or <A -recycled.
Speci�cally, by Corollary 8.5 and Little’s law [84], it su�ces to show that while serving
a job to completion starting at any initial state G , the expected amount of service during
which the job is <A -relevant is at most gameG (<A ).

The key idea is to consider the following “bank account” variant of the Gittins game.
We start the game with a bank account storing value D. Whenever the job is irrelevant, we
may spend the bank account value at rate 1 to serve the job without incurring the usual
cost. We cannot spend from the bank account while the job is relevant. If we stop serving
the job before it completes, we still pay the penalty A , and any leftover value in the bank
account is worthless.

Let gameG (A ;D) be the minimal disutility in the bank account Gittins game starting with
value D in the bank account. We have gameG (A ;D) = gameG (A ), and clearly gameG (A ;D)
is (weakly) decreasing in D, because we can always choose not to spend from the bank
account. It thus su�ces to show that

gameG (A ;∞) B lim
D→∞

gameG (A ;D)

is the expected amount of service during which the job is <A -relevant as it is served from
initial state G to completion. When D = ∞, we will never give up on the job while it is
<A -irrelevant. It thus su�ces to show that when D = ∞, it is always optimal to serve the
job whenever it is <A -relevant.4

Theorem 15.6(a) implies that when D = 0, namely in the ordinary Gittins game, it is
optimal to serve the job while it is <A -relevant. But increasing D only makes serving the

3Recall from Section 14.1 that -new is the random state of a new job, and recall from De�nition 14.4
that /G (Y) is the random state a job starting in state G is in when it �rst leaves set of states Y. In our
constant-holding cost setting, where ℎ(G) = 1 for all G ∈ X but ℎ(Gdone) = 0, we can think of E[ℎ(/-new (<A ))]
as the probability a job completes before it reaches or exceeds rank A .

4Here we are somewhat informal in that we reason about D = ∞ directly. Strictly speaking, we should
show that the probability we give up approaches zero as D →∞, but this is not hard to do.
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job more appealing, so serving the job while it is <A -relevant is optimal for any value of D,
as desired. �

Proposition 17.9. Consider an M/G/k with any fully preemptible Markov-process job model
with constant holding cost. Under Gittins-k,∫ ∞

0

_rcy(<A ) Ercy(<A )[(rcy(<A ), (<A )]
A 2(1 − d (<A )) ≤ (: − 1) log

1
1 − d .

Proof. We compute∫ ∞

0

_rcy(<A ) Ercy(<A )[(rcy(<A ), (<A )]
A 2(1 − d (<A ))

≤ (: − 1)
∫ ∞

0

E[ℎ(/-new (<A ))]
1 − d (<A ) dA [by Lems. 17.7 and 17.8]

≤ (: − 1)
∫ ∞

0

E[ℎ(/-new (<A ))]
1 − _E[game-new

(A )] dA [by Lem. 17.8 and drcy (<A ) ≥ 0]

= (: − 1) log
1

1 − d . [by Lem. 15.7] �
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Chapter 18

Conclusion

We have presented two new queueing-theoretic tools, SOAP (Part II) and WINE (Part III),
and applied them to solve numerous problems in scheduling theory (§ 18.1). We end the
thesis by discussing potential avenues for future work (§ 18.2).

18.1 Open Problems Solved

18.1.1 First Response Time Analysis for Many Policies in the
M/G/1

The core problem SOAP solves is analyzing the response time distribution of an M/G/1
under any policy from a broad policy class. The class, which we call SOAP policies, consists,
roughly speaking, of policies where a job’s priority depends on its age, namely how long
the job has been served so far (Ch. 6). We give a universal analysis of all SOAP policies,
deriving formulas for the mean and LST of response time in an M/G/1 (Ch. 7).

There are in�nitely many SOAP policies, the vast majority of them have never been
analyzed before, so SOAP gives the �rst analysis of such policies. This includes, with
a single exception [48], all policies where a job’s priority varies nonmonotonically as a
function of age. Some speci�c examples of nonmonotonic policies are the following:

• (Pol. 6.11) SERPT, a policy that aims to achieve low mean response time when job
sizes are uncertain.

• (Pol. 6.12) Gittins, the policy that minimizes mean response time when job sizes are
uncertain. Despite being known to minimize mean response time, the actual mean
response time achieved by Gittins was previously unknown.

• (Pol. 6.13) Policies where jobs can only be preempted at certain age checkpoints.

18.1.2 First Comparison of (Monotonic) SERPT and Gi�ins

While Gittins is known to minimize mean response time, SERPT is a much simpler policy.
It is thus natural to wonder whether SERPT’s mean response time is close enough to
Gittins’s to be able to serve as a substitute. This appears to be the case in several numerical
applications of SOAP (Ch. 10). While we do not manage to prove a formal response time
guarantee for SERPT itself, we propose a new variant of SERPT, called Monotonic SERPT
(M-SERPT), which we prove has mean response time within a factor of 5 of Gittins’s (Ch. 11).

203
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Consequences of M-SERPT Bounds for LAS and the MLPS Class

It turns out that M-SERPT is a member of the MLPS class of policies [74], so our result for
M-SERPT implies that MLPS policies can achieve within a constant factor of the optimal
mean response time.

For some size distributions, namely those with strictly increasing mean residual life-
time, M-SERPT reduces to LAS, so LAS is within a constant factor of optimal for such
distributions.

18.1.3 First Asymptotic Tail Analysis for Many Policies in the
M/G/1

While SOAP gives us formulas for the mean and LST of response time, it is non trivial
to extract results about the response time tail P[) > C] from the LST. We take a step in
this direction by giving conditions under which a SOAP policy’s response time tail is
asymptotically optimal, meaning it decays as fast as possible as C →∞ (Ch. 13). Our results
cover both heavy-tailed and light-tailed job size distributions.

Consequences for Gi�ins’s Asymptotic Response Time Tail

We use the above result to investigate the asymptotic response time tail of Gittins. While
Gittins is known to have optimal mean response time, nothing was previously known
about its response time tail. We show that for heavy-tailed job size distributions, Gittins is
(asymptotically) tail-optimal, but that for light-tailed job size distributions, Gittins can be
anywhere between tail-optimal and tail-pessimal (Ch. 13). Fortunately, we also show that
in cases where Gittins is tail-pessimal, we can slightly adjust Gittins to obtain a policy that
has near-optimal mean response time and avoids tail-pessimality.

18.1.4 First Policies with Provable Robustness to Size Estimation
Error

We consider the problem of scheduling to minimzie mean response time when given
noisy size estimates. We begin studying this problem by numerically applying SOAP
(Ch. 10). We observe that naively translating SRPT (Pol. 6.10) to this setting results in poor
performance, even though the seemingly similar PSJF policy (Pol. 6.9) is much more robust
to size estimation noise. Guided by these numerical results, we again use SOAP, this time
theoretically, to prove that PSJF does indeed satisfy some formal robustness properties
(Ch. 12). We also show how to modify SRPT to make it similarly robust.

18.1.5 First Response Time Bounds for Two Policies in the M/G/k
Very few scheduling policies have been analyzed in the M/G/k. Even SRPT, which was
analyzed in the M/G/1 decades ago [117], has not been analyzed in the M/G/k. We obtain



18.2 Future Work 205

the �rst mean response time bounds on SRPT in the M/G/k (Ch. 17). Our bounds are
tight enough to imply that when the job size distribution has (roughly speaking) �nite
variance, SRPT is optimal for mean response time in heavy tra�c. We also show analogous
results for Gittins. We prove the bounds by combining WINE (Ch. 15) with Relevant Work
Decomposition (Ch. 8).

18.1.6 New Generalization and Variants of the Gi�ins Policy

Several versions of the Gittins policy exist in the queueing literature (§ 2.2), with each
version de�ned for a speci�c model of job size uncertainty. We present a new highly
general job model that includes many other models of job size uncertainty as special cases,
resulting in a highly general version of Gittins that subsumes most previous versions
(Ch. 14). We use WINE to prove that this new general version of Gittins is indeed optimal
for mean response time, or more generally for mean holding cost (Ch. 16).

In addition to studying Gittins itself, we also study policies that assign priorities in
approximately the same way as Gittins. We show that such policies have approximately
optimal performance (Ch. 16).

18.2 Future Work

18.2.1 Next Steps

Multiserver Systems Beyond the M/G/k

We prove our mean response time bounds for SRPT and Gittins in the M/G/k (Ch. 17) by
combining WINE (Ch. 15) and Relevant Work Decomposition (Ch. 8). However, WINE holds
in any queueing system, and Relevant Work Decomposition holds in any system with M/G
arrivals. It thus seems likely that we can use a similar technique to analyze other multiserver
systems, particularly if their scheduling policy is an appropriate analogue of SRPT or Gittins.
An example might be scheduling in input-queued switches [37, 59, 60, 85, 132] that use
SRPT or Gittins instead of FCFS within each of its queues. Of course, determining exactly
what constitutes an “appropriate analogue” of SRPT or Gittins may well be challenging.

Heavy-Tra�ic Analysis

SOAP gives an exact M/G/1 mean response time formula (Ch. 7), so it should in principle
be possible to determine how mean response time scales in the heavy-tra�c limit, namely
as d → 1. We have already analyzed Gittins, SERPT, and M-SERPT in the unlabeled case
this way [119], and it may be possible to extend the technique to other SOAP policies. For
a heavy-tra�c analysis of Gittins in the Markov-process job model, WINE (Ch. 15) may
provide an easier path than SOAP.
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Fairness

The analyses of SRPT and other policies enables work studying their fairness properties,
namely whether they (roughly speaking) give adequate attention to jobs of all sizes [15, 143–
145]. With the SOAP analysis in hand, can we do the same for all SOAP policies? In addition
to considering fairness based on size, it may also be important to consider fairness based
on label.

Batch-Poisson Arrival Processes

This thesis studies the M/G/1 and M/G/k, both of which have Poisson arrivals. However, we
believe that most or all of our results can be generalized to batch-Poisson arrivals without
too much trouble.

Unifying Work Decomposition Law

The work decomposition laws we show (Ch. 8) are similar to, but not quite the same as,
similar work decomposition laws from the literature (§ 2.4.1). Can we �nd a single work
decomposition law that has all the others as special cases?

Provable Robustness under Unbounded Size Estimation Error

Our results on proving robustness to noisy job size estimates (Ch. 12) assume that multi-
plicative estimation error is bounded. Can we generalize the robustness results to cases
where the multiplicative estimation error is unbounded, such as log-normal noise models?

18.2.2 Long-Term Directions

Scheduling in Network Switches

SOAP can analyze scheduling policies that have access to only a limited number of priority
levels, and it can also analyze scheduling policies where a job can only be preempted at
certain checkpoint ages (Ch. 9). These are two preemption limitations that show up when
scheduling packet �ows in network switches [96]: the switch has a limited number of
priority levels built into its hardware, and packet �ows consist of packets that we would
prefer not to preempt. Does SOAP in the M/G/1 provide an accurate enough model to tune
real-world scheduling policies for network switch scheduling? If not, what other essential
features of network switch scheduling can we integrate into our model?

Modeling Dynamic Preemption Overhead

We study scheduling with preemption limited to checkpoint ages in a setting where
each checkpoint incurs an overhead (Ch. 9). However, we assume that the overhead is
incurred even if the job is not preempted. This is the right model for some systems, such
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as scheduling packet �ows, because each packet carries a header. But other systems do
not incur signi�cant scheduling overhead until a job is actually preempted. Can we apply
ideas similar to SOAP to analyze scheduling with dynamic preemption overhead?

Scheduling with Under-Specified Uncertainty Model

We consider scheduling with unknown job sizes throughout this thesis (Chs. 11 and 13).
However, we always assume knowledge of the job size distribution. But in practice, we may
only approximately know the job size distribution, or we may have to infer it from data.
How should we schedule when even the size distribution itself is uncertain, in addition
to the uncertainty of individual jobs’ sizes? One idea is to try to design a distributionally
robust version of Gittins.



208 Chapter 18 Conclusion



Appendix

209





Appendix A

Index of Notation

A.1 General

Notation Description References

N natural numbers, i.e. {0, 1, 2, . . .}
Z≥1 positive integers, i.e. {1, 2, . . .}
R real numbers
R≥0 nonnegative reals, i.e. [0,∞)
R>0 positive reals, i.e. (0,∞)
P[·] probability
E[·] expectation
B de�ned to be equal to
5 (G−) left limit of 5 at G , i.e. lim~↑G 5 (~) § 5.6.6
5 (G+) right limit of 5 at G , i.e. lim~↓G 5 (~) § 5.6.6
(G)+ positive part of G , i.e. max{G, 0} § 5.6.6

A.2 Distributions

Notation Description References

Bernoulli(?) Bernoulli distribution § 5.6.2
Geo(?) geometric distribution with support at 0 § 5.6.2
E+ excess distribution of + Def. 5.1
(E+ )8 8th of many i.i.d. samples from E+ Def. 5.1
L[+ ] (\ ) Laplace-Stieltjes transform (LST) of + Def. 5.1
=st equality in distribution § 5.6.2
≤st stochastic ordering § 5.6.2
We typically abuse notation by not distinguishing between random variables and their distributions (§ 5.6.2).

A.3 M/G Arrivals

Notation Description References

_ job arrival rate § 5.2.2
( job size distribution § 5.2.2

Continued on next page
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Continued from previous page

Notation Description References

d load § 5.2.2
L set of possible labels § 5.2.2
! job label distribution § 5.2.2
(!, () label-size pair distribution § 5.2.2
(ℓ label-conditional size distribution § 5.2.3
(ℓ,0 state-conditional remaining work distribution § 5.2.3
(!8, �8) state, i.e. label-age pair, of 8th job in the system § 5.6.1

A.4 �eueing Metrics

Notation Description References

) response time § 5.4
) (ℓ, B) label-size conditional response time § 5.4
# number of jobs in system § 5.4.3
, system work, i.e. total remaining work of all jobs in the system § 5.5.1
� busy period § 5.5.2
�(E) busy period started by initial work E § 5.5.2
� rate at which system is serving jobs § 8.1.1
ℎ(G) holding cost of a job in state G § 14.1.3
� system holding cost, i.e. total holding cost of all jobs in the

system
§ 14.1.3

We often specify the scheduling policy c in a subscript, as in )c .

A.5 Scheduling Policies

Notation Description References

c variable denoting a scheduling policy
c-k :-server version of policy c § 6.1.5
FCFS First-Come, First-Served (a.k.a. �rst-in, �rst-out) § 5.3.1 and Pol. 6.5
LCFS Last-Come, First-Served (a.k.a. last-in, �rst-out) § 5.3.1 and Pol. 6.6
ROS Random Order of Service § 5.3.1
PLCFS Last-Come, First-Served (a.k.a. last-in, �rst-out) § 5.3.1 and Pol. 6.7
PS Processor Sharing § 5.3.1
LAS Least Attained Service (a.k.a. foreground-background) § 5.3.1 and Pol. 6.4
NP-Prio Nonpreemptive Priority § 5.3.1 and Pol. 6.8
P-Prio Preemptive Priority § 5.3.1 and Pol. 6.8

Continued on next page
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Continued from previous page

Notation Description References

SJF Shortest Job First § 5.3.1 and Pol. 6.9
PSJF Preemptive Shortest Job First § 5.3.1 and Pol. 6.9
SRPT Shortest Remaining Processing Time § 5.3.1 and Pol. 6.10
SERPT Shortest Expected Remaining Processing Time Pol. 6.11
M-SERPT Monotonic SERPT Pol. 11.1
Gittins the Gittins policy (a.k.a. the Gittins index policy) Pols. 14.5 and 6.12
Chk-c Checkpointed c Pol. 6.13
LPL-c Limited-Priority-Level c Pol. 6.14
PSJF-E PSJF with Estimates Pol. 10.2
SRPT-E SRPT with Estimates Pol. 10.1
SRPT-B SRPT with Bounce Pol. 12.3
SRPT-SE SRPT with Scaling Estimates Pol. 12.5

A.6 SOAP and Rank Functions

Notation Description References

rankc (ℓ, 0) rank of a job with label ℓ and age 0 under c Def. 6.1
worstc (ℓ, B, 0) worst future rank of a job with label ℓ , size B , and age 0

under c
Def. 7.9

worstc (ℓ, B) worst ever rank of a job with label ℓ and size B under c Def. 7.9
)wait waiting time, i.e. time between arrival and �rst service § 7.1.1
)wait(ℓ, B) label-size conditional waiting time § 7.1.1
) resd residence time, i.e. time between �rst service and departure § 7.1.1
) resd(ℓ, B) label-size conditional residence time § 7.1.1
In the SOAP analysis, we use )wait and ) resd to denote pessimism-adjusted waiting and residence times
(§ 7.3.3).

A.7 Relevant Work and Related Concepts

Notation Description References

Y variable denoting a set of “relevant” job states
≤A,<A sets of states with rank at most or strictly less than A Def. 7.2(a)
(rankc ≤ A ) alternative notation for ≤A that makes the policy c explicit Def. 15.1
(G (Y) Y-relevant remaining work of a job in state G Def. 7.3
, (Y) Y-relevant system work Def. 7.3
( (Y) Y-relevant size of a generic job Def. 7.4

Continued on next page
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Continued from previous page

Notation Description References

d (Y) Y-fresh load, i.e. _E[( (Y)] Def. 7.4
_rcy(Y) average rate of Y-recyclings Def. 7.5
(rcy(Y) Y-relevant remaining work of a job immediately after its

Y-recycling
Def. 7.5

drcy(Y) Y-recycled load, i.e. _rcy(Y) E[(rcy(Y)] Def. 7.5
�(Y, E) Y-relevant busy period started by initial work E Def. 7.6
� (Y) rate at which Y-relevant jobs are being served § 8.3.1
Ercy(Y)[·] expectation sampled immediately after a Y-recycling § 8.3.1
,min(Y) minimum possible steady-state Y-relevant system work in

an M/G/1 under any policy
Def. 8.6

/G (Y) Y-exit state of G , i.e. the random state of a job when it �rst
exits Y, given that it starts at G

Def. 14.4

We use a number of shorthands when discussing the above concepts (Defs. 15.1 and 7.2). While we formally
de�ne each of the above for just one of the label-age job model (Ch. 5) or the Markov-process job model
(Ch. 14), all of the de�nitions can be easily adapted to either model.
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