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Abstract
Since the notion of Multiparty Computation (MPC) was proposed three decades

ago, a lot of research and effort has been done to improve the efficiency of MPC
protocols. However, the inefficiency of the current state-of-the-art is still the major
barrier that prevents MPC from being used more broadly. In this thesis, we study the
communication complexity of information-theoretic MPC protocols.

Part I: Information Theoretic MPC with Honest Majority.
First, we study the honest majority setting, i.e., the number of corrupted parties

is t < n/2, where n is the number of parties. We consider both the semi-honest
security and malicious security (with abort).

In the setting of semi-honest security, we propose two improvements over the
previously best-known result by Damgård and Nielsen (CRYPTO 2007). Our first
protocol improves the communication complexity of the Damgård and Nielsen pro-
tocol from 6 field elements per party per gate to 4 elements. Our second protocol
reduces the round complexity by a factor of 2 and achieves 4.5 field elements per
party per gate.

As for malicious security, we show that it can be achieved with the same concrete
efficiency as the semi-honest security. Previously best known results have a factor
of 2 in the communication complexity when compiling a semi-honest protocol to a
maliciously secure one. Our result closes the communication efficiency gap between
semi-honest security and malicious security (with abort).

Part II: Information-Theoretic MPC with Dishonest Majority in the Prepro-
cessing Model.

Then, we study the dishonest majority setting in the circuit-independent prepro-
cessing model. We consider a sub-optimal corruption threshold where t = (1− ε) ·n
for a constant ε.

In this thesis, we construct the first MPC protocols in the preprocessing model
for dishonest majority which achieves sub-linear amount of preprocessing data and
communication complexity per gate in the number of parties n. To achieve our
results, we extend the use of packed secret sharing to the dishonest majority setting.
For a constant fraction of corrupted parties (i.e. if 99 percent of the parties are
corrupt), we achieve O(1) field elements in both of the amount of preprocessing
data and communication complexity per gate across all parties.
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Chapter 1

Introduction

Consider the scenario where two millionaires are boasting about their wealth, and they are inter-
ested in learning who is richer without revealing their wealth to each other. A straightforward
way would be asking a third person they trust to compare their wealth. However, what if such a
third person does not exist? Can these two millionaires still learn the comparison result? This is
a famous problem called “Yao’s Millionaires’ Problem” [65].

If we use x1, x2 to represent the wealth of these two millionaires respectively, they want
to learn the output of a comparison function on x1, x2. This seemingly simple problem turns
out to have a significant impact in the field of Cryptography. In [65], the solution proposed
by Yao allows two parties to securely evaluate any computable function. Later on, Goldreich et
al. [40] extended this result to the setting of multiple parties, which is known as secure Multiparty
Computation (MPC).

Early feasibility solutions for MPC were proposed in [9, 40, 65], which showed that any
function which can be computed, can be computed privately. Over the last three decades, a lot
of research has been done to improve the efficiency of MPC protocols. Thanks to these efforts,
MPC has rapidly moved from theory to practice.

Applications in the Real World — Breaking Barriers among Different Data Sets. The 21st
century is the age of Big Data. Every place and every second, data is collected, analyzed, and
transformed into knowledge and information which guide our lives. The larger amount of data
we can gather and use, the higher chance we can obtain the desired knowledge and information.
However, data is usually scattered among different organizations or companies. Sharing the
data with others may either be restricted by laws or damage the interest of companies. There
is an urgent need in providing a solution that maintains the privacy of each data set but allows
data analyses among different data sets. Multiparty computation becomes a perfect tool as we
discussed in the following concrete examples.

Consider various hospitals that may want to compute statistics of the success rate of a par-
ticular treatment or statistics related to side effects in patients taking a particular drug. Indeed,
these kinds of statistics are very valuable in medical science research. However, due to the rel-
evant laws and regulations, hospitals may not have the right to share patient data with anyone
else (including each other) without the consent of every individual patient. Thus, it presents a
significant obstacle to the hospitals towards doing any statistical analysis on the joint dataset.
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However, using MPC, hospitals can run a protocol for the desired functionality with each dataset
as private input. At the end of the protocol, they can learn statistics they want while protecting
the privacy of the dataset held by each hospital.

Also, consider a bank that provides the loan service. To better assess the qualification of a
customer, the bank may not only need the credit rating issued by the government, but also the
information about house property, business, online shopping, income and expenses, and so on.
Unfortunately, these pieces of information are usually held by different companies and organiza-
tions. These companies and organizations may be reluctant to share the information with others
since it may damage their reputation in protecting the data privacy of their customers. Some in-
formation may even be forbidden to be shared by law. Relying on MPC, the bank and the related
companies and organizations can together evaluate a proper function on their private data sets so
that only the bank learns the qualification of the customer at the end of the protocol.

Other interesting examples include using MPC to realize distributed voting, private bidding,
privacy-preserving machine learning, and so on.

Information-Theoretic Multiparty Computation and Its Communication Complexity. Al-
though MPC brings us a strong primitive to handle privacy issues, the inefficiency of current
constructions is the major barrier that prevents MPC from being used more broadly. There is an
urgent need to improve the concrete efficiency of MPC protocols to make progress towards using
them in the real world.

Usually, MPC protocols can be divided into two classes depending on whether cryptographic
assumptions are required. Information-theoretic MPC protocol refer to those without any cryp-
tographic assumptions. There are two major benefits of information-theoretic MPC protocols:
• First, information-theoretic MPC protocols are unconditionally secure. Namely, the secu-

rity of these protocols does not rely on any hardness assumption and the protocol remains
secure even if an adversary has unlimited computation power. In particular, such a protocol
is not vulnerable to the power of quantum computing.

• Second, cryptographic primitives usually require heavy computation. By not using any
cryptographic primitive, an information-theoretic MPC protocol typically has a lightweight
local computation, often just a series of linear operations. As a result, the most efficient
MPC protocols are in the information-theoretic MPC paradigm.

On the other hand, unlike the computation complexity, information-theoretic MPC protocols
usually require a large amount of communication, which is proportional to the circuit size of the
function. Since the cost of the local computation is small, the main criterion for the efficiency of
an information-theoretic MPC protocol is the amount of communication between every pair of
parties. This leads to our focus in this thesis — the communication complexity of information-
theoretic MPC protocols.

1.1 Setting
In the setting of MPC, a set of n parties {P1, P2, . . . , Pn} together evaluate a common function f
on their private inputs. The correctness of an MPC protocol requires that all parties should learn

2



the output of the common function at the end of the protocol when they follow the protocol.
The security of an MPC protocol requires that any bounded number t < n of corrupted parties
together should not learn any information about honest parties’ inputs (i.e., the inputs of the rest
of n − t parties) except what can be inferred from the function output, where the number t is
referred to as the corruption threshold. In particular,
• If corrupted parties are required to follow the protocol, we say the MPC protocol achieves

semi-honest security.
• If corrupted parties can arbitrarily deviate from the protocol, we say the MPC protocol

achieves malicious security.
Usually, we transform the common function f to be computed to an arithmetic circuit over

a finite field. The circuit supports addition and multiplication operations. Note that when the
finite field is a binary field, we can use binary circuits to represent all computable functions. We
assume that every pair of parties can send messages to each other via a secure and authenticated
synchronized private channel.

1.2 Part I: Efficient Information-Theoretic MPC with Honest
Majority

We first focus on the setting of honest majority where the number of corrupted parties t = (n−
1)/2 (i.e., t < n/2). The pioneering works [9, 23] gave the first positive results of information-
theoretic MPC protocols with honest majority. In the meantime, the work [9] also gave a strong
negative result that information-theoretic MPC cannot exist without honest majority. Indeed, for
information-theoretic MPC protocols, requiring honest majority is the best we can hope.

Since [9, 23], a large number of works have focused on improving the efficiency of MPC
protocols in various settings.

Semi-Honest Security. For over a decade, the most efficient MPC protocol with semi-honest
security in the honest majority setting has been the protocol of Damgård and Nielsen [28], here-
after known as the DN protocol. Recall that the function we want to compute is transformed to
an arithmetic circuit over a finite field. The DN protocol only needs to communicate 6 field ele-
ments per party per gate, and the overall communication complexity is O(|C| ·n) field elements,
where |C| is the circuit size. Due to its simplicity and efficiency, many subsequent works have
used the DN protocol to achieve a stronger security [10, 13, 17, 24, 38, 44, 60].

Despite the important role played by the DN protocol in the honest majority setting, any
improvement to the basic protocol has been hard to come by. Our first result improves the DN
protocol in the following two directions:

• We improve the basic DN protocol and reduces the communication complexity from 6
elements per party per gate to 4 elements. This gives the most communication-efficient
semi-honest MPC protocol with honest majority.

• We then focus on the round complexity of the DN protocol. In the DN protocol, all gates
in the same layer are evaluated in parallel. Therefore the number of rounds is linear in the
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depth of the circuit. We show how to evaluate a two-layer circuit in parallel. This allows
us to improve the concrete efficiency even further and reduce the number of rounds by a
factor of 2. The achieved communication complexity is 4.5 elements per party per gate but
halving the number of rounds.

Malicious Security. For malicious security, we consider the notion of security with abort,
which allows a premature abort of the protocol. This means that a malicious adversary may
prevent honest parties from learning the output of the common function, e.g., by aborting the
protocol after learning the result. While it is not ideal, a malicious adversary still cannot learn any
information about honest parties’ inputs except what can be inferred from the function output.
Furthermore, recent works [17, 44, 52] showed how to compile a maliciously secure-with-abort
protocol to one with stronger security such as achieving fairness or guaranteed output delivery.

In [38], Genkin et al. showed that several semi-honest information theoretic MPC protocols,
which include the protocols in [9, 28], are secure up to an additive attack in the presence of
a fully malicious adversary. An additive attack means that the adversary is able to change the
multiplication result by adding an arbitrary fixed value. Based on this observation, Genkin et
al. [38] use a circuit which is resilient to an additive attack and give the first construction against
a fully malicious adversary with communication complexity O(|C| · n) field elements, which
matches the asymptotic communication complexity of the semi-honest DN protocol.

After that, a series of works [24, 56, 60] use different approaches to verify the correctness of
the computation (i.e., to check whether the adversary launches additive attacks) with the concrete
efficiency approaching to the semi-honest DN protocol. In particular, both works [24, 60] achieve
the concrete communication efficiency of 12 field elements per multiplication gate, which is just
2x of the semi-honest DN protocol.

Despite all these improvements in the concrete efficiency, the question of whether the effi-
ciency gap between malicious security (with abort) and semi-honest security is inherent in the
honest majority setting still remains open.

Our second result is an efficient verification protocol with a sub-linear communication com-
plexity in the circuit size. When combining the DN protocol and our efficient verification proto-
col, we can achieve the same concrete efficiency, i.e., 6 field elements per part per gate, thus
closing the efficiency gap between malicious security (with abort) and semi-honest security.
Furthermore, we utilize our efficient verification protocol and show how to compile our two
semi-honest protocols with malicious security without affecting the concrete efficiency.

As a result, we obtain the following two theorems.
Theorem 1.1. Let n be a positive integer and F be a finite field of size |F| ≥ n + 1. For
all arithmetic circuit C over F, there is an information-theoretic n-party MPC protocol, which
achieves malicious security (with abort) against a fully malicious adversary controlling t < n/2
corrupted parties, with communication complexity O(|C| · n + n2 · κ + n · κ2) elements, where
κ is the security parameter and |C| is the circuit size. Furthermore, the concrete efficiency is 4
elements per party per multiplication gate.
Theorem 1.2. Let n be a positive integer and F be a finite field of size |F| ≥ n + 1. For
all arithmetic circuit C over F, there is an information-theoretic n-party MPC protocol, which
achieves malicious security (with abort) against a fully malicious adversary controlling t < n/2
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corrupted parties, with communication complexity O(|C| · n + n2 · κ + n · κ2) elements, where
κ is the security parameter and |C| is the circuit size. Furthermore, the concrete efficiency is 4.5
elements per party per multiplication gate but halving the number of rounds (up to a constant
number of rounds).

Our protocols are implemented in [45] and compared with the previously best-known re-
sults [24]. By combining improvements on both protocols, we achieve 2x speedup compared
with [24]. Therefore, our protocols are the fastest known MPC protocols in this setting. The
experiment result also shows the potential of using our protocols in the real world.

1.3 Part II: Sharing Transformation and Applications to Dis-
honest Majority MPC with Packed Secret Sharing

In the second part, we move our focus to the dishonest majority setting. To overcome the strong
negative result by [9], we pin our hope on the circuit-independent preprocessing model. In
the circuit-independent preprocessing model, all parties receive correlated randomness which is
independent of the common function at the beginning of the protocol. The correlated randomness
can be, for example, random OT pairs where one party holds two random values (r0, r1) and
another party holds (b, rb) where b is a uniform bit. One may think that there is a trusted third
party that can prepare the correlated randomness locally and then distribute it to all parties. It
can also be generated by using computational MPC protocols.

A celebrated work of Kilian [55] (improved later by [50]) shows that information-theoretic
MPC protocols are possible to achieve with security-with-abort in the circuit-independent pre-
processing model. In essence, the circuit-independent preprocessing model allows us to push
all the expensive cryptographic work into a preprocessing phase and take advantage of the high
efficiency of information-theoretic protocols in the online phase. The well-known SPDZ proto-
col [30] follows this strategy and becomes the most efficient protocol in the dishonest majority
setting. In particular, the concrete efficiency of the SPDZ online protocol is only 3n field ele-
ments of preprocessing data and 4n field elements of communication per gate among all parties.

Dishonest Majority with Sub-optimal Threshold. We note that the SPDZ protocol [30] is
secure against t = n − 1 corrupted parties, which is also known as the all-but-one corruption
setting. However, this might be a too pessimistic assumption for real-world applications (in
contrast to the honest majority setting which might be a too optimistic assumption). Therefore,
we focus on the corruption threshold t = (1− ε) · n where ε is a constant.

In the honest majority setting with a sub-optimal threshold (i.e., t = (1/2− ε) ·n), a series of
works [7, 29, 34, 39, 41, 46] considered to use the packed secret sharing technique [34] to reduce
the communication complexity in the information-theoretic MPC protocols. In particular, the
recent work [46] has shown that it is possible to achieve O(1) field elements per gate among all
parties when evaluating a single circuit. Note that it means that the cost per party is sub-linear in
the number of participants. However, the cost of the SPDZ protocol is still O(n) field elements
per gate among all parties in the dishonest majority setting even with a sub-optimal threshold
(i.e., t = (1− ε) · n). This raises the following fundamental question:
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“Is it possible to construct information-theoretic MPC protocols in the circuit-independent
preprocessing model and dishonest majority setting with both the amount of preprocessing data
and online communication complexity O(1) field elements per gate among all parties?”

To answer this question, we first initiate the study of sharing transformations which allow us
to perform arbitrary linear maps on the secrets of (packed) secret-sharing schemes.

Sharing Transformations. Consider two linear secret sharing schemes Σ and Σ′ over a finite
field F. A set of n parties {P1, P2, . . . , Pn} start with holding a Σ-sharing X . Here X could
be the sharing of a single field element or a vector of field elements (e.g., as in packed secret
sharing). The parties wish to compute a Σ′-sharing Y whose secret is a linear map of the secret
ofX . Here a linear map means that each output secret is a linear combination of the input secrets
(recall that the secret can be a vector in F). We refer to this problem as sharing transformation.

Restricted cases of sharing transformations occur frequently in the construction of secure
computation protocols based on secret sharing schemes. Generic approach of solving sharing
transformations can achieve the optimal communication complexity (i.e., in the size of the shar-
ings in Σ and Σ′) when many sharing transformations of the same type are required. When
we need to perform sharing transformations of different types, the generic approach becomes
completely inefficient.

Our first result in this part is an efficient sharing transformation protocol which (1) can per-
form arbitrary linear maps, (2) is not restricted to the same type of sharing transformation, (3) can
achieve the optimal communication complexity. We will show how our sharing transformation
protocol can be used in constructing information-theoretic MPC protocols.

Information-Theoretic MPC Protocols with Packed Secret Sharings. The idea of the packed
secret sharing technique [34] is to store multiple secrets within a single secret sharing. In this
way, evaluating addition and multiplication gates over packed secret sharings computes the
coordinate-wise addition and multiplication of the underlying secrets in parallel. Effectively,
the amortized communication complexity per gate can be reduced by the packing parameter.

Following this approach, Franklin and Yung [34] showed how to evaluate many copies of the
same circuit (with is also referred to as a SIMD circuit) with O(1) field elements per gate among
all parties when the corruption threshold is sub-optimal. After that, a series of works [7, 29, 39,
41] considered to use the packed secret sharing technique in evaluating a single circuit.

For a single circuit, the main difficulty is that the packed secret sharing we need for the
current layer may contain secrets in multiple sharings from previous layers. The main difficulty
is how to collect the secrets we need and compute a single packed secret sharing for them. This
problem is referred to as network routing. Previous works solve this problem by either compiling
the circuit to a SIMD circuit [29, 39], which leads to a log |C| overhead in the communication
complexity, or restricting the type of circuits [7].

To solve the network routing, we proposed the idea of sparsely packed Shamir sharings where
we store the values of different wires of the circuit in different slots (in contrast, the original
packed secret sharing always use the same slots). In this way, we show that we can locally collect
the secrets we need and compute a single packed secret sharing for them. However, this leads to
the problem of evaluating addition and multiplication gates: the basic protocols for addition gates
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and multiplication gates require the corresponding inputs to be correctly aligned up (i.e., the two
inputs of the same gate should be stored in the same slot). We note that changing the slots of the
secrets within a single sharing is a sharing transformation. Thus, we can use our efficient sharing
transformation protocol to solve it. Note that the sharing transformation we need to perform can
be different each time. The generic approach for sharing transformation, which can only achieve
optimal communication complexity when performing many sharing transformations of the same
type, is insufficient in our case.

Another contribution is that we manage to use the packed secret sharing technique in the
dishonest majority setting.

To summarize, our second result in this part is an efficient information-theoretic MPC pro-
tocol in the dishonest majority setting which achieves O(1) field elements in both the amount
of communication complexity and the amount of preprocessing data with corruption threshold
t = (1− ε) · n, where ε is a constant. We have the following informal theorems.
Theorem 1.3 (Informal). For an arithmetic circuit C over a finite field F of size |F| ≥ |C| + n,
there exists an information-theoretic MPC protocol in the preprocessing model which securely
computes the arithmetic circuit C in the presence of a semi-honest adversary controlling up
to t parties. The cost of the protocol is O(|C| · n2/k2) elements of preprocessing data, and
O(|C| · n/k) elements of communication where k = n−t+1

2
is the packing parameter. For the

case where k = O(n), the achieved communication complexity in the online phase is O(1)
elements per gate.
Theorem 1.4 (Informal). For an arithmetic circuit C over a finite field F of size |F| ≥ 2κ, where
κ is the security parameter, and for all n−1

3
≤ t ≤ n − 1, there exists an information-theoretic

MPC protocol in the preprocessing model which securely computes the arithmetic circuit C in
the presence of a fully malicious adversary controlling up to t parties. The cost of the protocol
is O(|C| · n2/k2) elements of preprocessing data, and O(|C| · n/k) elements of communica-
tion where k = n−t+1

2
is the packing parameter. For the case where k = O(n), the achieved

communication complexity in the online phase is O(1) elements per gate.

Implications in the Honest Majority Setting. We observe that in the standard honest majority
setting where the number of corrupted parties t = (n− 1)/2 ≈ (1− 1/2) · n, we can prepare the
preprocessing data we need by using information-theoretic MPC protocols, and use our efficient
protocol (in Theorem 1.4) with packed secret sharings in the online phase. In particular, the
preprocessing data can be prepared by using the MPC protocols we constructed in Part I. As a
result, we obtain an information-theoretic MPC protocol in the honest majority setting where
the offline communication complexity is O(|C| · n) and the online communication complexity
is O(|C|). To the best of our knowledge, this is the first work that achieves sublinear online
communication complexity in the number of parties in the information-theoretic setting with
honest majority.
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Chapter 2

The Model: Secure Multiparty
Computation

We consider a set of parties P = {P1, P2, ..., Pn} where each party can provide inputs, receive
outputs, and participate in the computation. For every pair of parties, there exists a secure (private
and authentic) synchronous channel so that they can directly send messages to each other. The
communication complexity is measured by the number of bits X via private channels.

We focus on functions which can be represented as arithmetic circuits over a finite field F
with input, addition, multiplication, and output gates1. We use κ to denote the security parameter
and let K be an extension field of F (with |K| ≥ 2κ). For simplicity, we use κ to denote the size
of an element in K. In this work, we assume that the number of parties n and the circuit size |C|
are bounded by polynomials of the security parameter κ.

2.1 Security Definition

Let 1 ≤ t ≤ n − 1 be an integer. Let F be a secure function evaluation functionality. An
adversary A can corrupt at most t parties, provide inputs to corrupted parties, and receive all
messages sent to corrupted parties. In this work, we consider both semi-honest adversaries and
malicious adversaries.
• If A is semi-honest, then corrupted parties honestly follow the protocol.
• If A is fully malicious, then corrupted parties can deviate from the protocol arbitrarily.

Real-World Execution. In the real world, the adversary A controlling corrupted parties in-
teracts with honest parties. At the end of the protocol, the output of the real-world execution
includes the inputs and outputs of honest parties and the view of the adversary.

1In this work, we only focus on deterministic functions. A randomized function can be transformed into a
deterministic function by taking as input an additional random tape from each party. The XOR of the input random
tapes of all parties is used as the randomness of the randomized function.
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Ideal-World Execution. In the ideal world, a simulator S simulates honest parties and interacts
with the adversaryA. Furthermore, S has one-time access to F , which includes providing inputs
of corrupted parties to F , receiving the outputs of corrupted parties, and sending instructions
specified in F (e.g., asking F to abort). The output of the ideal-world execution includes the
inputs and outputs of honest parties and the view of the adversary.

Semi-honest Security. We say that a protocol π computes F with perfect security if for all
semi-honest adversaryA, there exists a simulator S such that the distribution of the output of the
real-world execution is identical to the distribution in the ideal-world execution.

Security-with-abort. We say that a protocol π securely computes F with abort if for all ad-
versary A, there exists a simulator S , which is allowed to abort the protocol, such that the dis-
tribution of the output of the real-world execution is statistically close to the distribution in the
ideal-world execution.

2.2 Hybrid Model and Preprocessing Model
The Hybrid Model. We follow [20] and use the hybrid model to prove security. In the hybrid
model, all parties are given access to a trusted party (or alternatively, an ideal functionality)
which computes a particular function for them. The modular sequential composition theorem
from [20] shows that it is possible to replace the ideal functionality used in the construction by
a secure protocol computing this function. When the ideal functionality is denoted by g, we say
the construction works in the g-hybrid model.

The Preprocessing Model. In the (circuit-independent) preprocessing model, there is an ideal
functionality which prepares circuit-independent correlated randomness before the computation.
The preprocessing model can be viewed as a special case of the hybrid model. The cost of
a protocol in the preprocessing model is measured by both the amount of communication via
private channels and the amount of preprocessing data prepared by the ideal functionality [18,
25].

2.3 Client-server Model
To simplify the security proofs, sometimes we will consider the client-server model. In the
client-server model, clients provide inputs to the functionality and receive outputs, and servers
can participate in the computation but do not have inputs or get outputs. Each party may have
different roles in the computation. Note that, if every party plays a single client and a single
server, this corresponds to a protocol in the standard MPC model. Let c denote the number of
clients and n denote the number of servers. For all clients and servers, we assume that every two
of them are connected via a secure (private and authentic) synchronous channel so that they can
directly send messages to each other. The communication complexity is measured in the same
way as that in the standard MPC model.
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Security in the Client-server Model. In the client-server model, an adversary A can corrupt
at most c clients and t servers, provide inputs to corrupted clients, and receive all messages sent
to corrupted clients and servers. The security is defined similarly to the standard MPC model.

Benefits of the Client-server Model. In our construction, the clients only participate in the
input phase and the output phase. The main computation is conducted by the servers. For
simplicity, we use {P1, . . . , Pn} to denote the n servers, and refer to the servers as parties. Let
Corr denote the set of all corrupted parties and H denote the set of all honest parties. One
benefit of the client-server model is that it is sufficient to only consider maximum adversaries,
i.e., adversaries which corrupt exactly t parties. At a high level, for an adversary A which
controls t′ < t parties, we may construct another adversary A′ which controls additional t − t′
parties and behaves as follows:
• For a party corrupted by A, A′ follows the instructions of A. This is achieved by passing

messages between this party and other n− t′ honest parties.
• For a party which is not corrupted by A, but controlled by A′, A′ honestly follows the

protocol.
Note that, if a protocol is secure against A′, then this protocol is also secure against A since

the additional t − t′ parties controlled by A′ honestly follow the protocol in both cases. Thus,
we only need to focus on A′ instead of A. Note that in the regular model, each honest party may
have input. The same argument does not hold since the input of honest parties controlled by A′
may be compromised.
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Part I

Efficient Information-Theoretic MPC with
Honest Majority
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Chapter 3

Introduction for Part I

Secure Multi-Party Computation (MPC) allows n ≥ 2 parties to compute a function on privately
held inputs, such that the desired output is correctly computed and is the only new information
released. This should hold even if t out of n parties have been corrupted by a semi-honest or
malicious adversary. Since its introduction in the 1980s [40, 65], a lot of research has been done
to improve the efficiency of MPC protocols. Thanks to these efforts, MPC has rapidly moved
from theory to practice.

In this work, our focus is on honest majority protocols in the presence of a malicious adver-
sary. We note that the fastest known implementations of MPC have come in the honest majority
setting, which does not necessarily require public key operations. For example, the recent work
of Chida et al. [24] showed that their secure-with-abort protocol can evaluate 1 million multipli-
cation gates within 1 second for up to 7 parties, 4 seconds for 50 parties, and 8 seconds for 110
parties. Another attractive feature of the honest majority setting is that it allows one to achieve
the stronger properties of fairness and guaranteed output delivery which are otherwise impossible
with dishonest majority.

For over a decade, the most efficient MPC protocol with semi-honest security in the honest
majority setting has been the protocol of Damgård and Nielsen [28], hereafter known as the DN
protocol. By using the Shamir secret sharing scheme [64], addition gates can be evaluated with-
out any communication. To evaluate a multiplication gate, each party only needs to communicate
6 field elements. In the computational setting, the communication complexity can be reduced to
3 field elements by using pseudo-random generators [60] (improved further to 1.5 elements by
Boneh et al. [13] for a constant number of parties). Due to its simplicity and efficiency, many sub-
sequent works have used the DN protocol to achieve security-with-abort [13, 17, 24, 38, 44, 60]
or guaranteed output delivery [10, 44].

Despite the important role played by the DN protocol in the honest majority setting, any im-
provement to the basic protocol has been hard to come by unless one resorts to other approaches
using computational assumptions.

In the setting of malicious security, the recent breakthrough [24, 60] showed that achieving
security-with-abort requires only twice the cost of achieving semi-honest security compared with
the DN protocol [28]. In the setting of 1/3 corruption threshold, a recent beautiful work of
Furukawa and Lindell [35] presented a construction which achieves the same communication
cost as the DN protocol. When considering a 3-party computation for a binary circuit, a recent
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work [4] presented a construction where each AND gate only requires 7 bits per party. As a
result, over a billion AND gates could be processed within one second.

Despite all these improvements in the concrete efficiency, the question of whether the effi-
ciency gap between malicious security (with abort) and semi-honest security is inherent in the
honest majority setting still remains open. In this part, we ask the following natural question:

“Is it possible to achieve malicious security-with-abort with the same concrete cost as the
best-known semi-honest MPC protocol?”

3.1 Our Contributions
We propose ATLAS, an unconditionally secure MPC protocol in the honest majority setting
with reduced communication complexity over the celebrated DN protocol even in the honest but
curious setting, as well as malicious setting. Our protocol ATLAS enjoys the following efficiency
improvements over the DN protocol:
• We improve the basic DN protocol leading to a communication complexity of 4 field ele-

ments per multiplication gate per party. Our results are in the information-theoretic setting
assuming a majority of the parties are honest and the adversary is semi-honest. This leads
to the most communication-efficient semi-honest MPC protocol with honest majority.

• Next, we focus on the round complexity of the DN protocol. Instead of evaluating mul-
tiplication gates of the same layer in parallel, we show how to evaluate all multiplication
gates in a two-layer circuit in parallel. This allows us to improve the concrete efficiency
even further and reduce the number of rounds by a factor of 2. The achieved amortized
communication cost per multiplication gate in this setting is 4.5 field elements per party
but halving the number of rounds.

To achieve malicious security, we design an efficient verification protocol for multiplications
building on the techniques in [13], which achieves a sub-linear communication complexity in
the circuit size. As a result, we can make our two protocols secure against malicious adversaries
without affecting the concrete efficiency.

The security of our construction does not depend upon the field size. One can use a field with
size as low as n+1 where n is the number of parties. On the other hand, the concrete efficiency of
both constructions from [24, 60] suffers from having a large field size. An alternative presented in
[24] is to use a small field but then the verification must be done several times to reach the desired
security parameter. This however would increase the number of field elements per multiplication
gate several times. Another option presented in [60] allows one to reduce the field size without
substantially increasing the number of fields elements per gate. However, the field size must still
be at least as large as the circuit size and also depends upon the security parameter (and, e.g.,
cannot be a constant).

3.2 Related Works
In this section, we compare our result with several related constructions in both techniques and
the efficiency. In the following, let |C| denote the size of the circuit, κ denote the security
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parameter, and n denote the number of parties participating in the computation.

Achieving Malicious Security with abort. In [28], Damgård and Nielsen introduce the best-
known semi-honest protocol, which we refer to as the DN protocol. The communication com-
plexity of the DN protocol is O(Cnφ) bits. The concrete efficiency is 6 field elements per
multiplication gate (per party). In [38], Genkin, et al. show that the DN protocol is secure up
to an additive attack when running in the fully malicious setting. Based on this observation, a
secure-with-abort MPC protocol can be constructed by combining the DN protocol and a circuit
which is resilient to an additive attack (referred to as an AMD circuit). As a result, Genkin,
et al. [38] give the first construction against a fully malicious adversary with communication
complexity O(|C| · n) field elements (for a large enough field), which matches the asymptotic
communication complexity of the DN protocol.

The construction in [24] also relies on the theorem showed in [38]. The idea is to check
whether the adversary launches an additive attack. In the beginning, all parties compute a random
secret sharing of the value r. For each wire w with the value x associated with it, all parties will
compute two secret sharings of the secret values x and r ·x respectively. Here r ·x can be seen as
a secure MAC of x when the only possible attack is an additive attack. In this way, the protocol
requires two operations per multiplication gate. The asymptotic communication complexity is
O(|C| · n) field elements (for a large enough field) and the concrete efficiency is reduced to 12
field elements per multiplication gate.

An interesting observation is that the theorem showed in [38] implies that the DN protocol
provides perfect privacy of honest parties (before the output phase) in the presence of a fully
malicious adversary. To achieve security with abort, the only task is to check the correctness
of the computation before the output phase. This observation has been used in [56, 60]. In
particular, the construction in [60] achieves the same concrete efficiency as [24] by using the
batch-wise multiplication verification technique in [10], i.e., 12 field elements per multiplication
gate. Our construction also relies on this observation. Therefore, the main task is to efficiently
verify a batch of multiplications such that the communication complexity is sublinear in the
number of parties.

In [13], Boneh, et al. introduce a very powerful tool to achieve this task when the number of
parties is restricted to be a constant. Our result is obtained by instantiating this technique with
a different secret sharing scheme, which allows us to overcome this restriction so that it works
for any (polynomial) number of parties. Furthermore, we simplify this technique by avoiding the
use of a robust secret sharing scheme and a verifiable secret sharing scheme, which are required
in [13]. Our protocol additionally makes a simple optimization to the DN protocol, which brings
down the cost from 6 field elements per multiplication gate to 5.5 field elements. More details
about the comparison for techniques can be found in the last paragraph of Section 4.4.3. A
subsequent work [45] implements our construction and shows that the performance beats the
previously best-known implementation result [24] in this setting.

A concurrent work [17] also follows [13] and gives a similar verification protocol for mul-
tiplications. As a result, they give an MPC protocol with 1.5 field elements per multiplication
gate per party. However, their efficiency relies on the use of pseudo-random generators and is
restricted to a constant number of parties.
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Other Related Works. The notion of MPC was first introduced in [40, 65] in 1980s. Fea-
sibility results for MPC were obtained by [22, 40, 65] under cryptographic assumptions, and
by [9, 23] in the information-theoretic setting. Subsequently, a large number of works have
focused on improving the efficiency of MPC protocols in various settings.

A series of works focus on improving the communication efficiency of MPC with guaranteed
output delivery in the settings with different thresholds on the number of corrupted parties. In the
setting of honest majority setting, assuming the existence of a broadcast channel, the works [10,
44] have shown that guaranteed output delivery can be achieved efficiently. In the setting where
t < n/3, a rich line of works [8, 28, 43, 48, 49] have focused on improving the asymptotic
communication complexity in this setting.

A rich line of works have also focused on the performance of MPC in practice for two par-
ties [57, 59], or three parties [4, 36].
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Chapter 4

Technical Overview

In this part, we consider the standard honest majority setting, i.e., the number of corrupted parties
t = (n− 1)/2. We give an overview of our techniques in this chapter. Our construction is based
on the standard Shamir Secret Sharing Scheme [64]. We will use [x]d to denote a degree-d Shamir
sharing, or a (d+ 1)-out-of-n Shamir sharing. It requires at least d+ 1 shares to reconstruct the
secret and any d shares do not leak any information about the secret. We focus on finite fields of
size at least n + 1 to allow the existence of the Shamir secret sharing scheme. In the following,
we use F to denote a finite field of size |F| ≥ n+ 1 and C to denote an arithmetic circuit over F
that all parties want to evaluate.

We start with the semi-honest security, and then we will discuss how to achieve malicious
security with the same concrete efficiency as the semi-honest protocols.

4.1 Review: The Semi-Honest DN Protocol [28]
In the DN protocol [28], all parties compute a degree-t Shamir sharing for each wire. With more
details, all parties run the following three steps to evaluate an arithmetic circuit C over the finite
field F.

1. All parties start with sharing their inputs to other parties by using degree-t Shamir sharings
over F.

2. All parties evaluate the circuit C layer by layer. For each layer, all parties evaluate addition
gates and multiplication gates as follows:
• For each addition gate, given the two input sharings, all parties compute the output

sharing by locally adding up their shares. This step relies on the linear homomor-
phism of the Shamir secret sharing scheme.

• For each multiplication gate, given the two input sharings, all parties use the multi-
plication protocol in [28] (hereafter referred to as the DN multiplication protocol) to
compute a degree-t Shamir sharing of the multiplication result.

3. After evaluating the whole circuit, all parties together reconstruct the output sharings.
Our idea is to reuse the correlated-randomness required in the DN multiplication protocol.

We first review the DN multiplication protocol.
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Review of the DN Multiplication Protocol. To evaluate a multiplication gate, all parties first
need to prepare a pair of random sharings ([r]t, [r]2t) of the same secret r, where the first sharing
is a degree-t Shamir sharing and the second sharing is a degree-2t Shamir sharing. Such a pair
of sharings is referred to as a pair of double sharings. In [28], preparing a pair of random double
sharings requires to communicate 4 elements per party.

For a multiplication gate, suppose the input sharings are denoted by [x]t, [y]t. To compute
[z]t := [x · y]t, a pair of random double sharings ([r]t, [r]2t) is consumed. All parties first agree
on a special party Pking. Then, all parties run the following steps:

1. All parties locally compute [e]2t := [x]t · [y]t + [r]2t.

2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking sends the value e
to all other parties.

3. After receiving e from Pking, all parties locally compute [z]t := e− [r]t.
Correctness follows from the properties of the Shamir secret sharing scheme. Note that each
party needs to send an element to Pking, and Pking needs to send an element to each party. The
communication complexity of this protocol is 2 elements per party. Including the communication
cost for preparing double sharings, the overall cost per multiplication gate is 6 elements per party.

4.2 Reducing the Communication Complexity via t-wise In-
dependence

Starting Point. We observe that in the second step of the DN multiplication protocol, Pking

can alternatively distribute a degree-t Shamir sharing [e]t. Then in the last step, all parties can
still compute [z]t := [e]t− [r]t. We note that, when Pking is an honest party, the corrupted parties
only receive several random elements from Pking if [e]t is a random degree-t Shamir sharing. In
particular, it holds even if the corrupted parties know the whole sharings [r]t and [r]2t. This is
because the corrupted parties only receive t shares of a random degree-t sharing [e]t from Pking,
which are uniformly random and independent of the secret. Therefore for an honest Pking, we do
not need the double sharings to be uniformly random at all. While for a corrupted Pking, we still
need to use random double sharings, we can split the tasks of handling multiplication gates as
Pking to all parties. In this way, at least half of multiplication gates are handled by honest Pking’s.
We show that it allows us to reduce the cost of preparing double sharings by a factor of 2.

Relying on t-wise Independence. Suppose we have n multiplication gates and we let each
party behave as Pking for 1 multiplication gate. When Pking is a corrupted party, we still need to
use a pair of random double sharings to protect the secrecy of the result. If Pking is an honest
party, as argued above, the double sharings do not need to be random.

Our idea is to generate n pairs of double sharings such that any t pairs of them are independent
and uniformly random. This guarantees that the double sharings used for multiplication gates
handled by corrupted parties are uniformly random, which ensures the security of the MPC
protocol. On the other hand, given these double sharings, the other double sharings used for
multiplication gates handled by honest parties can be fixed and determined. It means that we
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only need to prepare t pairs of random and independent double sharings for n multiplication
gates.

To this end, all parties agree on a fixed Vandermonde matrix of size n × t, denoted by M .
The main property of M is that any t × t sub-matrix of M is invertible. Since the Shamir
secret sharing scheme is a linear homomorphism, a linear combination of several pairs of double
sharings is still a pair of double sharings. All parties first prepare t pairs of random double
sharings using the protocol in [28], denoted by

([r(1)]t, [r
(1)]2t), . . . , ([r

(t)]t, [r
(t)]2t).

Then, we expand these t pairs of double sharings to n pairs by computing

([r̃(1)]t, . . . , [r̃
(n)]t)

T = M ([r(1)]t, . . . , [r
(t)]t)

T

([r̃(1)]2t, . . . , [r̃
(n)]2t)

T = M ([r(1)]2t, . . . , [r
(t)]2t)

T.

We point out that this expansion can be done locally without interaction. Note that for all
i ∈ [n], ([r̃(i)]t, [r̃

(i)]2t) is a pair of double sharings. Let Corr denote the set of corrupted par-
ties. According to the property of M , there is a one-to-one map from {([r̃(i)]t, [r̃

(i)]2t)}i∈Corr to
{([r(i)]t, [r

(i)]2t)}i∈[t]. Since the input double sharings are independent and uniformly random,
we conclude that the double sharings in {([r̃(i)]t, [r̃

(i)]2t)}i∈Corr are independent and uniformly
random.

When ([r̃(i)]t, [r̃
(i)]2t) is used to evaluate a multiplication gate, we require the party Pi to

act as Pking. In this way, the multiplication gates handled by corrupted parties will use double
sharings in {([r̃(i)]t, [r̃

(i)]2t)}i∈Corr, which are independent and uniformly random. We are able
to show that the security still holds.

Concrete Efficiency of Our Improved Multiplication Protocol. Recall that in [28], preparing
a pair of random double sharings requires the communication of 4 elements per party. Relying
on t-wise independence, we only need to prepare t pairs of random double sharings for n mul-
tiplications. Thus, the amortized communication cost per pair of double sharings is 4 · t/n ≈ 2
elements per party. Including the communication cost of the multiplication protocol in [28],
which is 2 elements per party, the overall cost per multiplication is 4 elements per party. As a
result, we have the following theorem:
Theorem 4.1. Let n be a positive integer and F be a finite field of size |F| ≥ n + 1. For
all arithmetic circuit C over F, there is an information-theoretic n-party MPC protocol, which
achieves semi-honest security against a semi-honest adversary controlling t < n/2 corrupted
parties, with communication complexity O(|C| · n + n2) elements, where |C| is the circuit size.
Furthermore, the concrete efficiency is 4 elements per party per multiplication gate.

4.3 Reducing the Number of Rounds via Beaver Triples
In the DN protocol [28], multiplication gates in the same layer of the circuit are evaluated in
parallel. Therefore, the number of rounds is linear in the depth of the circuit. To further improve
the concrete efficiency, we pay attention to the round complexity. We note that the question of
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obtaining information-theoretic constant round protocols for a general circuit has been opened
for many years. In particular, it has been shown in [31] that the dependency on the depth in the
round complexity is inherent for the DN protocol. Given this, we managed to reduce the number
of rounds by a factor of 2 while maintaining the communication efficiency.

To this end, we first consider a two-layer circuit and try to evaluate all multiplication gates in
parallel.

Starting Point. For a two-layer circuit, an input sharing of a multiplication gate in the second
layer may come from three places:
• This sharing is an input sharing of the circuit.
• This sharing is an output sharing of an addition gate in the first layer.
• This sharing is an output sharing of a multiplication gate in the first layer.

Note that an addition gate can be evaluated without interaction. Therefore for the first two cases,
all parties can locally compute this sharing. However, for the third case, communication is
required to evaluate this multiplication gate in the first layer. Therefore, the question becomes
how to evaluate multiplication gates in the second layer without learning the output sharings of
multiplication gates in the first layer.

We recall the technique of Beaver triple [6]. A Beaver triple consists of three degree-t Shamir
sharings ([a]t, [b]t, [c]t), where a, b are random field elements and c = a · b. Usually, a Beaver
triple is used to transform one multiplication to two reconstructions. Concretely, given two
sharings [x]t, [y]t, suppose we want to compute [z]t such that z = x · y. Since

z = x · y
= (x+ a− a) · (y + b− b)
= (x+ a) · (y + b)− (x+ a) · b− (y + b) · a+ a · b,

we can compute

[z]t := (x+ a) · (y + b)− (x+ a) · [b]t − (y + b) · [a]t + [c]t.

Therefore, the task of computing [z]t becomes to reconstructing two degree-t Shamir sharings
[x]t + [a]t and [y]t + [b]t. Observe that, if we set u = x + a and v = y + b, the above equation
allows us to locally compute a degree-t Shamir sharing of z := (u− a) · (v − b) using a Beaver
triple ([a]t, [b]t, [c]t) once u and v are publicly known.

Beaver-triple Friendly Form. We say a sharing is in the Beaver-triple friendly form, if it can
be written as u − [a]t, where u is a public element and [a]t is a degree-t Shamir sharing. Now
suppose for each multiplication gate in the second layer, the input sharings are in the Beaver-
triple friendly form, say u − [a]t and v − [b]t. Given the Beaver triple ([a]t, [b]t, [c]t), one can
non-interactively compute the output sharing of this gate by

[z]t := u · v − u · [b]t − v · [a]t + [c]t.

Note that the Beaver triple ([a]t, [b]t, [c]t) can be prepared without learning u, v. Therefore, if for
each multiplication gate in the second layer, the input sharings are in the Beaver-triple friendly
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form u− [a]t, v− [b]t, and [a]t, [b]t are learnt before evaluating the first layer, we can prepare the
Beaver triple ([a]t, [b]t, [c]t) without evaluating the first layer, and then non-interactively evaluate
multiplication gates in the second layer after learning u, v from the first layer.

Of course, the question remains: since the input sharings of the second layer come from the
output sharings of the first layer, how do we ensure that the output sharings of the first layer are
in the Beaver-triple friendly form?

Evaluating a Two-Layer Circuit. We observe that the original DN multiplication protocol
in [28] satisfies our requirement! Concretely, to evaluate a multiplication gate with input sharings
[x]t, [y]t, all parties need to first prepare a pair of random double sharings ([r]t, [r]2t). In the last
step of the DN multiplication protocol, Pking sends the reconstruction result of [e]2t := [x]t ·[y]t+
[r]2t to all parties, and all parties can compute the degree-t Shamir sharing [z]t := e − [r]t. In
particular, the output sharing is in the Beaver-triple friendly form, and the sharing [r]t is prepared
before evaluating this multiplication gate. Therefore, we will use the original DN multiplication
protocol to evaluate multiplication gates in the first layer.

For a multiplication gate in the second layer, suppose that the two input wires are both the
outputs of multiplication gates in the first layer. Let e1 − [r1]t and e2 − [r2]t denote these two
output sharings. Now observe that e1 and e2 will already be public as part of evaluating the first
layer. So to compute a degree-t Shamir sharing of (e1 − r1)(e2 − r2), all we need is [r1 · r2]t. If
we can pre-compute and distribute ([r1]t, [r2]t, [r1 · r2]t), we are done! Of course, since r1 and
r2 are also used in the multiplication gates in the first layer, we simultaneously need to compute
degree-2t Shamir sharings of r1 and r2 as well. Fortunately, this does not affect the security of
the second layer. In other words, the outputs of the first layer feed nicely into the second layer
making the second layer non-interactive. At the same time, we are able to ensure that these
two different types of multiplication protocols do not destroy the security of each other despite
sharing randomness.

As we discussed above, the input sharing of a multiplication gate in the second layer may
come from two other places: (1) it may be an input sharing of this two-layer circuit, or (2) it may
be an output sharing of an addition gate in the first layer. In both cases, all parties can locally
compute this sharing before evaluating the multiplication gates in the first layer. Let [x]t denote
such an input sharing. Note that [x]t = 0− (−[x]t) is already in the Beaver-triple friendly form.
Therefore, all the input sharings of multiplication gates in the second layer are in the Beaver-
triple friendly form. But now, the problem is that [x]t is not known before the circuit evaluation
starts (unlike [r1]t and [r2]t), and hence [x]t cannot be part of a Beaver triple pre-computed
before the evaluation. Fortunately, as observed earlier, parties hold [x]t before evaluating any
multiplication gates in the first layer. Now our idea is to prepare the Beaver triples for the second
layer dependent on [x]t in parallel with the multiplications in the first layer.

After preparing Beaver triples for the second layer and computing the output sharings of the
multiplication gates in the first layer, all parties can locally compute the degree-t Shamir sharings
associated with the output wires of this two-layer circuit. These sharings will be fed to the next
two-layer circuit, which is sufficient to start the evaluation since the original DN multiplication
protocol does not require any special property of the input sharings. Therefore in the evaluation
of the whole circuit, these two types of multiplication protocols are alternatively used in every
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two layers.

Improving the Communication Complexity. While the above helps us make progress, it does
not achieve our final goal. In particular, using the original DN protocol requires the communi-
cation of 6 elements per party per gate. We note that for multiplications in different layers, we
have different requirements:
• For multiplication gates in the first layer, we need the output sharings to have the Beaver-

triple friendly form.
• For multiplication gates in the second layer, we compute the Beaver triples in the form of

([a]t, [b]t, [c]t). We only need to obtain the degree-t Shamir sharing of [c]t for each Beaver
triple.

Therefore for multiplication gates in the second layer, we can use our improved multiplication
protocol to compute Beaver triples, which requires the communication of 4 elements per party
per multiplication. For multiplication gates in the first layer, however, Pking needs to send the
same values to all parties. It seems like our trick of using t-wise independence does not work in
this scenario.

Having a closer look at our trick of using t-wise independence, for a multiplication gate han-
dled by an honest party, the secret r of the random double sharings is fixed given the double
random sharings used for multiplication gates handled by corrupted parties. Revealing the re-
construction result of [e]2t := [x]t · [y]t + [r]2t may leak the multiplication result to the adversary.
Therefore, to be able to reveal the reconstruction result, r needs to be uniformly random for ev-
ery multiplication gate. However, we note that r being uniformly random is not equivalent to the
pair of double sharings ([r]t, [r]2t) being uniformly random.

Therefore, we want to decouple the relation between r and the double sharings. Note that a
pair of double sharings ([r]t, [r]2t) is equivalent to a pair of sharings ([r]t, [o]2t), where the first
sharing is a degree-t Shamir sharing of r and the second sharing is a degree-2t Shamir sharing
of zero o = 0. To see this, given ([r]t, [r]2t), we can set [o]2t := [r]2t − [r]t; given ([r]t, [o]2t),
we can set [r]2t := [r]t + [o]2t. When using a pair of sharings ([r]t, [o]2t), the DN multiplication
protocol becomes:

1. All parties locally compute [e]2t := [x]t · [y]t + [r]t + [o]2t.

2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking sends the value e
to all other parties.

3. After receiving e from Pking, all parties locally compute [z]t := e− [r]t.
Note that [o]2t is only used to compute [e]2t. When Pking is an honest party, [o]2t does not need to
be a uniformly random degree-2t sharing of 0. Thus, we can use t-wise independent [o]2t’s with
uniformly random degree-t sharings [r]t’s.

In [28], it has been shown that preparing a random degree-t random sharing requires the
communication of 2 elements per party. In Chapter 6.3, following from the same idea of prepar-
ing random degree-t Shamir sharings, we show that preparing a random degree-2t sharing of 0
requires the communication of 2 elements per party as well. Then, using our idea of t-wise inde-
pendence, we expand t random degree-2t sharings of 0 to n sharings with t-wise independence.
In this way, the communication cost of preparing correlated-randomness for one multiplication
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in the first layer is 2 + 2 · t/n ≈ 3 elements. Including the communication cost of the multiplica-
tion protocol in [28], which is 2 elements per party, the overall cost per multiplication in the first
layer is 5 elements per party.

Recall that for multiplication gates in the second layer, we will use our improved multipli-
cation protocol to compute Beaver triples, which requires the communication of 4 elements per
party per gate. To evaluate the whole circuit, we first partition it into a sequence of two-layer sub-
circuits. Then we use the above strategy to evaluate each two-layer sub-circuit in a predetermined
topological order. Assuming that the number of multiplication gates in the first layer is roughly
the same as the number of multiplication gates in the second layer, the concrete efficiency is
(4 + 5)/2 = 4.5 elements per party per gate.
Theorem 4.2. Let n be a positive integer and F be a finite field of size |F| ≥ n + 1. For
all arithmetic circuit C over F, there is an information-theoretic n-party MPC protocol, which
achieves semi-honest security against a semi-honest adversary controlling t < n/2 corrupted
parties, with communication complexity O(|C| · n + n2) elements, where |C| is the circuit size.
Furthermore, the concrete efficiency is 4.5 elements per party per multiplication gate but halving
the number of rounds.

4.4 Achieving Malicious Security
In [38], Genkin et al. showed that the DN protocol [28] is secure up to an additive attack in
the presence of a malicious adversary. An additive attack means that the adversary is able to
change the multiplication result by adding an arbitrary fixed value. Security up to an additive
attack means that what a malicious adversary can do is to launch additive attacks to multipli-
cation results. As one corollary, the DN protocol provides full privacy of honest parties before
reconstructing the output. Therefore, a straightforward strategy to achieve security-with-abort is
to (1) run the DN protocol until the output phase, (2) check the correctness of the computation,
and (3) reconstruct the output only if the check passes.

In the DN protocol [28], all parties compute a degree-t Shamir sharing for each wire. Since
the Shamir secret sharing scheme is linearly homomorphic, addition gates can be evaluated with-
out interaction. Therefore, to achieve security-with-abort, the main task is to verify the multipli-
cations. We first present a verification protocol for multiplication tuples which are under additive
attacks. Then we discuss how to compile both of our protocols (the t-wise variant and the
round-compression variant) to achieve security-with-abort by using the above verification
protocol. At a high-level,

• For the t-wise variant, we will show that the protocol is also secure up to an additive
attack. Thus, directly using the verification protocol for multiplication tuples which are
under additive attacks is sufficient.

• For the round-compression variant, recall that the evaluation is done by first par-
titioning the circuit into a sequence of two-layer sub-circuits and then evaluating each
sub-circuit. We note that the correctness of the computation requires the following two
points:

All Pking’s send the same values to all other parties for multiplication gates in the first
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layer of all sub-circuits.

All multiplication tuples are correctly computed.

We will first verify that all parties receive the same values from Pking’s when evaluating
multiplication gates in the first layer of all sub-circuits. Under this condition, we manage
to show that the multiplication tuples are secure up to an additive attack. Therefore, we
can use the verification for multiplication tuples which are under additive attacks to verify
the second point.

Our idea is inspired by two techniques and their natural extensions: the DN multiplication
protocol [28] and its extension for an inner-product operation [24], and the batch-wise multipli-
cation verification technique [10] and its extension for inner-product tuples [60]. We first review
the batch-wise multiplication verification technique introduced in [10].

4.4.1 Review: Batch-wise Multiplication Verification

This technique is introduced in the work of Ben-Sasson, et al. [10]. It is used to check a batch of
multiplication tuples efficiently. Specifically, given m multiplication tuples

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t, [y
(m)]t, [z

(m)]t),

we want to check whether x(i) · y(i) = z(i) for all i ∈ {1, 2, . . . ,m}.
The high-level idea is constructing three polynomials f(·), g(·), h(·) such that

∀i ∈ {1, 2, . . . ,m}, f(i) = x(i), g(i) = y(i), h(i) = z(i).

Then check whether f · g = h. Here f(·), g(·) are degree-(m− 1) polynomials so that they can
be determined by {x(i)}mi=1, {y(i)}mi=1 respectively. In this case, h(·) should be a degree-2(m− 1)
polynomial which is determined by 2m − 1 values. To this end, for i ∈ {m + 1, . . . , 2m − 1},
we need to compute z(i) = f(i) · g(i) so that h(·) can be computed by {z(i)}2m−1

i=1 .
All parties first locally compute [f(·)]t and [g(·)]t using {[x(i)]t}mi=1 and {[y(i)]t}mi=1 respec-

tively. Here a degree-t sharing of a polynomial means that each coefficient is secret-shared. For
i ∈ {m+1, . . . , 2m−1}, all parties locally compute [f(i)]t, [g(i)]t and then compute [z(i)]t using
the multiplication protocol in [28]. Finally, all parties locally compute [h(·)]t using {[z(i)]t}2m−1

i=1 .
Note that if x(i) ·y(i) = z(i) for all i ∈ {1, 2, . . . , 2m−1}, then we have f ·g = h. Otherwise,

we must have f · g 6= h. Therefore, it is sufficient to check whether f · g = h. Since h(·) is
a degree-2(m − 1) polynomials, in the case that f · g = h, the number of x such that f(x) ·
g(x) = h(x) holds is at most 2(m− 1). Thus, it is sufficient to test whether f(x) · g(x) = h(x)
for a random x. As a result, this technique compresses m checks of multiplication tuples to a
single check of the tuple ([f(x)]t, [g(x)]t, [h(x)]t). A secure technique for checking the tuple
([f(x)]t, [g(x)]t, [h(x)]t) was given in [10, 60].

The main drawback of this technique is that it requires one additional multiplication operation
per tuple. Our idea is to improve this technique so that the check will require fewer multiplication
operations.
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4.4.2 Extensions
Now we review the two natural extensions of the DN multiplication protocol and the batch-wise
multiplication verification technique respectively.

Extension of the DN Multiplication Protocol. In essence, the DN multiplication protocol
uses a pair of random double sharings to reduce a degree-2t sharing [x · y]2t to a degree-t sharing
[x · y]t. Therefore, an extension of the DN multiplication protocol is used to compute the inner-
product of two vectors of the same dimension.

Given two input vectors of sharings ([x1]t, . . . , [x`]t) and ([y1]t, . . . , [y`]t), the goal is to com-
pute a degree-t Shamir sharing [z]t where

z =
∑̀
j=1

xj · yj.

This can be done by using the same strategy as the DN multiplication protocol and in particular,
with the same communication cost. This is because, just like in the multiplication protocol, here
all parties can locally compute the shares of the result. These shares are then randomized and
sent to Pking for degree reduction. More details can be found in Chapter 7.1. This extension is
observed in [24].

Extension of the Batch-wise Multiplication Verification. We can use the same strategy as
the batch-wise multiplication verification to check the correctness of a batch of inner-product
tuples.

Specifically, given a set of m inner-product tuples

{(([x(i)
1 ]t, . . . , [x

(i)
` ]t), ([y

(i)
1 ]t, . . . , [y

(i)
` ]t), [z

(i)]t)}mi=1,

we want to check whether
∑`

j=1 x
(i)
j · y

(i)
j = z(i) for all i ∈ {1, 2, . . . ,m}. The only difference is

that, for all j ∈ {1, 2, . . . , `}, all parties will compute fj(·), gj(·) such that

∀i ∈ {1, 2, . . . ,m}, fj(i) = x
(i)
j , gj(i) = y

(i)
j ,

and all parties need to compute [z(i)]t = [
∑`

j=1 fj(i) · gj(i)]t for all i ∈ {m + 1, . . . , 2m − 1},
which can be done by the extension of the DN multiplication protocol. Let h(·) be a degree-
2(m− 1) polynomial such that

∀i ∈ {1, 2, . . . , 2m− 1}, h(i) = z(i).

Then, it is sufficient to test whether
∑`

j=1 fj(x) · gj(x) = h(x) for a random x. As a result, this
technique compresses m checks of inner-product tuples to a single check of the tuple

(([f1(x)]t, . . . , [f`(x)]t), ([g1(x)]t, . . . , [g`(x)]t), [h(x)]t).

It is worth noting that the communication cost remains the same as the original technique. More
details can be found in 7.2. This extension is observed in [60].
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Using these Extensions for Reducing the Field Size. We point out that these extensions are
not used in any way in the main results of [24, 60]. In [24], the primary purpose of the extension
is to check more efficiently in a small field. In more detail, [24] has a “secure MAC” associated
with each wire value in the circuit. At a later point, the MACs are verified by computing a linear
combination of the value-MAC pairs with random coefficients. Unlike the case in a large field,
the random coefficients cannot be made public due to security reasons. Then a computation of a
linear combination becomes a computation of an inner-product. [24] relies on the extension of
the DN multiplication protocol to efficiently compute the inner-product of two vector of sharings.
However we note that with the decrease in the field size, the number of field elements required
per gate grows up and hence the concrete efficiency goes down. In [60], the extension of the
batch-wise multiplication verification technique is only pointed out as a corollary of independent
interest.

4.4.3 Fast Verification for a Batch of Multiplication Tuples
Now we are ready to present our technique. Suppose the multiplication tuples we want to verify
are

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t, [y
(m)]t, [z

(m)]t).

The starting idea is to transform these m multiplication tuples into one inner-product tuple. A
straightforward way is just setting

(([x(1)]t, [x
(2)]t, . . . , [x

(m)]t), ([y
(1)]t, [y

(2)]t, . . . , [y
(m)]t), [z]t =

m∑
i=1

[z(i)]t).

However, it is insufficient to check this tuple. For example, if corrupted parties only maliciously
behave when computing the first two tuples and cause z(1) to be x(1) · y(1) + 1 and z(2) to be
x(2) · y(2) − 1, we cannot detect it by using this approach. We need to add some randomness so
that the resulting tuple will be incorrect with overwhelming probability if any one of the original
tuples is incorrect.

Step One: De-Linearization. Our idea is to use two polynomials with coefficients {x(i) · y(i)}
and {z(i)} respectively. Concretely, let

F (X) = (x(1) · y(1)) + (x(2) · y(2))X + . . .+ (x(m) · y(m))Xm−1

G(X) = z(1) + z(2)X + . . .+ z(m)Xm−1.

Then if at least one multiplication tuple is incorrect, we will have F 6= G. In this case, the
number of x such that F (x) = G(x) is at mostm−1. Therefore, with overwhelming probability,
F (r) 6= G(r) where r is a random element.

All parties will prepare a random degree-t Shamir sharing [r]t (see Chapter 5.2 for more
details) and reconstruct the value r. We set

(([x(1)]t, r[x
(2)]t, . . . , r

m−1[x(m)]t), ([y
(1)]t, [y

(2)]t, . . . , [y
(m)]t), [z]t =

m∑
i=1

ri−1[z(i)]t).

The above inner-product tuple is what we wish to verify.

28



Step Two: Dimension-Reduction. Although we only need to verify the correctness of a single
inner-product tuple, it is unclear how to do it efficiently. It seems that verifying an inner-product
tuple with dimension m would require communicating at least O(mn) field elements. Therefore,
instead of directly doing the check, we want to first reduce the dimension of this inner-product
tuple.

Towards that end, even though we only have a single inner-product tuple, we will try to take
advantage of batch-wise verification of inner-product tuples. Let k be a compression parameter.
Our goal is to transform the original tuple of dimension m to be a new tuple of dimension m/k.

To utilize the extension, let ` = m/k and we separate each of the two input vectors of the orig-
inal inner-product tuple into k sub-vectors of dimension `. Concretely, For all i ∈ {1, 2, . . . , k},
the i-th sub-vectors from the two input vectors are

([a
(i)
1 ]t, . . . , [a

(i)
` ]t) := (ri·`−` · [x(i·`−`+1)]t, . . . , r

i·`−1 · [x(i·`)]t)

([b
(i)
1 ]t, . . . , [b

(i)
` ]t) := ([y(i·`−`+1)]t, . . . , [y

(i·`)]t)

For each i ∈ {1, 2, . . . , k − 1}, we compute [c(i)]t = [
∑`

j=1 a
(i)
j · b

(i)
j ]t using the extension of the

DN multiplication protocol. Then set [c(k)]t = [z]t−
∑k−1

i=1 [c(i)]t. In this way, if the original tuple
is incorrect, then at least one of the new inner-product tuples is incorrect.

Finally, we use the extension of the batch-wise multiplication verification technique to com-
press the check of these k inner-product tuples into one check of a single inner-product tuple. In
particular, the resulting tuple has dimension ` = m/k.

Note that the cost of this step is O(k) inner-product operations, which is just O(k) multipli-
cation operations, and a reconstruction of a sharing, which requires O(n2) elements. After this
step, our task is reduced from checking the correctness of an inner-product tuple of dimension m
to checking the correctness of an inner-product tuple of dimension `.

Step Three: Recursion and Randomization. We can repeat the second step logkm times so
that we only need to check the correctness of a single multiplication tuple in the end. To simplify
the checking process for the last tuple, we make use of additional randomness.

In the last call of the second step, we need to compress the check of k multiplication tuples
into one check of a single multiplication tuple. We follow the idea in [60] and include an addi-
tional random multiplication tuple as a random mask of these k multiplication tuples. That is,
we will compress the check of k + 1 multiplication tuples in the last call of the second step. In
this way, to check the resulting multiplication tuple, all parties can simply reconstruct the shar-
ings and check whether the multiplication is correct. This reconstruction reveals no additional
information about the original inner-product tuple because of this added randomness.

The random multiplication tuple is prepared in the following manner.
1. All parties prepare two random sharings [a]t, [b]t (see Chapter 5.2 for more details).

2. All parties compute [c]t = [a · b]t using the DN multiplication protocol.

Efficiency Analysis. Note that each step of compression requires O(k) inner-product (or mul-
tiplication) operations, which requires O(kn) field elements. Also, each step of compression
requires to reconstruct a random sharing, which requires O(n2) field elements. Therefore, the

29



total amount of communication of verifying m multiplication tuples is O((kn + n2) · logkm)
field elements. Since the number of multiplication tuples m is bounded by poly(κ) where κ is
the security parameter. If we choose k = κ, then the cost is just O(κn + n2) field elements,
which is independent of the number of multiplication tuples.
Remark 4.1. An attractive feature of our approach is that the communication cost is not affected
by the field size. To see this, note that the cost of our check only has a sub-linear dependence on
the circuit size. Therefore, we can run the check over an extension field of the original field with
large enough size, which does not influence the concrete efficiency of our construction.

As a comparison, the concrete efficiency of both constructions [24, 60] suffer if one uses
a small field. This is because in both constructions, the failure probability of the verification
depends on the size of the field. For a small field, they need to do the verification several times to
acquire the desired security. The same trick does not work because the cost of their checks has a
linear dependency on the circuit size.

Relation with the Technique in [13]. We note that our idea is similar to the technique in [13]
when it is used to construct MPC protocols. When n = 3 and t = 1, our construction is
very similar to the construction in [13]. For a general n-party setting, the construction in [13]
relies on the replicated secret sharings and builds upon the sublinear distributed zero knowledge
proofs constructed in [13]. However, the computation cost of the replicated secret sharings goes
exponentially in the number of parties. This restricts the construction in [13] to only work for a
constant number of parties. On the other hand, we explore the use of the Shamir secret sharing
scheme in the n-party setting. Our idea is inspired by the extensions of the DN multiplication
protocol [24, 28] and the batch-wise multiplication verification [10, 60]. This allows us to get a
positive result without relying on replicated secret sharings. We also note that the construction
in [13] requires the sharings (related to the distributed zero knowledge proof) to be robust and
verifiable. We simplify this technique by removing the use of a robust secret sharing scheme and
a verifiable secret sharing scheme.

Moreover, we explore a recursion trick to further improve the communication complexity of
verifying multiplications. Compared with the construction in [13] which requires to communi-
cate O(

√
|C|) bits, we achieve O((kn+ n2) · logk |C| · κ) bits.

4.4.4 Achieving Malicious Security for Our Two Semi-honest Protocols
Now we show how to use our fast verification protocol to achieve malicious security for both of
our two protocols without affecting the concrete efficiency.

For t-wiseVariant. Recall that in the t-wise variant, our idea is to use t-wise independent
random double sharings to replace the uniform random double sharings in the DN multiplication
protocol. We can show that the t-wise variant is also secure up to an additive attack. Thus we
can achieve malicious security by the following steps:

1. Run the t-wise variant until the output phase.

2. Check the correctness of multiplication tuples using our fast verification protocol.

3. Reconstruct the output only if the check passes.
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Compared with the semi-honest protocol, the only additional cost is our fast verification protocol,
which has sub-linear communication complexity in the circuit size. Thus, the concrete efficiency
of the maliciously secure t-wise variant remains 4 field elements per party per multiplication
gate.
Theorem 1.1. Let n be a positive integer and F be a finite field of size |F| ≥ n + 1. For
all arithmetic circuit C over F, there is an information-theoretic n-party MPC protocol, which
achieves malicious security (with abort) against a fully malicious adversary controlling t < n/2
corrupted parties, with communication complexity O(|C| · n + n2 · κ + n · κ2) elements, where
κ is the security parameter and |C| is the circuit size. Furthermore, the concrete efficiency is 4
elements per party per multiplication gate.

For round-compressionVariant. Recall that in the round-compression variant, the
evaluation is done by first partitioning the circuit into a sequence of two-layer sub-circuits and
then evaluating each sub-circuit. In particular, the multiplication gates in the first layer requires
Pking to distribute the same value to all other parties. Thus, an adversary can not only launch
additive attacks in the multiplication protocols, but also distribute different values to other parties
when Pking is corrupted. On the other hand, we can still prove that the round-compression
variant provides full privacy of honest parties before reconstructing the output. Thus, it is suffi-
cient to verify the following two points before reconstructing the output.
• All Pking’s send the same values to all other parties for multiplication gates in the first layer

of all sub-circuits.
• All multiplication tuples are correctly computed.
We will first verify that all parties receive the same values from Pking’s when evaluating

multiplication gates in the first layer of all sub-circuits. This is done by simply computing a
random linear combination of all public values and then exchange the result with each other.
Note that the communication complexity of the first check is independent of the circuit size.

If the first check passes, we manage to show that the multiplication tuples are secure up to an
additive attack. Therefore, we can use our fast verification protocol to check the correctness of
all multiplication tuples. In summary, we can achieve malicious security by the following steps:

1. Run the round-compression variant until the output phase.

2. Check that all parties receive the same public values from Pking’s.

3. Check the correctness of multiplication tuples using our fast verification protocol.

4. Reconstruct the output only if the check passes.
Since both checks have sub-linear communication complexity in the circuit size, the concrete
efficiency of the maliciously secure round-compression variant remains 4.5 field elements
per party per multiplication gate.
Theorem 1.2. Let n be a positive integer and F be a finite field of size |F| ≥ n + 1. For
all arithmetic circuit C over F, there is an information-theoretic n-party MPC protocol, which
achieves malicious security (with abort) against a fully malicious adversary controlling t < n/2
corrupted parties, with communication complexity O(|C| · n + n2 · κ + n · κ2) elements, where
κ is the security parameter and |C| is the circuit size. Furthermore, the concrete efficiency is 4.5
elements per party per multiplication gate but halving the number of rounds (up to a constant
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number of rounds).
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Chapter 5

Preliminaries

5.1 Shamir Secret Sharing Scheme
In this work, we use the standard Shamir secret sharing scheme [64]. Recall that n is the number
of parties. Let α1, α2, . . . , αn be n distinct non-zero elements in F.

A degree-d Shamir sharing of x ∈ F is a vector (w1, . . . , wn) which satisfies that, there
exists a polynomial f(·) ∈ F[X] of degree at most d such that f(0) = x and f(αi) = wi for
i ∈ {1, . . . , n}. Each party Pi holds a share wi and the whole sharing is denoted by [x]d.

Security Properties of the Shamir Secret Sharing Scheme. Recall that t is the number of
corrupted parties. The Shamir secret sharing scheme has the following security property:
• A random degree-d Shamir sharing can be reconstructed from any d + 1 shares, and any
d shares are independent of the secret. Therefore, for all d ≥ t, the shares of a random
degree-d Shamir sharing held by corrupted parties are independent of the secret. For all
d < n− t, the shares of a degree-d Shamir sharing held by honest parties fully determine
the secret.

Algebraic Properties of the Shamir Secret Sharing Scheme. In the following, we will uti-
lize two algebraic properties of the Shamir secret sharing scheme. The operations between two
sharings are done by letting each party perform the same operation over its own shares.
• Linear Homomorphism: For all d < n − 1 and for all degree-d Shamir sharings [x]d and

[y]d,
[x+ y]d = [x]d + [y]d.

• Multiplication: For all d ≤ (n− 1)/2 and for all degree-d Shamir sharings [x]d and [y]d,

[x · y]2d = [x]d · [y]d.

Terminologies and Remarks. For a degree-k polynomial f(·) ∈ G[X], let c0, . . . , ck denote
the coefficients of f(·). If all parties hold degree-d sharings of c0, . . . , ck, then for all public
input x ∈ G, all parties can locally compute the degree-d sharing [f(x)]d, which is a linear
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combination of [c0]d, [c1]d, . . . , [ck]d. Essentially, it means that all parties hold a degree-d sharing
of the polynomial f(·). In the following, we use [f(·)]d to denote a degree-d sharing of the
polynomial f(·).

We refer to a pair of sharings ([r]t, [r]2t) of the same secret value r as a pair of double
sharings. Since n = 2t + 1 and t parties are corrupted, the rest of t + 1 parties are honest.
Therefore, the secret value of a degree-t sharing is determined by the shares held by honest
parties. LetH denote the set of honest parties and Corr denote the set of corrupted parties. Note
that once a degree-t sharing is distributed, the secret value is fixed and in particular, corrupted
parties can no longer change the secret value even if the sharing is dealt by a corrupted party.

5.2 Generating Random Sharings
We introduce a simple protocol RAND, which comes from [28], to let all parties prepare t+ 1 =
O(n) random degree-t sharings in the semi-honest setting. The functionality is presented in
Functionality 5.1.

Figure 5.1: Functionality Frand

1. Frand receives from the adversary the set of shares {ri}i∈Corr.
2. Frand randomly samples r. Based on the secret r and the t shares {ri}i∈Corr of corrupted

parties, Frand reconstructs the whole sharing [r]t and distributes the shares of [r]t to
honest parties.

The protocol will utilize a predetermined and fixed Vandermonde matrix of size n× (t+ 1),
which is denoted by MT (therefore M is a (t + 1) × n matrix). An important property of a
Vandermonde matrix is that any (t+1)×(t+1) submatrix ofMT is invertible. The description of
RAND appears in Protocol 5.2. The communication complexity of RAND isO(n2) field elements.

Figure 5.2: Protocol RAND

1. Each party Pi randomly samples a sharing [s(i)]t and distributes the shares to other
parties.

2. All parties locally compute

([r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t)
T = M ([s(1)]t, [s

(2)]t, . . . , [s
(n)]t)

T

and output [r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t.

We show that this protocol securely computes Functionality 5.1 in the presence of a fully
malicious adversary.
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Lemma 5.1. The protocol RAND securely computes the functionality Frand in the presence of a
fully malicious adversary controlling t corrupted parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors
of honest parties. Recall that Corr denotes the set of corrupted parties and H denotes the set of
honest parties.

Simulation of RAND. In the first step, when an honest party Pi needs to distribute a random
sharing [s(i)]t, S samples t random elements as the shares of corrupted parties and sends them to
the adversary. For each corrupted party Pi, S receives the shares of [s(i)]t held by honest parties.
Note that S learns t + 1 shares of [s(i)]t, which determines the whole sharing. S computes the
shares of [s(i)]t held by corrupted parties.

In the second step, S computes the shares of each [r(i)]t held by corrupted parties and passes
these shares to Frand.

Hybrids Argument. Now we show that S perfectly simulates the behaviors of honest parties.
Consider the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S changes the way of preparing a random sharing for each honest

party Pi:

1. S first randomly samples the shares of [s(i)]t held by corrupted parties and sends them to
corrupted parties.

2. Then, S randomly samples the secret s(i). Based on the secret s(i) and the t shares of [s(i)]t
held by corrupted parties, Pi reconstructs the whole sharing [s(i)]t and distributes the shares
to the rest of honest parties.

For each corrupted party Pi, S locally computes the shares of [s(i)]t held by corrupted parties.
Note that this does not change the distribution of the random sharings generated by honest

parties. The distribution of Hybrid0 is identical to the distribution of Hybrid1.
Hybrid2: In this hybrid, S omits the second step when preparing a random sharing for each

honest party Pi in Hybrid1. Recall that in Hybrid1, for all i ∈ [n], S has computed the shares of
[s(i)]t held by corrupted parties. For each [r(i)]t, S computes the shares of corrupted parties and
sends them to Frand.

We show that the distribution of Hybrid2 is identical to the distribution of Hybrid1.
Let MH denote the sub-matrix of M containing the columns of M with indices in H and

M Corr denote the sub-matrix of M containing the columns of M with indices in Corr. Let
([s(i)]t)H denote the vector of the sharings dealt by parties inH and ([s(i)]t)Corr denote the vector
of the sharings dealt by parties in Corr. Then,

([r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t)
T = M([s(1)]t, [s

(2)]t, . . . , [s
(n)]t)

T

= MH([s(i)]t)
T
H +M Corr([s(i)]t)

T
Corr.

Note that MH is a (t + 1) × (t + 1) matrix. By the property of Vandermonde matrices,
MH is invertible. Therefore, given the sharings {[s(i)]t}i∈Corr dealt by corrupted parties, there
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is a one-to-one map from {[s(i)]t}i∈H to {[r(i)]t}i∈[t+1]. Note that the only difference between
Hybrid1 and Hybrid2 is that, in Hybrid1, {[s(i)]t}i∈H is randomly generated (based on the
shares which have been sent to corrupted parties) while in Hybrid2, Frand directly generates
{[r(i)]t}i∈[t+1] based on the shares that corrupted parties should hold. However, this does not
change the distribution of the shares of {[r(i)]t}i∈[t+1] held by honest parties. Therefore, the
distribution of Hybrid2 is identical to the distribution of Hybrid1.

Note that Hybrid2 is the execution in the ideal world and the distribution of Hybrid2 is
identical to the distribution of Hybrid0, the execution in the real world.

5.3 Generating Random Double Sharings

We introduce a simple protocol DOUBLERAND, which comes from [28], to let all parties prepare
t + 1 = O(n) pairs of random double sharings in the semi-honest setting. Recall that a pair of
double sharings ([r]t, [r]2t) contains two sharings of the same secret value r. Double sharings
will be used to evaluate multiplication gates.

The functionality is presented in Functionality 5.3. The description of DOUBLERAND ap-
pears in Protocol 5.4. The communication complexity of DOUBLERAND isO(n2) field elements.

Figure 5.3: Functionality FdoubleRand

1. FdoubleRand receives from the adversary two sets of shares {ri}i∈Corr and {r′i}i∈Corr.
FdoubleRand view the first set as the shares of corrupted party for the degree-t sharing,
and the second set as the shares for the degree-2t sharing.

2. FdoubleRand randomly samples r and prepares the double sharings as follows.
• For the degree-t sharing, based on the secret r and the t shares {ri}i∈Corr of

corrupted parties, FdoubleRand reconstructs the whole sharing [r]t.
• For the degree-2t sharing, FdoubleRand randomly samples t elements as the shares

of the first t honest parties. Based on the secret r, the t shares of the first t honest
parties, and the t shares {r′i}i∈Corr of corrupted parties, FdoubleRand reconstructs
the whole sharing [r]2t.

Finally, FdoubleRand distributes the shares of ([r]t, [r]2t) to honest parties.

We show that this protocol securely computes Functionality 5.3 in the presence of a fully
malicious adversary.
Lemma 5.2. The protocol DOUBLERAND securely computes the functionality FdoubleRand in the
presence of a fully malicious adversary controlling t corrupted parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors
of honest parties. Recall that Corr denotes the set of corrupted parties and H denotes the set of
honest parties.
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Figure 5.4: Protocol DOUBLERAND

1. Each party Pi randomly samples a pair of double sharings ([s(i)]t, [s
(i)]2t) and dis-

tributes the shares to other parties.

2. All parties locally compute

([r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t)
T = M ([s(1)]t, [s

(2)]t, . . . , [s
(n)]t)

T

([r(1)]2t, [r
(2)]2t, . . . , [r

(t+1)]2t)
T = M ([s(1)]2t, [s

(2)]2t, . . . , [s
(n)]2t)

T

and output ([r(1)]t, [r
(1)]2t), ([r

(2)]t, [r
(2)]2t), . . . , ([r

(t+1)]t, [r
(t+1)]2t).

Simulation of DOUBLERAND. In the first step, when an honest party Pi needs to distribute a
pair of random double sharings ([s(i)]t, [s

(i)]2t), for each corrupted party Pj , S samples 2 random
elements as its shares of ([s(i)]t, [s

(i)]2t) and sends them to the adversary. For each corrupted
party Pi, S receives the shares of ([s(i)]t, [s

(i)]2t) held by honest parties. Note that S learns t+ 1
shares of [s(i)]t, which determines the whole sharing. S computes the secret s(i) and the shares
of [s(i)]t held by corrupted parties. For [s(i)]2t, S samples a random degree-2t sharing based on
the secret s(i) and the shares held by honest parties, and views this degree-2t sharing as the one
distributed by Pi.

In the second step, S computes the shares of each pair ([r(i)]t, [r
(i)]2t) held by corrupted

parties and passes these shares to FdoubleRand.

Hybrids Argument. Now we show that S perfectly simulates the behaviors of honest parties.
Consider the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S changes the way of preparing a pair of random sharings for each

honest party Pi:

1. S first randomly samples the shares of ([s(i)]t, [s
(i)]2t) held by corrupted parties and sends

them to corrupted parties.
2. Then, S randomly samples the secret s(i). Based on the secret s(i) and the t shares of [s(i)]t

held by corrupted parties, Pi reconstructs the whole sharing [s(i)]t. Based on the secret s(i)

and the shares of [s(i)]2t held by corrupted parties, Pi samples a random degree-2t sharing
[s(i)]2t (in the same way as FdoubleRand in Step 2). Then S distributes the shares to the rest
of honest parties.

For each corrupted party Pi, S locally computes the shares of ([s(i)]t, [s
(i)]2t) held by cor-

rupted parties.
Note that this does not change the distribution of the random double sharings generated by

honest parties. The distribution of Hybrid0 is identical to the distribution of Hybrid1.
Hybrid2: In this hybrid, S omits the second step when preparing a pair of random sharings

for each honest party Pi in Hybrid1. Recall that in Hybrid1, for all i ∈ [n], S has computed the
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shares of ([s(i)]t, [s
(i)]2t) held by corrupted parties. For each pair ([r(i)]t, [r

(i)]2t), S computes the
shares of corrupted parties and sends them to FdoubleRand.

We show that the distribution of Hybrid2 is identical to the distribution of Hybrid1.
Let MH denote the sub-matrix of M containing the columns of M with indices in H and

M Corr denote the sub-matrix of M containing the columns of M with indices in Corr. Let
([s(i)]t)H, ([s

(i)]2t)H denote the vectors of the sharings dealt by parties in H and ([s(i)]t)Corr,
([s(i)]2t)Corr denote the vectors of the sharings dealt by parties in Corr. Then,

([r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t)
T = M([s(1)]t, [s

(2)]t, . . . , [s
(n)]t)

T

= MH([s(i)]t)
T
H +M Corr([s(i)]t)

T
Corr

([r(1)]2t, [r
(2)]2t, . . . , [r

(t+1)]2t)
T = M([s(1)]2t, [s

(2)]2t, . . . , [s
(n)]2t)

T

= MH([s(i)]2t)
T
H +M Corr([s(i)]2t)

T
Corr

Note that MH is a (t + 1) × (t + 1) matrix. By the property of Vandermonde matrices,
MH is invertible. Therefore, given the sharings {([s(i)]t, [s

(i)]2t)}i∈Corr dealt by corrupted par-
ties, there is a one-to-one map from {([s(i)]t, [s

(i)]2t)}i∈H to {([r(i)]t, [r
(i)]2t)}i∈[t+1]. Note that

the only difference between Hybrid1 and Hybrid2 is that, in Hybrid1, {([s(i)]t, [s
(i)]2t)}i∈H is

randomly generated (based on the shares which have been sent to corrupted parties) while in
Hybrid2, FdoubleRand directly generates {([r(i)]t, [r

(i)]2t)}i∈[t+1] based on the shares that corrupted
parties should hold. However, this does not change the distribution of the shares of {[r(i)]t}i∈[t+1]

held by honest parties. To see this, note that for any double sharings {([r(i)]t, [r
(i)]2t)}i∈[t+1] gen-

erated by FdoubleRand, we can compute back to a set of valid double sharings {([s(i)]t, [s
(i)]2t)}i∈H.

Therefore, the distribution of Hybrid2 is identical to the distribution of Hybrid1.
Note that Hybrid2 is the execution in the ideal world and the distribution of Hybrid2 is

identical to the distribution of Hybrid0, the execution in the real world.

5.4 Generating Random Coins
Relying on Frand, we show how to securely generate a random field element. The functionality
Fcoin is presented in Functionality 5.5. The description of COIN appears in Protocol 5.6. The
communication complexity of COIN is O(n2) field elements.

Figure 5.5: Functionality Fcoin

1. Fcoin samples a random field element r.

2. Fcoin sends r to the adversary.
• If the adversary replies continue, Fcoin sends r to honest parties.
• If the adversary replies abort, Fcoin sends abort to honest parties.

Lemma 5.3. The protocol COIN securely computes Fcoin with abort in the Frand-hybrid model in
the presence of a fully malicious adversary controlling t corrupted parties.
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Figure 5.6: Protocol COIN

1. All parties invoke Frand to prepare a random sharing [r]t.

2. Every party Pi sends its share of [r]t to all other parties. After receiving all the shares,
Pi checks that whether [r]t is a valid sharing, i.e., all the shares lie on a polynomial of
degree at most t.
• If true, Pi reconstructs the secret r and takes it as output.
• Otherwise, Pi sends abort to all other parties and aborts.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors
of honest parties. Recall that Corr denotes the set of corrupted parties and H denotes the set of
honest parties.

Simulation of COIN. In the beginning, S receives the random element r from Fcoin. When
invoking Frand, S emulates Frand and receives a set of shares {ri}i∈Corr from the adversary. Based
on the secret r, and the shares {ri}i∈Corr held by corrupted parties, S reconstructs the whole
sharing [r]t.

After obtaining the whole sharing [r]t, S can faithfully follow the protocol in COIN. If an
honest party aborts, S sends abort to Fcoin. Otherwise, S sends continue to Fcoin.

Analysis of the security. Note that the only difference between the real world execution and
the ideal world execution is that, in the real world, the secret value r is randomly sampled by
Frand, while in the ideal world, r is received from Fcoin. However, in both Frand and Fcoin, r is
randomly sampled. Therefore, the distributions of both executions are identical.
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Chapter 6

Efficient Semi-Honest MPC Protocols

In this chapter, we will introduce two improvements to the semi-honest DN protocol in [28].
• The first improvement reduces the communication cost per multiplication gate per party

from 6 elements to 4 elements.
• The second improvement reduces the communication cost per multiplication gate per party

from 6 elements to 4.5 elements and reduce the number of rounds by a factor of 2.
Our core idea is to reuse the correlated-randomness prepared for multiplication gates.

We first give a short review of the construction in [28]. Then we introduce our two improve-
ments.

6.1 Review of the Semi-Honest DN Protocol in [28]

At a high-level, the semi-honest protocol in [28] computes a degree-t Shamir sharing for each
wire. Since the Shamir secret sharing scheme is linear homomorphic, addition gates can be
evaluated without interaction. Therefore, the main concern is the evaluation of multiplication
gates.

The Multiplication Protocol in [28]. For a multiplication gate, given two input degree-t
Shamir sharings [x]t, [y]t, the goal is to compute a degree-t Shamir sharing of the multiplica-
tion result [x · y]t. We model the ideal functionality Fmult in Functionality 6.1.

In [28], to evaluate a multiplication gate, all parties need to prepare a pair of random double
sharings ([r]t, [r]2t). This is done by invoking FdoubleRand introduced in Chapter 5.2. Recall that
the amortized communication complexity of the instanciation of FdoubleRand in [28] is 4 elements
per party.

For a multiplication gate, suppose the input sharings are denoted by [x]t, [y]t. To compute
[z]t := [x ·y]t, a pair of random double sharings ([r]t, [r]2t) is consumed. All parties first agree on
a special party Pking. Pking will help do the reconstruction in the multiplication protocol. Then,
all parties run the following steps:

1. All parties locally compute [e]2t := [x]t · [y]t + [r]2t.
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Figure 6.1: Functionality Fmult

1. Let [x]t, [y]t denote the input sharings. Fmult receives from honest parties their shares
of [x]t, [y]t. Then Fmult reconstructs the secrets x, y. Fmult further computes the shares
of [x]t, [y]t held by corrupted parties, and sends these shares to the adversary.

2. Fmult receives from the adversary a set of shares {zi}i∈Corr.
3. Fmult computes x · y. Based on the secret z := x · y and the t shares {zi}i∈Corr, Fmult

reconstructs the whole sharing [z]t and distributes the shares of [z]t to honest parties.

2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking sends the value e
to all other parties.

3. After receiving e from Pking, all parties locally compute [z]t := e− [r]t.
The correctness follows from the properties of the Shamir secret sharing scheme. Note that each
party needs to send an element to Pking, and Pking needs to send an element to each party. The
communication complexity of this protocol is 2 elements per party. Including the communication
cost for preparing double sharings, the overall cost per multiplication gate is 6 elements per party.
We formally describe the DN multiplication protocol in Protocol 6.2.

Figure 6.2: Protocol DN-MULT

1. Suppose [x]t, [y]t are the input degree-t Shamir sharings of the multiplication gate.

2. All parties invoke FdoubleRand to prepare a pair of random double sharings ([r]t, [r]2t).

3. All parties locally compute [e]2t = [x]t · [y]t + [r]2t.

4. Pking collects all shares and reconstructs the secret e = x · y + r. Then Pking sends e
to all other parties.

5. All parties locally compute [z]t = e− [r]t.

The Main Protocol in [28]. Based on Fmult, Damgård and Nielsen construct the DN protocol
as follows (described in Protocol 6.3).

We have the following theorem from [28].
Theorem 6.1 ([28]). Let n be a positive integer and F be a finite field of size |F| ≥ n + 1. For
all arithmetic circuit C over F, there is an information-theoretic n-party MPC protocol, which
achieves semi-honest security against a semi-honest adversary controlling t < n/2 corrupted
parties, with communication complexity O(|C| · n + n2) elements, where |C| is the circuit size.
Furthermore, the concrete efficiency is 6 elements per party per multiplication gate.
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Figure 6.3: Protocol DN-MAIN

1. Input Phase. Let Client1, . . . ,Clientc denote the clients who provide inputs. For
every input gate of Clienti, Clienti samples a random degree-t Shamir sharing of its
input, [x]t, and distributes the shares to all parties.

2. Evaluation Phase. All parties evaluate the circuit layer by layer.
• For each addition gate with input sharings [x]t, [y]t, all parties locally compute

the output sharing [z]t := [x]t + [y]t.
• For each multiplication gate with input sharings [x]t, [y]t, all parties invoke Fmult

to compute the output sharing [z]t = [x · y]t.

3. Output Phase. For each output gate of Clienti, let [x]t denote the input sharing. All
parties send their shares of [x]t to Clienti to let Clienti reconstruct x.

6.2 Reducing the Communication Complexity via t-wise In-
dependence

Our first improvement comes from a new protocol for Fmult. The amortized communication cost
of our new protocol is 4 elements per party. Our new protocol is based on the multiplication
protocol in [28].

In [44], Goyal et al. observe that in the second step, Pking can alternatively distribute a
degree-t Shamir sharing [e]t. Then in the last step, all parties can still compute [z]t := [e]t− [r]t.
Furthermore, since e does not need to be private, Pking can set the shares of (a predetermined
set of) t parties to be 0 in [e]t. This means that Pking need not to communication these shares
at all, reducing the communication by half. This observation allows Goyal et al. to reduce the
communication cost from 6 elements to 5.5 elements.

6.2.1 Our Observation

We observe that in the fourth step of Protocol DN-MULT, Pking can alternatively distribute a
degree-t Shamir sharing [e]t. Then in the last step, all parties can still compute [z]t := [e]t− [r]t.
By requiring Pking to generate a random sharing [e]t, when Pking is an honest party, corrupted
parties only receive t shares of a random degree-t sharing [e]t from Pking, which are uniform
and independent of the secret. As discussed in Chapter 4.2, it means that we do not need to use
uniform double sharings when Pking is honest.

For n multiplication gates, our idea is to let each party behave as Pking for one multiplication
gate. Note that only t out of n multiplications are handled by corrupted Pking’s. To make sure
that all parties still use a pair of random double sharings when Pking is corrupted, the n pairs
of double sharings for these n multiplication gates only need to be t-wise independent. To this
end, we will first generate t pairs of random double sharings, and then expand them to n pairs of
double sharings with t-wise independence.
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Specifically, all parties agree on an n× t Vandermonde matrixM . Let

([r(1)]t, [r
(1)]2t), . . . , ([r

(t)]t, [r
(t)]2t)

be t pairs of random double sharings prepared by FdoubleRand. All parties execute EXPAND (Pro-
tocol 6.4) to expand these t pairs into n pairs of t-wise independent double sharings.

Figure 6.4: Protocol EXPAND

1. All parties agree on an n× t Vandermonde matrixM . All parties locally compute

([r̃(1)]t, . . . , [r̃
(n)]t)

T = M ([r(1)]t, . . . , [r
(t)]t)

T

([r̃(1)]2t, . . . , [r̃
(n)]2t)

T = M ([r(1)]2t, . . . , [r
(t)]2t)

T

2. All parties output {([r̃(i)]t, [r̃
(i)]2t, Pi)}ni=1, where ([r̃(i)]t, [r̃

(i)]2t, Pi) will be used for a
multiplication gate handled by Pi.

Recall that Corr denotes the set of all corrupted parties. By the property of Vandermonde
matrices, there is a one-to-one map from {([r̃(i)]t, [r̃

(i)]2t)}i∈Corr to {[r(i)]t, [r
(i)]2t}ti=1. Thus,

{([r̃(i)]t, [r̃
(i)]2t)}i∈Corr are t pairs of random double sharings.

6.2.2 ATLAS Multiplication Protocol
To evaluate a multiplication gate, a pair of double sharings ([r]t, [r]2t, Pi) is consumed. All
parties execute MULT (Protocol 6.5).

Figure 6.5: Protocol MULT

1. Let ([r]t, [r]2t, Pi) be the random double sharings which will be used in the protocol.
Let [x]t, [y]t denote the input sharings.

2. All parties locally compute [e]2t = [x]t · [y]t + [r]2t.

3. Pi collects all shares and reconstructs the secret e = x · y + r. Then Pi randomly
generates a degree-t Shamir sharing [e]t and distributes the shares to other parties.

4. All parties locally compute [z]t = [e]t − [r]t.

To show the security of ATLAS multiplication protocol, we consider the scenario where
all parties evaluate a sequence of N multiplication gates. In particular, the input sharings of
each multiplication gate can depend on the input sharings or output sharings of the previous
multiplication gates. The functionality F ′mult appears in Functionality 6.6, which invokes Fmult

for each multiplication gate. One can view F ′mult as an interface of Fmult. It allows us to replace
the invocation of Fmult in the semi-honest DN protocol [28] by the invocation of F ′mult, and thus
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directly use ATLAS multiplication protocol in the semi-honest DN protocol [44]. The protocol
ATLAS-MULT appears in Protocol 6.7.

Figure 6.6: Functionality F ′mult

1. F ′mult receives N from all parties.

2. From i = 1 to N , let [x(i)]t, [y
(i)]t denote the input sharings of the i-th multiplication

gate. F ′mult invokes Fmult on [x(i)]t, [y
(i)]t.

Figure 6.7: Protocol ATLAS-MULT

1. All parties set N to be the number of multiplication gates to be evaluated.

2. All parties invoke FdoubleRand to prepare N · t/n pairs of random double sharings, and
invoke EXPAND to obtain N pairs of double sharings in the form of ([r]t, [r]2t, Pj)

3. From i = 1 to N , let [x(i)]t, [y
(i)]t denote the input sharings of the i-th multiplication

gate. Suppose ([r]t, [r]2t, Pj) is the first pair of unused double sharings. All parties
invoke MULT on [x(i)]t, [y

(i)]t and ([r]t, [r]2t, Pj).

Lemma 6.1. The protocol ATLAS-MULT securely computesF ′mult in theFdoubleRand-hybrid model
in the presence of a semi-honest adversary controlling t corrupted parties.

Proof. Recall that Corr denotes the set of corrupted parties and H denotes the set of hon-
est parties. We first show that the random degree-2t sharing [r]2t output by FdoubleRand satis-
fies that the shares of honest parties are uniformly random, and are independent of the shares
chosen by the adversary. Recall that FdoubleRand receives from the adversary two sets of shares
{ri}i∈Corr, {r′i}i∈Corr and randomly samples ([r]t, [r]2t) such that the shares of [r]t, [r]2t held by
corrupted parties are {ri}i∈Corr, {r′i}i∈Corr respectively. Consider the following sampling pro-
cess:

1. FdoubleRand randomly samples t+1 shares as the shares of [r]2t held by honest parties. Then,
FdoubleRand reconstructs the whole sharing [r]2t using the shares of honest parties and the
shares {r′i}Corr of corrupted parties, and computes the secret r.

2. FdoubleRand reconstructs the whole sharing [r]t based on the secret r and the shares {ri}i∈Corr
of corrupted parties.

Note that the above process output a pair of random double sharings with the same distribution
as that described in the original FdoubleRand. However, the shares of [r]2t held by honest parties
are randomly chosen in the first step and are independent of the shares {ri}i∈Corr, {r′i}i∈Corr.

Recall that in EXPAND, all parties compute

([r̃(1)]t, . . . , [r̃
(n)]t)

T = M ([r(1)]t, . . . , [r
(t)]t)

T

([r̃(1)]2t, . . . , [r̃
(n)]2t)

T = M ([r(1)]2t, . . . , [r
(t)]2t)

T,
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where M is a Vandermonde matrix. From the above argument, the shares of {[r(i)]2t}ti=1 held
by honest parties are uniformly random. According to the property of Vandermonde matrices,
there is a one-to-one map from {[r(i)]2t}ti=1 to {[r̃(i)]2t}i∈Corr. Thus, the shares of {[r̃(i)]2t}i∈Corr
held by honest parties are uniformly random. This means that for all double sharings in the form
of ([r]t, [r]2t, Pj) output by EXPAND, where Pj is a corrupted party, the shares of [r]2t held by
honest parties are uniformly random.

Let A denote the adversary. We will construct a simulator S to simulate the behaviors of
honest parties.

Simulation for ATLAS-MULT. In the first step, S emulatesFdoubleRand and receives the shares
of random double sharings held by corrupted parties. Then S follows EXPAND and computes the
shares of the double sharings in the form of ([r]t, [r]2t, Pj) held by corrupted parties.

In the second step, we describe the strategy of S for each invocation of MULT.

1. Let [x(i)]t, [y
(i)]t denote the input sharings. S receives from F ′mult the shares of [x(i)]t, [y

(i)]t
held by corrupted parties. Let ([r]t, [r]2t, Pj) be the first pair of unused double sharings.
Recall that S has learnt the shares of [r]t, [r]2t held by corrupted parties.

2. S computes the shares of [e(i)]2t := [x(i)]t · [y(i)]t + [r]2t held by corrupted parties. If Pj is
corrupted, S samples random elements as shares of [e(i)]2t of honest parties.

3. Depending on whether Pj is honest, there are two cases:
• If Pj is honest, S receives the shares from corrupted parties. For [e(i)]t, S samples

random elements as the shares of corrupted parties.
• If Pj is corrupted, S sends the shares of [e(i)]2t of honest parties to Pj . Then S

receives the shares of [e(i)]t of honest parties from Pj and computes the shares held
by corrupted parties.

4. In the last step, S computes the shares of [z(i)]t := [e(i)]t− [r̃(i)]t held by corrupted parties.
Then S sends the shares of [z(i)]t held by corrupted parties to F ′mult.

Analysis of the Security. Note that there are two differences between the real world execution
and the ideal world execution:

• When a multiplication gate is handled by an honest party Pj , S samples random field
elements as the shares of [e]t of corrupted parties. Note that in the real world, an honest
party Pj will generate a random degree-t Shamir sharing [e]t, which satisfies that the shares
of corrupted parties are uniformly random. Thus, the distribution of the shares of [e]t held
by corrupted parties is identical in both worlds.

• When a multiplication gate is handled by a corrupted party Pj , S samples random field
elements as the shares of [e]2t of honest parties. Recall that [e]2t = [x]t · [y]t + [r]2t. As we
argued above, when Pj is corrupted, the shares of [r]2t held by honest parties are uniformly
random. Therefore, the shares of [e]2t held by honest parties are also uniformly random.
Thus, the distribution of the shares of [e]2t held by honest parties is identical in both worlds.

Finally, regarding the outputs of honest parties, note that they are determined by the secrets and
the shares of corrupted parties. Since S computes the shares of corrupted parties and sends them
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to F ′mult, the distribution of the outputs of honest parties is identical in both worlds. We conclude
that the distribution of both worlds are identical.

6.2.3 Using F ′mult in the Semi-Honest DN protocol in [28]
In the semi-honest DN protocol in [28], all parties invokeFmult for each multiplication gate. Note
that F ′mult invoke Fmult for each multiplication. Therefore, we view F ′mult as an interface of Fmult.
All parties initialize F ′mult in the beginning of the protocol with the number of multiplications
they need to compute (which is determined by the circuit). Then we replace each invocation of
Fmult by F ′mult.

Note that every t pairs of random double sharings generated by FdoubleRand are expanded
to n pairs of double sharings. Therefore, the communication cost per pair of double sharings
is 4 · t/n ≈ 2 elements per party. The overall cost per multiplication gate is 4 elements per
party. Therefore, when using ATLAS-MULT to instantiate F ′mult, we obtain a semi-honest MPC
protocol with communication complexityO(|C|·n+n2) field elements. In particular, the concrete
efficiency per multiplication gate is 4 elements per party.
Theorem 4.1. Let n be a positive integer and F be a finite field of size |F| ≥ n + 1. For
all arithmetic circuit C over F, there is an information-theoretic n-party MPC protocol, which
achieves semi-honest security against a semi-honest adversary controlling t < n/2 corrupted
parties, with communication complexity O(|C| · n + n2) elements, where |C| is the circuit size.
Furthermore, the concrete efficiency is 4 elements per party per multiplication gate.

6.3 Reducing the Number of Rounds via Beaver Triples
For the semi-honest DN protocol in [28], multiplication gates in the same layer of the circuit
are evaluated in parallel. Therefore, the number of rounds is linear in the depth of the circuit.
To further improve the concrete efficiency, we pay our attention to the round complexity. In
this part, we show that multiplication gates in a two-layer circuit can be evaluated in parallel. It
allows us to reduce the number of rounds by a factor of 2. The amortized communication cost
per multiplication gate is 4.5 elements per party.

6.3.1 An Overview of Our Approach
We first start with a two-layer circuit. At a high-level, we use Beaver triples to evaluate multipli-
cations in the second layer. Recall that a Beaver triple consists of three degree-t Shamir sharings
([a]t, [b]t, [c]t) such that c = a · b. Usually, a Beaver triple is used to transform one multiplication
to two reconstructions. Concretely, given two sharings [x]t, [y]t, suppose we want to compute
[z]t such that z = x · y. Since

z = x · y = (x+ a− a) · (y + b− b)
= (x+ a) · (y + b)− (x+ a) · b− (y + b) · a+ a · b,

we can compute

[z]t := (x+ a) · (y + b)− (x+ a) · [b]t − (y + b) · [a]t + [c]t.
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Therefore, the task of computing [z]t becomes to reconstruct two degree-t Shamir sharings [x]t+
[a]t and [y]t + [b]t. Observe that, if we set u = x + a and v = y + b, the above equation allows
us to locally compute a degree-t Shamir sharing of z := (u − a) · (v − b) using a Beaver triple
([a]t, [b]t, [c]t). In particular, the values u, v can be learnt after preparing the Beaver triple. For
multiplications in the second layer, our idea is to transform each input sharing to the form of
u − [a]t, where u is a public element and [a]t is a degree-t Shamir sharing. We refer to this
form as the Beaver-triple friendly form. Moreover, the sharing [a]t is known to all parties before
evaluating the first layer. In this way, for an multiplication gate in the second layer with input
sharings u− [a]t and v− [b]t, we can prepare the Beaver triple ([a]t, [b]t, [c]t) in parallel with the
multiplications in the first layer.

We note that an input sharing of a multiplication gate in the second layer may come from
three places:
• This sharing is an input sharing of the circuit.
• This sharing is an output sharing of an addition gate in the first layer.
• This sharing is an output sharing of a multiplication gate in the first layer.

Note that an addition gate can be evaluated without interaction. For the first two cases, all parties
can locally compute this sharing. Let [x]t denote such a sharing. Note that [x]t = 0− (−[x]t) is
already in the Beaver-triple friendly form, and (−[x]t) is known before evaluating the first layer.
For the third case, we want the output sharing of a multiplication gate in the first layer to have the
Beaver-triple friendly form u − [a]t, and [a]t is known before evaluating this gate. We note that
the original multiplication protocol in [28] satisfies our requirement. Recall that in the original
multiplication protocol in [28]:

1. Pking reconstructs a degree-2t Shamir sharing [e]2t := [x]t · [y]t + [r]2t and sends e to other
parties.

2. All parties locally compute [z]t := e− [r]t.
In particular, the random double sharings ([r]t, [r]2t) are prepared before evaluating this gate.

In summary, a two-layer circuit can be evaluated as follows:
• For each input sharing in the second layer, all parties transform it to the Beaver-triple

friendly form, denoted by u− [a]t, such that [a]t is known to all parties.
• For each multiplication gate in the first layer, suppose [x]t, [y]t are the input sharings. All

parties use the original multiplication protocol in [28] to compute [z]t, where z = x · y.
For each multiplication gate in the second layer, suppose u − [a]t, v − [b]t are the input
sharings. All parties use our multiplication protocol MULT on [a]t, [b]t to compute [c]t,
where c = a · b. Note that these two kinds of multiplications can be computed in parallel.

• For each multiplication gate in the second layer, suppose u − [a]t, v − [b]t are the input
sharings. Note that we have learnt u, v when evaluating the first layer, and we have com-
puted the Beaver triple ([a]t, [b]t, [c]t). Therefore, all parties compute [z]t := u · v − u ·
[b]t − v · [a]t + [c]t.

We note that the original multiplication protocol in [28] requires the communication of 6
elements per party. Next, we show how to reduce the communication cost to 5 elements without
breaking the form of the output sharing.
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6.3.2 Improving the Original Multiplication Protocol in [28]
Recall that in the original multiplication protocol in [28]:

1. Pking reconstructs a degree-2t Shamir sharing [e]2t := [x]t · [y]t + [r]2t and sends e to other
parties.

2. All parties locally compute [z]t := e− [r]t.
To keep the form of the output sharing, Pking cannot replace e by a degree-t Shamir sharing [e]t.
Furthermore, to protect the secrecy of the multiplication result x · y, r needs to be uniformly
random. Our main observation is that r being uniform is not equivalent to the double sharings
([r]t, [r]2t) being uniform. To this end, we first decouple the relation between r and ([r]t, [r]2t).
Note that a pair of double sharings ([r]t, [r]2t) is equivalent to a pair of sharings ([r]t, [o]2t), where
the first sharing is a degree-t Shamir sharing of r and the second sharing is a degree-2t Shamir
sharing of o = 0. To see this, given ([r]t, [r]2t), we can set [o]2t := [r]2t − [r]t; given ([r]t, [o]2t),
we can set [r]2t := [r]t + [o]2t. When using a pair of sharings ([r]t, [o]2t), the multipliation
protocol becomes:

1. All parties locally compute [e]2t := [x]t · [y]t + [r]t + [o]2t.

2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking sends the value e
to all other parties.

3. After receiving e from Pking, all parties locally compute [z]t := e− [r]t.
Note that [o]2t is only used to compute [e]2t. When Pking is an honest party, [o]2t does not need
to be a uniformly random degree-2t sharing of 0. Thus, following the same argument as that
in Chapter 6.2, we can use t-wise independent [o]2t’s with uniformly random degree-t sharings
[r]t’s. In the following, we first introduce a protocol which allows all parties to generate random
degree-2t Shamir sharings of 0. Then, we will expand t such sharings into n sharings with t-wise
independence.

Preparing Random Degree-2t Shamir Sharings of 0. The functionality Fzero appears in
Functionality 6.8. We follow the idea of preparing random degree-t sharings in [28]. At a
high-level, each party generates and distributes a random degree-2t sharing of 0. Then, use the
transpose of a Vandermonde matrix acting as a randomness extractor to obtain t + 1 random
degree-2t sharings of 0 from the n sharings generated by each party. LetMT be a predetermined
and fixed Vandermonde matrix of size n × (t + 1) (therefore M is a (t + 1) × n matrix). The
protocol ZERO appears in Protocol 6.9. The communication complexity of ZERO is O(n2) field
elements. The amortized cost per sharing is 2 elements per party.
Lemma 6.2. The protocol ZERO securely computes the functionality Fzero in the presence of a
fully malicious adversary controlling t corrupted parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors
of honest parties. Recall that Corr denotes the set of corrupted parties and H denotes the set of
honest parties.

Simulation for ZERO. In the first step, when an honest party Pi needs to distribute a random
degree-2t sharing [o(i)]2t of o(i) = 0, for each corrupted party Pj , S samples a random element
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Figure 6.8: Functionality Fzero

1. Fzero receives from the adversary the set of shares {ri}i∈Corr.
2. Fzero randomly samples t elements as the shares of the first t honest parties. Based on

the secret o = 0, the t shares of the first t honest parties, and the t shares {ri}i∈Corr of
corrupted parties, Fzero reconstructs the whole sharing [o]2t. Fzero distributes the shares
of [o]2t to honest parties.

Figure 6.9: Protocol ZERO

1. Each party Pi randomly samples a degree-2t Shamir sharing of 0, denoted by [o(i)]2t
and distributes the shares to other parties.

2. All parties agree on a Vandermonde matrix MT of size n × (t + 1). Then M is a
matrix of size (t+ 1)× n. All parties locally compute

([õ(1)]2t, [õ
(2)]2t, . . . , [õ

(t+1)]2t)
T = M ([o(1)]2t, [o

(2)]2t, . . . , [o
(n)]2t)

T

and output [õ(1)]2t, [õ
(2)]2t, . . . , [õ

(t+1)]2t.

as its share of [o(i)]2t and sends it to the adversary. For each corrupted party Pi, S receives the
shares of [o(i)]2t held by honest parties. S samples a random degree-2t sharing based on the
secret o(i) = 0 and the shares held by honest parties, and views this degree-2t sharing as the one
distributed by Pi.

In the second step, S computes the shares of [õ(i)]2t held by corrupted parties and passes these
shares to Fzero.

Hybrid Arguments. Now we show that S perfectly simulates the behaviors of honest parties.
Consider the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S changes the way of preparing a random degree-2t Shamir sharing

[o(i)]2t of o(i) = 0 for each honest party Pi:

1. S first randomly samples the shares of [o(i)]2t held by corrupted parties and sends them to
corrupted parties.

2. Then, based on the secret o(i) = 0 and the shares of [o(i)]2t held by corrupted parties, S
samples a random degree-2t sharing [o(i)]2t (in the same way as Fzero in Step 2). Then S
distributes the shares to the rest of honest parties.

For each corrupted party Pi, S locally computes the shares of [o(i)]2t held by corrupted parties.
Note that this does not change the distribution of the random sharings generated by honest

parties. The distribution of Hybrid0 is identical to the distribution of Hybrid1.
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Hybrid2: In this hybrid, S omits the second step when preparing [o(i)]2t for each honest party
Pi in Hybrid1. Recall that in Hybrid1, for all i ∈ [n], S has computed the shares of [o(i)]2t held
by corrupted parties. For each [õ(i)]2t, S computes the shares of corrupted parties and sends them
to Fzero.

We show that the distribution of Hybrid2 is identical to the distribution of Hybrid1.
Let MH denote the sub-matrix of M containing the columns of M with indices in H and

M Corr denote the sub-matrix of M containing the columns of M with indices in Corr. Let
([o(i)]2t)H denote the vector of the sharings dealt by parties in H and ([o(i)]2t)Corr denote the
vector of the sharings dealt by parties in Corr. Then,

([õ(1)]2t, [õ
(2)]2t, . . . , [õ

(t+1)]2t)
T = M([o(1)]2t, [o

(2)]2t, . . . , [o
(n)]2t)

T

= MH([o(i)]2t)
T
H +M Corr([o(i)]2t)

T
Corr

Note that MH is a (t + 1) × (t + 1) matrix. By the property of Vandermonde matrices,
MH is invertible. Therefore, given the sharings {[o(i)]2t}i∈Corr dealt by corrupted parties, there
is a one-to-one map from {[o(i)]2t}i∈H to {[õ(i)]2t}i∈[t+1]. Note that the only difference between
Hybrid1 and Hybrid2 is that, in Hybrid1, {[o(i)]2t}i∈H are randomly generated (based on the
shares which have been sent to corrupted parties) while in Hybrid2, Fzero directly generates
{[õ(i)]2t}i∈[t+1] based on the shares that corrupted parties should hold. However, this does not
change the distribution of the shares of {[õ(i)]2t}i∈[t+1] held by honest parties. To see this, note
that for any sharings {[õ(i)]2t}i∈[t+1] generated by Fzero, we can compute back to a set of valid
sharings {[o(i)]2t}i∈H. Therefore, the distribution of Hybrid2 is identical to the distribution of
Hybrid1.

Note that Hybrid2 is the execution in the ideal world and the distribution of Hybrid2 is
identical to the distribution of Hybrid0, the execution in the real world.

The Improved Multiplication Protocol. For a sequence of n multiplication gates, all parties
first prepare n random degree-t Shamir sharings using Frand, denoted by

[r(1)]t, . . . , [r
(n)]t.

Recall that the amortized communication cost of the instantiation of Frand in [28, 42] is 2 ele-
ments per sharing per party. Then, all parties invoke Fzero to prepare t random degree-2t Shamir
sharings of 0, denoted by

[o(1)]t, . . . , [o
(t)]t.

These t sharings are expanded to n sharings with t-wise independence. As EXPAND, we will
use a predetermined n × t Vandermonde matrix M . The protocol EXPANDZERO appears in
Protocol 6.10.

For the i-th multiplication gate, we will use ([r(i)]t, [õ
(i)]2t, Pi) and Pi will act as Pking. The

protocol IMPROVED-DN-MULT appears in Protocol 6.11. As for the amortized communication
cost per gate:
• Preparing one random degree-t Shamir sharing using Frand requires to communicate 2

elements per party.
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Figure 6.10: Protocol EXPANDZERO

1. All parties agree on an n× t hyper-intertible matrixM . All parties locally compute

([õ(1)]2t, . . . , [õ
(n)]2t)

T = M ([o(1)]2t, . . . , [o
(t)]2t)

T

2. All parties output {([õ(i)]2t, Pi)}ni=1, where ([õ(i)]2t, Pi) will be used for a multiplication
gate handled by Pi.

• Preparing one t-wise independent degree-2t Shamir sharing of 0 using Fzero and EX-
PANDZERO requires to communicate 2 · t/n elements per party.

• The protocol IMPROVED-DN-MULT requires to communicate 2 elements per party.
In summary, the amortized communication cost per gate is 5 elements per party.

Figure 6.11: Protocol IMPROVED-DN-MULT

1. Let ([r]t, [o]2t, Pi) be the random sharings which will be used in the protocol. Let
[x]t, [y]t denote the input sharings.

2. All parties locally compute [e]2t = [x]t · [y]t + [r]t + [o]2t.

3. Pi collects all shares and reconstructs the secret e = x · y+ r. Then Pi sends e to other
parties.

4. All parties locally compute [z]t = e− [r]t.

6.3.3 Evaluating a Two-Layer Circuit

Given a two-layer circuit, we assume that all parties hold a degree-t Shamir sharing for each
input wire in the beginning. As described above, we will use IMPROVED-DN-MULT to evaluate
multiplication gates in the first layer. For multiplication gates in the second layer, note that all
parties only need to obtain the output sharings. Therefore, we can use MULT, which only requires
4 elements per gate per party, to evaluate multiplication gates in the second layer.

Suppose there are N1 multiplication gates in the first layer, and N2 multiplication gates in
the second layer. We assume that all parties have prepared the correlated randomness associated
with these multiplication gates, i.e., N1 pairs of sharings in the form of ([r]t, [o]t, Pi), and N2

pairs of sharings in the form of ([r]t, [r]2t, Pi). In the main protocol, these sharings are prepared
together at the beginning of the protocol. Then all parties execute EVALUATE (Protocol 6.12) to
compute the output sharings of this circuit.
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Figure 6.12: Protocol EVALUATE

1. All parties start with holding a degree-t Shamir sharing for each input wire of this
circuit. For each multiplication gate in the second layer, we will transform the input
sharings to the Beaver-triple friendly form u− [a]t. Consider the following three cases.
• If this sharing is an input sharing of the circuit, denoted by [x]t, all parties set
u := 0 and [a]t := −[x]t.

• If this sharing is an output sharing of an addition gate in the first layer, all parties
first locally compute this sharing, denoted by [x]t, and then set u := 0 and [a]t :=
−[x]t.

• If this sharing is an output sharing of a multiplication gate in the first layer, sup-
pose ([r]t, [o]2t, Pi) are associated with this gate. All parties set [a]t := [r]t. The
value u, which corresponds to e in IMPROVED-DN-MULT, will be computed
when this multiplication gate is evaluated.

2. For each multiplication gate with input sharings [x]t, [y]t in the first layer, all parties in-
voke IMPROVED-DN-MULT to compute [z]t where z := x · y. For each multiplication
gate with input sharings (u− [a]t), (v− [b]t) in the second layer, where all parties have
learnt the sharings [a]t, [b]t, all parties invoke MULT to compute [c]t where c := a · b.

3. For each multiplication gate in the first layer, let e be the reconstruction result dis-
tributed by Pking in IMPROVED-DN-MULT. If the output sharing of this gate is used
as an input sharing of a multiplication gate in the second layer, all parties set u := e
for this input sharing.

4. Finally, for each multiplication gate with input sharings (u − [a]t), (v − [b]t) in the
second layer, all parties locally compute

[z]t := u · v − u · [b]t − v · [a]t + [c]t

as the output sharing of this gate.

6.3.4 Main Protocol

Now we are ready to present the main protocol. Recall that we are in the client-server model.
In particular, all the inputs belong to the clients, and only the clients receive the outputs. The
functionality Fmain appears in Functionality 6.13.

As the semi-honest DN protocol [28], our protocol includes 3 phases:
• Input Phase: The clients will share their inputs to the parties.
• Evaluation Phase: The whole circuit will be partitioned into a sequence of two-layer sub-

circuits. We will evaluate each sub-circuit using EVALUATE.
• Output Phase: All parties reconstruct the outputs to the clients.

The protocol MAIN-ROUND appears in Protocol 6.14.
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Figure 6.13: Functionality Fmain

1. Fmain receives from all clients their inputs.

2. Fmain evaluates the circuit and computes the output. Fmain distributes the output to all
clients.

Figure 6.14: Protocol MAIN-ROUND

1. Input Phase:
Let Client1, . . . ,Clientc denote the clients who provide inputs. For every input gate
of Clienti, Clienti samples a random degree-t Shamir sharing of its input, [x]t, and
distributes the shares to all parties.

2. Evaluation Phase – Preparing Correlated Randomness:
All parties start with holding a degree-t sharing for each input gate. The circuit is
partitioned into a sequence of two-layer sub-circuits. Let N1 denote the number of
multiplications in the first layer of all sub-circuits, and N2 denote the number of mul-
tiplications in the second layer of all sub-circuits. All parties prepare the correlated
randomness as follows:
• All parties invoke Frand to prepare N1 random degree-t Shamir sharings. Then

all parties invoke Fzero to prepare N1 · t/n random degree-2t Shamir sharings of
0, and invoke EXPANDZERO to obtain N1 degree-2t Shamir sharings of 0. These
sharings are transformed to N1 pairs of sharings in the form of ([r]t, [o]2t, Pi).

• All parties invoke FdoubleRand to prepare N2 · t/n pairs of random double sharings.
Then all parties invoke EXPAND to obtainN2 pairs of double sharings in the form
of ([r]t, [r]2t, Pi).

3. Evaluation Phase – Evaluating Two-Layer Circuits:
All sub-circuits are evaluated in a predetermined topological order. For each sub-
circuit with all the input sharings prepared, all parties invoke EVALUATE to compute
the output sharings.

4. Output Phase:
For each output gate of Clienti, let [x]t denote the input sharing. All parties send their
shares of [x]t to Clienti to let Clienti reconstruct x.

Lemma 6.3. Let c be the number of clients and n = 2t+1 be the number of parties. The protocol
MAIN-ROUND securely computes the ideal functionality Fmain in the {Frand,Fzero,FdoubleRand,
Fcoin,FmultVerify}-hybrid model in the presence of a semi-honest adversary controlling up to c
clients and t parties.

Proof. As we argued in Chapter 2, it is sufficient to focus on adversaries who control exactly t
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parties. The correctness of MAIN-ROUND follows from the description.
Let A denote the adversary. We will construct a simulator S to simulate the behaviors of

honest parties and honest clients. Recall that Corr denotes the set of corrupted parties and H
denotes the set of honest parties.

Simulation for MAIN-ROUND. We describe the strategy of S phase by phase.

• Simulation for Input Phase:
For an input x belongs to an honest client, S randomly samples t elements as the shares of
[x]t of corrupted parties. Then S sends these shares to corrupted parties.
For an input x belongs to a corrupted client, S receives from the adversary the shares held
by honest parties. Note that, S learns t+ 1 shares of [x]t. S reconstructs the whole sharing
[x]t and sends x as the input of this corrupted client to Fmain.
Note that for each input sharing, S learns the shares held by corrupted parties.

• Simulation for Evaluation Phase – Preparing Correlated Randomness:
In this part, S emulates Frand,Fzero,FdoubleRand and receives the shares of corrupted parties.
S follows the protocol EXPANDZERO and EXPAND to compute the shares of corrupted
parties.

• Simulation for Evaluation Phase – Evaluating Two-Layer Circuits:
In this part, S simulates the behaviors of honest parties in EVALUATE for each sub-circuit.
For each sub-circuit with all the input sharings prepared, S will know the shares held by
corrupted parties. Note that this is true for the first sub-circuit. We describe the strategy of
S step by step.

In the first step, S follows the protocol to compute the shares of corrupted parties for
the input sharings of each multiplication gate in the second layer.
In the second step, S simulates IMPROVED-DN-MULT and MULT as follows. For
IMPROVED-DN-MULT:
− Let [x]t, [y]t denote the input sharings. S has computed the shares of [x]t, [y]t

held by corrupted parties. Let ([r]t, [o]2t, Pi) denote the sharings associated with
this gate. S learns the shares of [r]t, [o]2t held by corrupted parties when emulat-
ing Frand,Fzero and simulating EXPANDZERO.

− S computes the shares of [e]2t := [x]t · [y]t+[r]t+[o]2t held by corrupted parties.
If Pi is corrupted, S samples random elements as the shares of [e]2t of honest
parties.

− Depending on whether Pi is honest, there are two cases:
· If Pi is honest, S receives the shares from corrupted parties. S samples a

random element as e and sends e to corrupted parties.
· If Pi is corrupted, S sends the shares of [e]2t of honest parties to Pi. S

receives e from Pi.
− In the last step, S computes the shares of [z]t := e − [r]t held by corrupted

parties.
For MULT:
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− Let [x]t, [y]t denote the input sharings. S has computed the shares of [x]t, [y]t
held by corrupted parties. Let ([r]t, [r]2t, Pi) denote the sharings associated with
this gate. S learns the shares of [r]t, [r]2t held by corrupted parties when emulat-
ing FdoubleRand and simulating EXPAND.

− S computes the shares of [e]2t := [x]t · [y]t+ [r]2t held by corrupted parties. If Pi
is corrupted, S samples random elements as the shares of [e]2t of honest parties.

− Depending on whether Pi is honest, there are two cases:
· If Pi is honest, S receives the shares from corrupted parties. For [e]t, S

samples random elements as the shares of corrupted parties.
· If Pi is corrupted, S sends the shares of [e]2t of honest parties to Pi. Then, S

receives the shares of [e]t of honest parties from Pi and computes the shares
held by corrupted parties.

− In the last step, S computes the shares of [z]t := [e]t − [r]t held by corrupted
parties.

In the rest of two steps (which only contain local computation), S follows the protocol
and computes the shares of corrupted parties for each degree-t Shamir sharing.

• Simulation for Output Phase:
For each output gate with [x]t associated with it, if the receiver is an honest client, S
receives from the adversary the shares held by corrupted parties.
If the receiver is a corrupted client, S receives the result x from Fmain. Then, based on the
shares of [x]t held by corrupted parties and the secret x, S reconstructs the shares held by
honest parties, and sends these shares to the adversary.

Hybrid Arguments. Now we show that S perfectly simulates the behaviors of honest parties.
Consider the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S computes the input of corrupted clients and sends them to Fmain.

The distribution of Hybrid1 is identical to Hybrid0.
Hybrid2: In this hybrid, S simulates the output phase as described above. The only differ-

ence is that, for a corrupted client, the shares of honest parties are computed from the secret
received from Fmain and the shares held by corrupted parties. Note that for a degree-t Shamir
sharing, the shares of honest parties are fully determined by the secret and the shares of cor-
rupted parties. By the correctness of MAIN-ROUND, the secret received from Fmain is identical
to that in the real world. Therefore, the shares prepared by S are identical to the real shares held
by honest parties.

Therefore, the distribution of Hybrid2 is identical to the distribution of Hybrid1.
Hybrid3: In this hybrid, S simulates EVALUATE. Since the parts which require interaction

are IMPROVED-DN-MULT and MULT, we only focus on the simulation of these two protocols.
We argue the following two points:

• When a corrupted party Pi behaves as Pking, the shares of [e]2t of honest parties are uni-
formly random in both IMPROVED-DN-MULT and MULT.

• The value e distributed by Pking is uniformly random in IMPROVED-DN-MULT.
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For the first point, following from a similar argument in Lemma 6.1, the random sharing [r]t +
[o]2t in IMPROVED-DN-MULT and the random sharing [r]2t in MULT satisfy that the shares of
honest parties are uniformly random when Pking is a corrupted party. Therefore, the shares of
[e]2t of honest parties are uniformly random. For the second point, since we use a uniformly
random [r]t in each IMPROVED-DN-MULT, the secret e = x · y + r is uniformly random.

Note that the differences between Hybrid3 and Hybrid2 are that:

• When a corrupted party Pi behaves as Pking, S uses uniformly random field elements as
the shares of [e]2t of honest parties in both IMPROVED-DN-MULT and MULT.

• When an honest party Pi behaves as Pking, S distributes a uniformly random element as e
in IMPROVED-DN-MULT and uses uniformly random field elements as the shares of [e]t
of corrupted parties in MULT.

Following from the above two points and the property of degree-t Shamir sharings, the distribu-
tion of Hybrid3 is identical to the distribution of Hybrid2.

Hybrid4: In this hybrid, S emulates Frand,FdoubleRand,Fzero and simulates EXPANDZERO and
EXPAND as described above. Note that only the shares of corrupted parties are used in Hybrid3.
Therefore, the distribution of Hybrid4 is identical to the distribution of Hybrid3.

Hybrid5: In this hybrid, S simulates the input phase. The only difference is that, in Hybrid4,
S uses the real input of honest clients to generate the input sharings, while in Hybrid5, S simply
samples random elements as the shares of corrupted parties. Note that the distributions of the
shares of corrupted parties in both hybrids are the same. Therefore, the distribution of Hybrid5

is the same as Hybrid4.
Note that Hybrid5 is the execution in the ideal world, and the distribution of Hybrid5 is

identical to the distribution of Hybrid0, the execution in the real world.

Analysis of the Concrete Efficiency. In MAIN-ROUND, all multiplication gates in the first
layer of all sub-circuits are evaluated by IMPROVED-DN-MULT, which requires 5 elements per
party per gate. All multiplication gates in the second layer of all sub-circuits are evaluated by
MULT, which requires 4 elements per party per gate. Assuming that the number of multiplication
gates in the first layer is roughly the same as the number of multiplication gates in the second
layer, the concrete efficiency of MAIN-ROUND is 4.5 elements per party per gate. Note that each
sub-circuit is evaluated within one round of multiplication. Therefore, we reduce the number of
rounds by a factor of 2. The overall communication complexity is O(|C| ·n+n2) field elements.
Theorem 4.2. Let n be a positive integer and F be a finite field of size |F| ≥ n + 1. For
all arithmetic circuit C over F, there is an information-theoretic n-party MPC protocol, which
achieves semi-honest security against a semi-honest adversary controlling t < n/2 corrupted
parties, with communication complexity O(|C| · n + n2) elements, where |C| is the circuit size.
Furthermore, the concrete efficiency is 4.5 elements per party per multiplication gate but halving
the number of rounds.
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Chapter 7

Fast Verification for a Batch of
Multiplication Tuples

In this chapter, we introduce our new method to efficiently verify a batch of multiplication tuples.
In [38], Genkin et al. showed that the semi-honest DN protocol is secure up to an additive attack
in the presence of a fully malicious adversary. An additive attack means that the adversary is able
to change the multiplication result by adding an arbitrary fixed value. As one corollary, the DN
protocol provides full privacy of honest parties before reconstructing the output. Therefore, a
straightforward strategy to achieve security-with-abort is to (1) run the semi-honest DN protocol
till the output phase, (2) check the correctness of the computation, and (3) reconstruct the output
only if the check passes.

Following from [24], we model the additive attack in the functionality Fmult-mal, which takes
two degree-t Shamir sharings [x]t, [y]t and outputs the multiplication result [x · y]t. The descrip-
tion of Fmult-mal can be found in Functionality 7.1.

Figure 7.1: Functionality Fmult-mal

1. Let [x]t, [y]t denote the input sharings. Fmult-mal receives from honest parties their
shares of [x]t, [y]t. Then Fmult-mal reconstructs the secrets x, y. Fmult-mal further com-
putes the shares of [x]t, [y]t held by corrupted parties, and sends these shares to the
adversary.

2. Fmult-mal receives from the adversary a value d and a set of shares {zi}i∈Corr.
3. Fmult-mal computes x·y+d. Based on the secret z := x·y+d and the t shares {zi}i∈Corr,
Fmult-mal reconstructs the whole sharing [z]t and distributes the shares of [z]t to honest
parties.

Since Fmult-mal does not guarantee the correctness of the multiplications, all parties need to
verify the multiplication tuples computed byFmult-mal at the end of the protocol. The functionality
FmultVerify takes N multiplication tuples as input and outputs to all parties a single bit b indicat-
ing whether all multiplication tuples are correct. The description of FmultVerify can be found in
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Functionality 7.2.

Figure 7.2: Functionality FmultVerify

1. Let N denote the number of multiplication tuples. The multiplication tuples are de-
noted by

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(N)]t.[y
(N)]t, [z

(N)]t).

2. For all i ∈ [N ], FmultVerify receives from honest parties their shares of [x(i)]t, [y(i)]t,
[z(i)]t. ThenFmultVerify reconstructs the secrets x(i), y(i), z(i). FmultVerify further computes
the shares of [x(i)]t, [y

(i)]t, [z
(i)]t held by corrupted parties and sends these shares to the

adversary.

3. For all i ∈ [N ],FmultVerify computes d(i) = z(i)−x(i) ·y(i) and sends d(i) to the adversary.

4. Finally, let b ∈ {abort, accept} denote whether there exists i ∈ [N ] such that d(i) 6=
0. FmultVerify sends b to the adversary and waits for its response.
• If the adversary replies continue, FmultVerify sends b to honest parties.
• If the adversary replies abort, FmultVerify sends abort to honest parties.

WithFmultVerify, we can compile the semi-honest DN protocol to a maliciously secure one (see
more discussion in Chapter 7.4). Our main contribution is an efficient verification protocol that
realizes FmultVerify with sub-linear communication complexity in the number of multiplication
tuples1. We first review two building blocks from previous works.

7.1 Extension of the DN Multiplication Protocol
In this part, we review a natural extension to the DN Multiplication Protocol [28]. Recall that the
original DN multiplication protocol uses a pair of random double sharings for each multiplication
gate. The idea is to locally compute a degree-2t Shamir sharing of the multiplication result, and
then ask Pking to do degree reduction. In [38], Genkin et al. prove that the semi-honest DN
protocol is secure up to an additive attack in the presence of a fully malicious adversary.
Lemma 7.1 ([38]). The protocol DN-MULT securely computes the functionality Fmult-mal in the
FdoubleRand-hybrid model in the presence of a fully malicious adversary controlling t corrupted
parties.

In essence, the DN Multiplication Protocol does a degree reduction from [x · y]2t = [x]t · [y]t
to [x · y]t. For two vectors of degree-t Shamir sharings ([x1]t, . . . , [x`]t) and ([y1]t, . . . , [y`]t),
to compute [z]t = [

∑`
j=1 xj · yj]t, we can first compute [

∑`
j=1 xj · yj]2t =

∑`
j=1[xj]t · [yj]t

and then use the same idea as the DN Multiplication Protocol to compute [
∑`

j=1 xj · yj]t from

1We note that a concurrent work [17] also realizes Functionality 7.2 with sub-linear communication complexity
in the number of multiplication tuples based on [13].
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[
∑`

j=1 xj · yj]2t. In this way, the cost is just one multiplication operation. This idea has been
observed in several previous works and in particular, has been used in [24] to design an MPC
protocol for a small field.

The description of the functionality FextendMult appears in Functionality 7.3, and the descrip-
tion of the extended DN Multiplication Protocol (denoted by EXTEND-MULT) appears in Proto-
col 7.4. The communication complexity of EXTEND-MULT is O(n) field elements.

Figure 7.3: Functionality FextendMult

1. Let ([x1]t, . . . , [x`]t) and ([y1]t, . . . , [y`]t) denote the input vectors of sharings.
FextendMult receives from honest parties their shares of ([x1]t, . . . , [x`]t) and
([y1]t, . . . , [y`]t). Then FextendMult reconstructs the secrets x1, . . . , x` and y1, . . . , y`.
FextendMult further computes the shares of ([x1]t, . . . , [x`]t) and ([y1]t, . . . , [y`]t) held by
corrupted parties, and sends these shares to the adversary.

2. FextendMult receives from the adversary a value d and a set of shares {zi}i∈Corr.
3. FextendMult computes z = d +

∑`
j=1 xj · yj . Based on the secret z and the t shares

{zi}i∈Corr, FextendMult reconstructs the whole sharing [z]t and distributes the shares of
[z]t to honest parties.

Figure 7.4: Protocol EXTEND-MULT

1. All parties agree on a special party Pking. Let ([x1]t, . . . , [x`]t) and ([y1]t, . . . , [y`]t)
denote the input vectors of sharings.

2. All parties invoke FdoubleRand to prepare a pair of random double sharings ([r]t, [r]2t).

3. All parties locally compute [e]2t =
∑`

j=1[xj]t · [yj]t + [r]2t.

4. Pking collects all shares and reconstructs the secret value e. Then Pking randomly
generates a degree-t sharing [e]t and distributes the shares to other parties.

5. All parties locally compute [z]t = [e]t − [r]t.

Lemma 7.2. The protocol EXTEND-MULT securely computes the functionality FextendMult in the
FdoubleRand-hybrid model in the presence of a fully malicious adversary controlling t corrupted
parties.

Proof. Recall that Corr denotes the set of corrupted parties and H denotes the set of honest
parties. Recall that in Lemma 6.1, we have argued that the random degree-2t sharing [r]2t output
byFdoubleRand satisfies that the shares of honest parties are uniformly random, and are independent
of the shares chosen by the adversary.

Let A denote the adversary. We will construct a simulator S to simulate the behaviors of
honest parties.
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Simulation of EXTEND-MULT. In the beginning, S receives from FextendMult the shares of
([x1]t, . . . , [x`]t) and ([y1]t, . . . , [y`]t) held by corrupted parties. When invoking FdoubleRand, S
emulates FdoubleRand and receives from the adversary the shares of [r]t, [r]2t held by corrupted
parties.

In Step 3, for each honest party, S samples a random element as its share of [e]2t. For each
corrupted party, S computes its share of [e]2t. Then S reconstructs the secret e. Depending on
whether Pking is an honest party, there are two cases:

• If Pking is an honest party, S receives from corrupted parties their shares of [e]2t (which
can be different from the shares computed by S). S uses these shares and the shares of
honest parties to reconstruct the secret e′. Then, S computes the difference d := e′ − e. S
randomly generates a degree-t Shamir sharing [e′]t and distributes the shares to corrupted
parties.

• If Pking is a corrupted party, S sends the shares of [e]2t of honest parties to Pking. S receives
from Pking the shares of [e]t held by honest parties. Then S reconstructs the secret e′ and
computes the difference d := e′ − e. S also computes the shares of [e]t held by corrupted
parties.

In Step 5, S computes the shares of [z]t held by corrupted parties. Note that S has computed
the shares of [e]t held by corrupted parties and received the shares of [r]t held by corrupted parties
when emulating FdoubleRand. Finally, S sends the difference d and the shares of [z]t of corrupted
parties to Fmult.

Hybrids Argument. Now we show that S perfectly simulates the behaviors of honest parties.
Consider the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S computes the difference d and the shares of [z]t held by corrupted

parties as described above. S sends d and the shares of [z]t of corrupted parties to FextendMult.
Each honest party uses the share received from FextendMult instead of the real share.

Note that the shares of [z]t held by honest parties are determined by the shares of corrupted
parties and the secret, which is determined by the inner-product result

∑`
j=1 xj · yj and the

difference d. Therefore, the distribution of Hybrid1 is the same as Hybrid0.
Hybrid2: In this hybrid, S simulates honest parties in the whole protocol EXTEND-MULT.

Note that the only difference is that, in Hybrid1, S uses the real shares of [e]2t of honest parties,
while in Hybrid2, S generates random elements as the shares of [e]2t of honest parties. However,
as we have argued in Lemma 6.1, the shares of [r]2t held by honest parties are uniformly random.
Therefore, the shares of [e]2r :=

∑`
j=1[xj]t · [yj]t+[r]2t held by honest parties are also uniformly

random. Thus, the distribution of Hybrid2 is the same as Hybrid1.
Note that Hybrid2 is the execution in the ideal world, and the distribution of Hybrid2 is

identical to the distribution of Hybrid0, the execution in the real world.
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7.2 Extension of the Batch-wise Multiplication Verification Tech-
nique

In this part, we review a natural extension to the batch-wise multiplication verification tech-
nique [10]. We first review the basic technique, which is used to check the correctness of a batch
of multiplication tuples efficiently.

Overview of the Batch-wise Multiplication Verification Technique. For simplicity, suppose
that we are working on a large enough finite field K (with |K| ≥ 2κ, where κ is the security
parameter). Given m multiplication tuples

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t, [y
(m)]t, [z

(m)]t),

we want to check whether x(i) · y(i) = z(i) for all i ∈ {1, 2, . . . ,m}.
The high-level idea is constructing three polynomials f(·), g(·), h(·) such that

∀i ∈ [m], f(i) = x(i), g(i) = y(i), h(i) = z(i).

Then check whether f · g = h. Here f(·), g(·) are set to be degree-(m − 1) polynomials in
K so that they can be determined by {x(i)}mi=1, {y(i)}mi=1 respectively. In this case, h(·) should
be a degree-2(m − 1) polynomial which is determined by 2m − 1 values. To this end, for
i ∈ {m + 1, . . . , 2m− 1}, we need to compute z(i) = f(i) · g(i) so that h(·) can be determined
by {z(i)}2m−1

i=1 .
In more detail, all parties first locally compute [f(·)]t, [g(·)]t using {[x(i)]t}mi=1 and {[y(i)]t}mi=1

respectively. For i ∈ {m + 1, . . . , 2m − 1}, all parties locally compute [f(i)]t, [g(i)]t and then
invoke Fmult-mal to compute [z(i)]t. Finally, all parties locally compute [h(·)]t using {[z(i)]t}2m−1

i=1 .
Note that if x(i) ·y(i) = z(i) for all i ∈ {1, 2, . . . , 2m−1}, then we have f ·g = h. Otherwise,

we must have f · g 6= h. Therefore, it is sufficient to check whether f · g = h. Since h(·)
is a degree-2(m − 1) polynomials, in the case that f · g 6= h, the number of x ∈ K such that
f(x) · g(x) = h(x) holds is at most 2(m − 1). Therefore, by randomly selecting x ∈ K, with
probability 2(m− 1)/|K| we have f(x) · g(x) 6= h(x).

Therefore, to check whether f ·g = h, all parties invoke Fcoin to generate a random challenge
r. All parties locally compute [f(r)]t, [g(r)]t and [h(r)]t. It is sufficient to only check whether
([f(r)]t, [g(r)]t, [h(r)]t) is a correct multiplication tuple.

Checking the Single Multiplication Tuple. In [10], this check is done using an “expensive”
MPC protocol. Since we only need to check the final multiplication tuple, the cost of this
check does not affect the overall communication complexity. In [60], a random multiplica-
tion tuple is included when using the batch-wise multiplication verification technique (so that
the technique applies on m + 1 multiplication tuples). In this way, revealing the whole sharings
([f(r)]t, [g(r)]t, [h(r)]t) does not compromise the security of the original m multiplication tu-
ples. Therefore, all parties simply send their shares of [f(r)]t, [g(r)]t, [h(r)]t to all other parties
and then check whether f(r) · g(r) = h(r).
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Description of COMPRESS. In essence, this technique compresses m checks of multiplication
tuples into 1 check of a single tuple. The protocol takes m multiplication tuples as input and
outputs a single tuple. We refer to this protocol as COMPRESS. The description of COMPRESS

appears in Protocol 7.5. The communication complexity of COMPRESS is O(mn + n2) field
elements.

Figure 7.5: Protocol COMPRESS

1. The multiplication tuples are denoted by

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t.[y
(m)]t, [z

(m)]t).

2. Let f(·), g(·) be degree-(m− 1) polynomials such that

∀i ∈ {1, 2, . . . ,m}, f(i) = x(i), g(i) = y(i).

All parties locally compute [f(·)]t and [g(·)]t by using {[x(i)]t}mi=1 and {[y(i)]t}mi=1 re-
spectively.

3. For all i ∈ {m + 1, . . . , 2m − 1}, all parties locally compute [f(i)]t and [g(i)]t, and
then invoke Fmult-mal on ([f(i)]t, [g(i)]t) to compute [z(i)]t = [f(i) · g(i)]t.

4. Let h(·) be a degree-2(m− 1) polynomials such that

∀i ∈ {1, 2, . . . , 2m− 1}, h(i) = z(i).

All parties locally compute [h(·)]t by using {[z(i)]t}2m−1
i=1 .

5. All parties invoke Fcoin to generate a random field element r. If r ∈ {1, 2, . . . ,m}, all
parties abort. Otherwise, output ([f(r)]t, [g(r)]t, [h(r)]t).

Lemma 7.3. If at least one multiplication tuple is incorrect, then the resulting tuple output by
COMPRESS is incorrect with probability 1− 3m−2

|K| .

Proof. Suppose there is at least one incorrect multiplication tuple. We first count the number of
r which causes either an abort of the protocol or a correct output tuple.

In COMPRESS, all parties abort if r ∈ {1, 2, . . . ,m}. Therefore, there are m choices of r
which causes an abort of the protocol. Since there is at least one incorrect multiplication tuple,
we have f · g 6= h. Since the polynomial h− f · g is a degree-2(m− 1) non-zero polynomial, the
number of r ∈ K such that h(r)−f(r)·g(r) = 0 is at most 2(m−1). Therefore, there are at most
2(m−1) choices of r which causes a correct output tuple. In total, the number of r which causes
either an abort of the protocol or a correct output tuple is bounded by m+ 2(m− 1) = 3m− 2.

Since r is randomly sampled by Fcoin, the probability that Fcoin outputs such a bad r is
bounded by 3m−2

|K| . Therefore, with probability 1 − 3m−2
|K| , the tuple output by COMPRESS is

incorrect.
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Extension. A natural extension of the batch-wise multiplication verification technique is to
check the correctness of m inner-product tuples. This idea has been observed in [60].

Given m inner-product tuples

{(([x(i)
1 ]t, . . . , [x

(i)
` ]t), ([y

(i)
1 ]t, . . . , [y

(i)
` ]t), [z

(i)]t)}mi=1,

we want to check whether
∑`

j=1 x
(i)
j ·y

(i)
j = z(i) for all i ∈ {1, 2, . . . ,m}. The idea is to construct

two vectors of degree-(m− 1) polynomials (f1(·), . . . , f`(·)) and (g1(·), . . . , g`(·)) such that

∀i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , `}, fj(i) = x
(i)
j , gj(i) = y

(i)
j .

All parties can locally compute ([f1(·)]t, . . . , [f`(·)]t) by using {([x(i)
1 ]t, . . . , [x

(i)
` ]t)}mi=1. Simi-

larly, they can locally compute ([g1(·)]t, . . . , [g`(·)]t) by using {([y(i)
1 ]t, . . . , [y

(i)
` ]t)}mi=1.

For i ∈ {m+1, . . . , 2m−1}, all parties compute ([f1(i)]t, . . . , [f`(i)]t) and ([g1(i)]t, . . . , [g`(i)]t),
and then compute the degree-t Shamir sharing [z(i)]t by invoking FextendMult on these two vectors
of sharings. Let h(·) be a degree-2(m− 1) polynomial such that

∀i ∈ {1, 2, . . . , 2m− 1}, h(i) = z(i).

All parties can locally compute [h(·)]t by using {[z(i)]t}2m−1
i=1 .

The remaining steps are similar to that in COMPRESS. We refer to this extension as EXTEND-
COMPRESSION. The description of EXTEND-COMPRESS appears in Protocol 7.6. The commu-
nication complexity of EXTEND-COMPRESS is O(mn+ n2) field elements.
Lemma 7.4. If at least one inner-product tuple is incorrect, then the resulting tuple output by
EXTEND-COMPRESS is incorrect with probability 1− 3m−2

|K| .
This lemma can be proved in the same way as that for Lemma 7.3. Therefore, for simplicity,

we omit the details.

7.3 Our Verification Protocol

7.3.1 Step One: De-Linearization
The first step is to transform the check of m multiplication tuples into one check of an inner-
product tuple of dimension m. The description of DE-LINEARIZATION appears in Protocol 7.7.
The communication complexity of DE-LINEARIZATION is O(n2) elements in K.
Lemma 7.5. If at least one multiplication tuple is incorrect, then the resulting inner-product
tuple output by DE-LINEARIZATION is also incorrect with overwhelming probability.

Proof. Suppose there is at least one incorrect multiplication tuple. We first count the number of
r which causes a correct output tuple.

Consider the following two polynomials of degree-(m− 1) in K:

F (X) = (x(1) · y(1)) + (x(2) · y(2))X + . . .+ (x(m) · y(m))Xm−1

G(X) = z(1) + z(2)X + . . .+ z(m)Xm−1.
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Figure 7.6: Protocol EXTEND-COMPRESS

1. The inner-product tuples are denoted by

{(([x(i)
1 ]t, . . . , [x

(i)
` ]t), ([y

(i)
1 ]t, . . . , [y

(i)
` ]t), [z

(i)]t)}mi=1

2. Let (f1(·), . . . , f`(·)) and (g1(·), . . . , g`(·)) be vectors of degree-(m − 1) polynomials
such that

∀i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , `}, fj(i) = x
(i)
j , gj(i) = y

(i)
j .

All parties locally compute ([f1(·)]t, . . . , [f`(·)]t) and ([g1(·)]t, . . . , [g`(·)]t) by using
{([x(i)

1 ]t, . . . , [x
(i)
` ]t)}mi=1 and {([y(i)

1 ]t, . . . , [y
(i)
` ]t)}mi=1 respectively.

3. For all i ∈ {m+ 1, . . . , 2m− 1}, all parties locally compute ([f1(i)]t, . . . , [f`(i)]t) and
([g1(i)]t, . . . , [g`(i)]t), and then invoke FextendMult on these two vectors of sharings to
compute [z(i)]t = [

∑`
j=1 fj(i) · gj(i)]t.

4. Let h(·) be a degree-2(m− 1) polynomials such that

∀i ∈ {1, 2, . . . , 2m− 1}, h(i) = z(i).

All parties locally compute [h(·)]t by using {[z(i)]t}2m−1
i=1 .

5. All parties invoke Fcoin to generate a random field element
r. If r ∈ {1, 2, . . . ,m}, all parties abort. Otherwise, output
(([f1(r)]t, . . . , [f`(r)]t), ([g1(r)]t, . . . , [g`(r)]t), [h(r)]t).

In the case that there exists an incorrect multiplication tuple, we have F (·) 6= G(·). Since the
polynomial F (·) − G(·) is a degree-(m − 1) non-zero polynomial, the number of r ∈ K such
that F (r) − G(r) = 0 is at most m − 1. Therefore there are at most m − 1 choices of r which
causes a correct output tuple.

Since r is randomly sampled by Fcoin, the probability that Fcoin outputs such a bad r is
bounded by m−1

|K| . Recall that κ is the security parameter and the size of K is at least 2κ. Therefore,
with probability 1− m−1

|K| ≥ 1− m−1
2κ

, the tuple output by DE-LINEARIZATION is incorrect.

7.3.2 Step Two: Dimension-Reduction

The second step is to reduce the dimension of the inner-product tuple output by DE-LINEARIZATION.
We will use EXTEND-COMPRESS as a building block. The description of DIMENSION-REDUCTION

appears in Protocol 7.8. The communication complexity of DIMENSION-REDUCTION isO(kn+
n2) elements in K, where k is the compression parameter.
Lemma 7.6. If the input inner-product tuple is incorrect, then the resulting inner-product tuple
output by DIMENSION-REDUCTION is also incorrect with overwhelming probability.
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Figure 7.7: Protocol DE-LINEARIZATION

1. The multiplication tuples are denoted by

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t.[y
(m)]t, [z

(m)]t).

2. All parties invoke Fcoin to generate a random field element r ∈ K.

3. For all j ∈ {1, 2, . . . ,m}, all parties set [aj]t = rj−1 · [x(j)]t and [bj]t = [y(j)]t. All
parties compute

[c]t =
m∑
j=1

rj−1[z(j)]t

and output the inner-product tuple

(([a1]t, . . . , [am]t), ([b1]t, . . . , [bm]t), [c]t).

Figure 7.8: Protocol DIMENSION-REDUCTION

1. Suppose the input inner-product tuple is denoted by

(([x1]t, . . . , [xm]t), ([y1]t, . . . , [ym]t), [z]t).

Let k denote the compression parameter and ` = m/k.

2. For all i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , `}, all parties set [a
(i)
j ]t = [x(i−1)·`+j]t and

[b
(i)
j ]t = [y(i−1)·`+j]t.

3. For all i ∈ {1, 2, . . . , k − 1}, all parties invoke FextendMult on ([a
(i)
1 ]t, . . . , [a

(i)
` ]t) and

([b
(i)
1 ]t, . . . , [b

(i)
` ]t) to compute [c(i)]t = [

∑`
j=1 a

(i)
j · b

(i)
j ]t.

4. All parties set [c(k)]t = [z]t −
∑k−1

i=1 [c(i)]t.

5. All parties invoke EXTEND-COMPRESS on the following k inner-product tuples:

{(([a(i)
1 ]t, . . . , [a

(i)
` ]t), ([b

(i)
1 ]t, . . . , [b

(i)
` ]t), [c

(i)]t)}ki=1.

The output is denoted by

(([a1]t, . . . , [a`]t), ([b1]t, . . . , [b`]t), [c]t).

All parties take this new inner-product tuple as output.
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Proof. Suppose that the input inner-product tuple (([x1]t, . . . , [xm]t), ([y1]t, . . . , [ym]t), [z]t) is
incorrect. We first show that at least one of the following k inner-product tuples is incorrect:

{(([a(i)
1 ]t, . . . , [a

(i)
` ]t), ([b

(i)
1 ]t, . . . , [b

(i)
` ]t), [c

(i)]t)}ki=1

Note that the first k − 1 tuples are computed via FextendMult. If at least one of the inner-product
tuples in the first k − 1 tuples is incorrect, then the statement holds. Assume that the first k − 1

tuples are all correct, i.e., for all i ∈ {1, 2, . . . , k − 1},
∑`

j=1 a
(i)
j · b

(i)
j = c(i). Since the input

inner-product tuple is incorrect, we have
∑m

j=1 xj · yj 6= z. Therefore

∑̀
j=1

a
(k)
j · b

(k)
j =

m∑
j=1

xj · yj −
k−1∑
i=1

(∑̀
j=1

a
(i)
j · b

(i)
j = c(i)

)
6= z −

k−1∑
i=1

c(i) = c(k),

which means that the last inner-product tuple must be incorrect.
According to Lemma 7.4, the resulting tuple (([a1]t, . . . , [a`]t), ([b1]t, . . . , [b`]t), [c]t) output

by EXTEND-COMPRESS is incorrect with probability 1− 3k−2
|K| ≥ 1− 3k−2

2κ
.

7.3.3 Step Three: Randomization
In the final step, we add a random multiplication tuple when we use COMPRESS so that the
verification of the resulting multiplication tuple can be done by simply opening all the sharings.
The description of RANDOMIZATION appears in Protocol 7.9. The communication complexity of
RANDOMIZATION is O(mn+n2) elements in K, where m is the dimension of the inner-product
tuple.
Lemma 7.7. If the input inner-product tuple is incorrect, then at least one honest party will abort
with overwhelming probability.

Proof. Suppose that the input inner-product tuple (([x1]t, . . . , [xm]t), ([y1]t, . . . , [ym]t), [z]t) is
incorrect. We first show that at least one of the following m multiplication tuples is incorrect:

([x1]t, [y1]t, [z1]t), . . . , ([xm]t, [ym]t, [zm]t)

Note that the first m − 1 tuples are computed via Fmult-mal. If at least one of the multiplication
tuples in the first m− 1 tuples is incorrect, then the statement holds. Assume that the first m− 1
tuples are all correct, i.e., for all i ∈ {1, 2, . . . ,m− 1}, xi · yi = zi. Since the input inner-product
tuple is incorrect, we have

∑m
i=1 xi · yi 6= z. Therefore

xm · ym =
m∑
i=1

xi · yi −
m−1∑
i=1

xi · yi 6= z −
m−1∑
i=1

zi = zm,

which means that the last multiplication tuple must be incorrect.
According to Lemma 7.3, the resulting tuple ([a]t, [b]t, [c]t) output by COMPRESS is incorrect

with probability 1− 3m+1
|K| ≥ 1− 3m+1

2κ
. Note that an incorrect tuple will all honest parties aborting

the protocol.
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Figure 7.9: Protocol RANDOMIZATION

1. Suppose the input inner-product tuple is denoted by

(([x1]t, . . . , [xm]t), ([y1]t, . . . , [ym]t), [z]t).

2. All parties invoke two times of Frand to prepare two random degree-t Shamir sharings
[x0]t, [y0]t.

3. All parties invoke Fmult-mal on ([x0]t, [y0]t) to compute [z0]t = [x0 · y0]t.

4. For i ∈ {1, 2, . . . ,m− 1}, all parties invoke Fmult-mal on ([xi]t, [yi]t) to compute [zi]t =
[xi · yi]t. Then set

[zm]t = [z]t −
m−1∑
i=1

[zi]t.

5. All parties invoke COMPRESS on

([x0]t, [y0]t, [z0]t), ([x1]t, [y1]t, [z1]t), . . . , ([xm]t, [ym]t, [zm]t).

The output is denoted by ([a]t, [b]t, [c]t).

6. All parties send their shares of [a]t, [b]t, [c]t to all other parties.

7. All parties reconstruct a, b, c. For each party Pi, if the shares of [a]t, [b]t, [c]t are incon-
sistent or a · b 6= c, Pi aborts. Otherwise, Pi takes accept as output.

7.3.4 Summary
In this section, we show how to check the correctness of m multiplication tuples with communi-
cation complexity o(m). It is a simple combination of the three protocols DE-LINEARIZATION,
DIMENSION-REDUCTION, and RANDOMIZATION. The description of MULTVERIFICATION

appears in Protocol 7.10.
Lemma 7.8. The protocol MULTVERIFICATION securely computes FmultVerify with abort in the
{Fcoin,Fmult-mal,
FextendMult}-hybrid model in the presence of a fully malicious adversary controlling t corrupted
parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors
of honest parties. Recall that Corr denotes the set of corrupted parties and H denotes the set of
honest parties.

Simulation of MULTVERIFICATION. In the beginning, S receives from FmultVerify the shares
of [x(i)]t, [y

(i)]t, [z
(i)]t held by corrupted parties and the difference d(i) = z(i) − x(i) · y(i) for

all i ∈ {1, 2, . . . ,m}. Furthermore, S receives b ∈ {abort, accept} indicating whether the
multiplications are correct.
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Figure 7.10: Protocol MULTVERIFICATION

1. Let k be the compression parameter, m denote the number of multiplication tuples.
The multiplication tuples are denoted by

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t.[y
(m)]t, [z

(m)]t).

2. All parties invoke DE-LINEARIZATION on these m multiplication tuples. Let

(([a1]t, . . . , [am]t), ([b1]t, . . . , [bm]t), [c]t)

denote the output.

3. Let ` denote the dimension of the inner-product tuple. Initially ` = m. While ` ≥ k,
all parties run the following steps.

(a) All parties invoke DIMENSION-REDUCTION on the current inner-product tuple
and obtain a new inner-product tuple, denoted by

(([a1]t, . . . , [a`/k]t), ([b1]t, . . . , [b`/k]t), [c]t).

(b) All parties set ` := `/k.

4. Let
(([a1]t, . . . , [ak]t), ([b1]t, . . . , [bk]t), [c]t)

denote the inner-product tuple from the last step. All parties invoke RANDOMIZATION

on this inner-product tuple.

• Simulation of DE-LINEARIZATION:
When Fcoin is invoked in Step 2, S emulates Fcoin and generates a random field element
r ∈ K. Then, S computes the shares of (([a1]t, . . . , [am]t), ([b1]t, . . . , [bm]t), [c]t) held
by corrupted parties and the difference d = c −

∑m
j=1 aj · bj . This can be achieved by

using the shares of [x(i)]t, [y
(i)]t, [z

(i)]t held by corrupted parties and the difference d(i) =
z(i) − x(i) · y(i) for all i ∈ {1, 2, . . . ,m}.

• Simulation of DIMENSION-REDUCTION:
We will maintain the invariance that, for the input inner-product tuple

(([x1]t, . . . , [xm]t), ([y1]t, . . . , [ym]t), [z]t),

S learns the shares held by corrupted parties and the difference d = z−
∑m

j=1 xj · yj . Note
that this is true for the first time of invocation of DIMENSION-REDUCTION since these
shares and the difference are computed when simulating DE-LINEARIZATION.
In Step 2 and Step 3, S computes the shares of (([a

(i)
1 ]t, . . . , [a

(i)
` ]t), ([b

(i)
1 ]t, . . . , [b

(i)
` ]t), [c

(i)]t)

held by corrupted parties and the difference d(i) = c(i) −
∑`

j=1 a
(i)
j · b

(i)
j for all i ∈

{1, 2, . . . , k}. Concretely,
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For all i ∈ {1, 2, . . . , k}, the shares of ([a
(i)
1 ]t, . . . , [a

(i)
` ]t) and ([b

(i)
1 ]t, . . . , [b

(i)
` ]t) held

by corrupted parties can be directly obtained from the shares of ([x1]t, . . . , [xm]t) and
([y1]t, . . . , [ym]t) held by corrupted parties.
For all i ∈ {1, 2, . . . , k − 1}, S emulates FextendMult and receives from the adversary
the shares of [c(i)]t held by corrupted parties. S also receives the difference d(i) from
the adversary.
For [c(k)]t and d(k), recall that [c(k)]t is computed by

[c(k)]t = [z]t −
k−1∑
i=1

[c(i)]t.

Therefore, S can computes the shares held by corrupted parties from the above equa-
tion. Furthermore, S computes d(k) by

d(k) = d−
k−1∑
i=1

d(i).

In Step 4, S needs to simulate the behaviors of honest parties in EXTEND-COMPRESS.
Note that EXTEND-COMPRESS only contains local computation and invocations ofFextendMult

and Fcoin. For Fcoin, S faithfully generates a random element. For FextendMult, S receives
from the adversary the shares of corrupted parties and the difference. S follows EXTEND-
COMPRESS to computes the shares of (([a1]t, . . . , [a`]t), ([b1]t, . . . , [b`]t), [c]t) held by cor-
rupted parties and the difference d′ = c−

∑`
j=1 aj · bj .

• Simulation of RANDOMIZATION:
Note that, for the input inner-product tuple (([x1]t, . . . , [xm]t), ([y1]t, . . . , [ym]t), [z]t), the
simulator S learns the shares held by corrupted parties and the difference d = z−

∑m
i=1 xi ·

yi since they are computed when simulating DIMENSION-REDUCTION.
In RANDOMIZATION, for all i ∈ {1, 2, . . . ,m}, S computes the shares of [xi]t, [yi]t, [zi]t
held by corrupted parties and the difference di = zi − xi · yi in the same way as that
in DIMENSION-REDUCTION. For [x0]t, [y0]t, S receives from the adversary the shares
held by corrupted parties when emulating Frand. For [z0]t, S receives the shares from the
adversary held by corrupted parties and the difference d0 when emulating Fmult-mal.
In Step 6, S needs to simulate the behaviors of honest parties in COMPRESS. This can
be simulated in the same way as that for EXTEND-COMPRESS. At the end of this step,
S learns the shares of [a]t, [b]t, [c]t held by corrupted parties and also the difference d′ =
c− a · b. S randomly samples a, b and computes c = a · b+ d′. Based on the secrets a, b, c
and the shares held by corrupted parties, S reconstructs the whole sharings [a]t, [b]t, [c]t.
In Step 7 and Step 8, S faithfully follows the protocol. Recall that S receives b ∈
{abort, accept} from FmultVerify indicating whether the multiplications are correct. If
b = accept but an honest party takes abort as output, S sends abort to FmultVerify. Oth-
erwise, S sends continue to FmultVerify.

Hybrids Argument. Now we show that S perfectly simulates the behaviors of honest parties
with overwhelming probability. Consider the following hybrids.

71



Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S computes the difference for each multiplication tuple and inner-

product tuple as described above. Note that this does not change the behaviors of honest parties.
Therefore, the distribution of Hybrid0 is identical to Hybrid1.

Hybrid2: In this hybrid, instead of using the real sharings [a]t, [b]t, [c]t in RANDOMIZATION,
S constructs the sharings [a]t, [b]t, [c]t as described above. Concretely, S randomly samples the
secrets a, b and reconstructs the whole sharings [a]t, [b]t based on the shares held by corrupted
parties. Then based on the difference d′ of this tuple, S computes c = a · b+ d′ and reconstructs
the whole sharing [c]t based on the shares held by corrupted parties.

Note that in RANDOMIZATION, a and b are linear combinations of {xi}mi=0 and {yi}mi=0 re-
spectively and the coefficients are all non-zero, where the latter follows from the property of
polynomials. Also note that x0 and y0 are randomly chosen by Frand. Thus, a and b are uni-
formly random. The only difference between Hybrid1 and Hybrid2 is that, in Hybrid1, a and
b are masked by x0 and y0 which are randomly chosen by Frand, while in Hybrid2, a and b are
randomly chosen by S . However the distributions of a and b remains unchanged. Since c is
determined by a, b and the difference d′, the distribution of c remains the same in both hybrids.

Therefore, the distribution of Hybrid2 is identical to Hybrid1.
Hybrid3: In this hybrid, if at least one of the input multiplication tuples is incorrect, S aborts

in the end of the protocol. Note that in the real protocol, it is possible that while one of the input
multiplication tuples is incorrect, the final multiplication tuple verified in RANDOMIZATION is
correct. In this case, honest parties in Hybrid2 do not abort.

However, according to Lemma 7.5, Lemma 7.6, Lemma 7.7, this happens with negligible
probability.

Therefore, the distribution of Hybrid3 is statistically close to Hybrid2.
Hybrid4: In this hybrid, S simulates the behaviors of honest parties as described above. Note

that the only place where honest parties need to communicate with corrupted parties is Step 7
in RANDOMIZATION where all parties verify the correctness of the final multiplication tuple.
However, the preparation of [a]t, [b]t, [c]t only depends on the shares and the differences of the
input multiplication tuples, which can be obtained from FmultVerify.

Therefore, the distribution of Hybrid4 is identical to Hybrid3.
Note that Hybrid4 is the execution in the ideal world, and the distribution of Hybrid4 is

statistically close to the distribution of Hybrid0, the execution in the real world.

Concrete Efficiency. Now we analyze the communication complexity of MULTVERIFICA-
TION. Recall that each time of running DIMENSION-REDUCTION reduces the dimension of
the inner-product tuple to be 1/k of the original dimension. Therefore, MULTVERIFICATION in-
cludes 1 invocation of DE-LINEARIZATION, (logkm−1) invocations of DIMENSION-REDUCTION

and 1 invocation of RANDOMIZATION. The communication complexity of MULTVERIFICATION

is
O(n2) + (logkm− 1) ·O(kn+ n2) +O(kn+ n2) = O((kn+ n2) logkm)

field elements in K.
Remark 7.1. We note that the circuit size is bounded by poly(κ) where κ is the security parame-
ter. Therefore, if we set k = κ, the communication complexity of MULTVERIFICATION becomes

72



O(nκ+ n2) field elements in K.
Remark 7.2. Note that MULTVERIFICATION requires O(logkm) rounds. In the real world, one
can adjust k based on the overhead of each round and the overhead of sending each bit via a
private channel to achieve the best running time.

7.4 Compiling the Semi-Honest DN Protocol with Malicious
Security

For completeness, we show how to use our fast verification protocol to compile the semi-honest
DN protocol [28] to a maliciously secure protocol without affecting the concrete efficiency. Re-
call that we are in the client-server model where there are c clients and n = 2t + 1 servers
(denoted by parties). The adversary is able to control up to c clients and t parties. The clients
only participate in the input phase and the output phase.

At a high-level, the main protocol is consist of the following steps:
1. Input: Each client uses degree-t Shamir secret sharing scheme to share its inputs to the

parties.

2. Evaluation Phase: All parties evaluate the circuit gate by gate.

3. Verification Phase: All parties check the correctness of multiplications.

4. Output: For each output gate, all parties send their shares to the client who should receive
it.

The functionality Fmain-mal is described in Functionality 7.11. The main protocol DN-MAIN-
MAL appears in Protocol 7.12. The communication complexity of DN-MAIN-MAL is O(|C| ·
n + logk |C| · (kn + n2)κ) field elements, where |C| is the circuit size, k is the compression
parameter, and κ is the security parameter.

Figure 7.11: Functionality Fmain-mal

1. Fmain-mal receives from all clients their inputs.

2. Fmain-mal evaluates the circuits and computes the output. Fmain-mal first sends the output
of corrupted clients to the adversary.
• If the adversary replies continue, Fmain-mal distributes the output to honest

clients.
• If the adversary replies abort, Fmain-mal sends abort to honest clients.

Lemma 7.9. Let c be the number of clients and n = 2t + 1 be the number of parties. The
protocol DN-MAIN-MAL securely computes Fmain-mal with abort in the {Fmult-mal,FmultVerify}-
hybrid model in the presence of a fully malicious adversary controlling up to c clients and t
parties.
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Figure 7.12: Protocol DN-MAIN-MAL

1. Input Phase:
Let Client1, . . . ,Clientc denote the clients who provide inputs. For every input gate
of Clienti, Clienti samples a random degree-t Shamir sharing of its input, [x]t, and
distributes the shares to all parties.

2. Evaluation Phase:
All parties evaluate the circuit layer by layer.
• For each addition gate with input sharings [x]t, [y]t, all parties locally compute

the output sharing [z]t := [x]t + [y]t.
• For each multiplication gate with input sharings [x]t, [y]t, all parties invoke
Fmult-mal to compute the output sharing [z]t = [x · y]t.

3. Verification Phase:
All parties invoke FmultVerify to check the correctness of the multiplications.

4. Output Phase:
For each output gate of Clienti, let [x]t denote the input sharing. All parties send their
shares of [x]t to Clienti. Clienti checks whether the shares of [x]t is consistent. If not,
Clienti aborts. Otherwise, Clienti reconstructs the result x.

Proof. As we argued in Chapter 2, it is sufficient to focus on adversaries who control exactly t
parties. The correctness of DN-MAIN-MAL follows from the description.

Let A denote the adversary. We will construct a simulator S to simulate the behaviors of
honest parties and honest clients. Recall that Corr denotes the set of corrupted parties and H
denotes the set of honest parties.

Simulation of DN-MAIN-MAL. We describe the strategy of S phase by phase.

• Simulation of Input Phase:
For an input x belongs to an honest client, S randomly samples t elements as the shares of
[x]t of corrupted parties. Then S sends these shares to corrupted parties.
For an input x belongs to a corrupted client, S receives from the adversary the shares held
by honest parties. Note that, S learns t+ 1 shares of [x]t. S reconstructs the whole sharing
[x]t and sends x as the input of this corrupted client to Fmain-mal.
Note that for each input sharing, S learns the shares held by corrupted parties.

• Simulation of Evaluation Phase:
In the evaluation phase, S will compute the shares of each sharing held by corrupted par-
ties. Note that this already holds for the sharing of each input gate.

For each addition gate with input sharings [x]t, [y]t, S computes the shares of [z]t =
[x]t + [y]t held by corrupted parties.
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For each multiplication gate with input sharings [x]t, [y]t, S emulates Fmult-mal and
receives the shares of [z]t held by corrupted parties and the difference d.

Note that for each multiplication tuple ([x]t, [y]t, [z]t), S learns the shares held by corrupted
parties and the difference d = z − x · y.

• Simulation of Verification Phase:
S emulates the functionality FmultVerify. Recall that in the simulation of the evaluation
phase, S has computed the shares of each multiplication tuple held by corrupted parties
and the difference. S directly sends these shares and differences to the adversary as in
FmultVerify. If there exists a non-zero difference, S sets b = abort. Otherwise, S sets
b = accept. Then S sends b to the adversary.

If b = accept and the adversary replies continue, S moves to the next phase.
Otherwise, S sends abort to Fmain-mal and aborts.

• Simulation of Output Phase:
For each output gate with [x]t associated with it, if the receiver is an honest client, S
receives from the adversary the shares held by corrupted parties. Then S checks whether
the shares are the same as the ones computed by S. If true, S accepts the output. Otherwise,
S rejects the output.
If the receiver is a corrupted client, S receives the result x from Fmain-mal. Then, based on
the shares of [x]t held by corrupted parties and the secret x, S reconstructs the shares held
by honest parties, and sends these shares to the adversary.
Finally, if S rejects any output of honest clients, S sends abort to Fmain-mal. Otherwise, S
sends continue to Fmain-mal.

Hybrids Argument. Now we show that S perfectly simulates the behaviors of honest parties.
Consider the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S computes the input of corrupted clients and send them to Fmain-mal.

The distribution of Hybrid1 is identical to Hybrid0.
Hybrid2: In this hybrid, S simulates the output phase as described above. Note that the

output phase is executed only when the computation is correct. For an output gate with [x]t
associated with it, if the receiver is an honest client, the shares that corrupted parties should hold
are determined by the shares of honest parties. Therefore, if corrupted parties send different
shares from the ones computed by S, the shares of [x]t will be inconsistent and the client will
reject the output. If the receiver is a corrupted client, the shares of honest parties are determined
by the output x and the shares held by corrupted parties. Therefore, the shares prepared by S are
identical to the real shares held by honest parties.

Therefore, the distribution of Hybrid2 is identical to the distribution of Hybrid1.
Hybrid3: In this hybrid, S computes the difference of each multiplication tuple in the evalu-

ation phase. Then S simulates the verification phase. Note that FmultVerify simply checks whether
there is an incorrect multiplication tuple, which is equivalent to check whether there is a non-zero
difference.

Therefore, the distribution of Hybrid3 is identical to the distribution of Hybrid2.
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Hybrid4: In this hybrid, S simulates the evaluation phase. Note that S receives the shares of
corrupted parties and the difference when emulating Fmult-mal. These are sufficient to simulating
the verification phase and the output phase. Since there is no communication in this phase, the
distribution of Hybrid4 is identical to the distribution of Hybrid3.

Hybrid5: In this hybrid, S simulates the input phase. The only difference between Hybrid4

and Hybrid5 is that, in Hybrid4, S uses the real input of honest clients to generate the input
sharings, while in Hybrid5, S simply samples random elements as the shares of corrupted par-
ties. Note that the distributions of the shares of corrupted parties in both hybrids are the same.
Therefore, the distribution of Hybrid5 is the same as Hybrid4.

Note that Hybrid5 is the execution in the ideal world, and the distribution of Hybrid5 is
identical to the distribution of Hybrid0, the execution in the real world.

Analysis of the Concrete Efficiency. We point out that, without MULTVERIFICATION, DN-
MAIN-MAL is the same as the semi-honest DN protocol [28]. The cost per multiplication gate
is 6 field elements in F per party, including 4 field elements to prepare a pair of random double
sharings, 1 element sending to Pking, 1 element receiving from Pking. Note that the cost of
MULTVERIFICATION is bounded by O(logk |C| · (kn+ n2)κ) bits, which does not influence the
cost per multiplication gate. Therefore, DN-MAIN-MAL achieves the same concrete efficiency
as the semi-honest DN protocol [28]. When setting the compression parameter k = κ, the cost
of MULTVERIFICATION is bounded by O(n2 · κ+ n · κ2) bits. Thus, the overall communication
complexity of DN-MAIN-MAL is bounded by O(|C| · n+ n2 · κ+ n · κ2) field elements.
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Chapter 8

Achieving Malicious Security

In this chapter, we discuss how to compile our two semi-honest protocols constructed in Chap-
ter 6 to maliciously secure protocols. We refer the first protocol that uses the trick of t-wise
independence (See Chapter 6.2) as the t-wise variant, and refer the second protocol that re-
duces the round complexity (See Chapter 6.3) as the round-compression variant.

8.1 Achieving Malicious Security for the t-wise Variant
For the t-wise variant, we show that after replacing the DN multiplication protocol by our
efficient multiplication protocol ATLAS-MULT (Protocol 6.7), the whole semi-honest protocol
is still secure up to an additive attack. Then we can achieve malicious security as follows:

1. Run the t-wise variant until the output phase.

2. Check the correctness of multiplication tuples using our fast verification protocol.

3. Reconstruct the output only if the check passes.
To this end, we consider the scenario where all parties evaluate a sequence of N multiplica-

tion gates. In particular, the input sharings of each multiplication gate can depend on the input
sharings or output sharings of the previous multiplication gates. The functionality F ′mult-mal ap-
pears in Functionality 8.1, which invokes Fmult-mal for each multiplication gate. One can view
F ′mult-mal as an interface of Fmult-mal. We show that the protocol ATLAS-MULT already realizes
F ′mult-mal in the presence of a fully malicious adversary.

Figure 8.1: Functionality F ′mult-mal

1. F ′mult-mal receives N from all parties.

2. From i = 1 to N , let [x(i)]t, [y
(i)]t denote the input sharings of the i-th multiplication

gate. F ′mult-mal invokes Fmult-mal on [x(i)]t, [y
(i)]t.

Lemma 8.1. The protocol ATLAS-MULT securely computes the functionality F ′mult-mal in the
FdoubleRand-hybrid model in the presence of a fully malicious adversary controlling t corrupted
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parties.

Proof. Recall that Corr denotes the set of corrupted parties and H denotes the set of honest
parties. Recall that in Lemma 6.1, we have argued that the random degree-2t sharing [r]2t output
byFdoubleRand satisfies that the shares of honest parties are uniformly random, and are independent
of the shares chosen by the adversary.

Recall that in EXPAND, all parties compute

([r̃(1)]t, . . . , [r̃
(n)]t)

T = M ([r(1)]t, . . . , [r
(t)]t)

T

([r̃(1)]2t, . . . , [r̃
(n)]2t)

T = M ([r(1)]2t, . . . , [r
(t)]2t)

T,

where M is a Vandermonde matrix. From the above argument, the shares of {[r(i)]2t}ti=1 held
by honest parties are uniformly random. According to the property of Vandermonde matrices,
there is a one-to-one map from {[r(i)]2t}ti=1 to {[r̃(i)]2t}i∈Corr. Thus, the shares of {[r̃(i)]2t}i∈Corr
held by honest parties are uniformly random. This means that for all double sharings in the form
of ([r]t, [r]2t, Pj) output by EXPAND, where Pj is a corrupted party, the shares of [r]2t held by
honest parties are uniformly random.

Let A denote the adversary. We will construct a simulator S to simulate the behaviors of
honest parties.

Simulation for ATLAS-MULT. In the first step, S emulatesFdoubleRand and receives the shares
of random double sharings held by corrupted parties. Then S follows EXPAND and computes the
shares of the double sharings in the form of ([r]t, [r]2t, Pj) held by corrupted parties.

In the second step, we describe the strategy of S for each invocation of MULT.

1. Let [x(i)]t, [y
(i)]t denote the input sharings. S receives fromF ′mult-mal the shares of [x(i)]t, [y

(i)]t
held by corrupted parties. Let ([r]t, [r]2t, Pj) be the first pair of unused double sharings.
Recall that S has learnt the shares of [r]t, [r]2t held by corrupted parties.

2. S computes the shares of [e(i)]2t := [x(i)]t · [y(i)]t + [r]2t held by corrupted parties. If Pj is
corrupted, S samples random elements as shares of [e(i)]2t of honest parties.

3. Depending on whether Pj is honest, there are two cases:
• If Pj is honest, S receives the shares from corrupted parties. Let [ẽ(i)]2t denote the

sharing when using the shares received from corrupted parties. This is to distinguish
from [e(i)]2t which uses the shares computed by S for corrupted parties. Then S
computes the shares of [d(i)]2t := [ẽ(i)]2t− [e(i)]2t held by corrupted parties. Note that
the shares of [d(i)]2t held by honest parties are 0. S reconstructs the secret d. Finally
for [e(i)]t, S samples random elements as the shares of corrupted parties.

• If Pj is corrupted, S sends the shares of [e(i)]2t of honest parties to Pj . Note that for
[e(i)]2t, S knows all the shares. S reconstructs the secret e. Then S receives the shares
of [e(i)]t of honest parties from Pj . S reconstructs the whole sharing and computes
the secret of [e(i)]t, denoted by ẽ(i). Finally, S computes d(i) := ẽ(i) − e(i).

4. In the last step, S computes the shares of [z(i)]t := [e(i)]t − [r̃(i)]t held by corrupted par-
ties. Then S sends the difference d(i) and the shares of [z(i)]t held by corrupted parties to
F ′mult-mal.
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Hybrid Arguments. Now we show that S perfectly simulates the behaviors of honest parties.
Consider the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S computes the shares of corrupted parties as described above. For

each multiplication tuple ([x(i)]t, [y
(i)]t, [z

(i)]t), S computes the difference d(i) := z(i)− x(i) · y(i)

using the shares of honest parties. Then for all i ∈ {1, 2, . . . , N}, S sends the difference d(i) and
the shares of [z(i)]t held by corrupted parties to F ′mult-mal. Note that the shares of honest parties
are determined by the shares of corrupted parties and the secrets. Therefore, the distribution of
Hybrid1 is identical to the distribution of Hybrid0.

Hybrid2: In this hybrid, S computes the difference as described above. Note that:

• When Pj is honest, corrupted parties can change the multiplication result by sending in-
correct shares of [e(i)]2t to Pj . Therefore, the difference of this multiplication tuple is the
secret of the sharing [ẽ(i)]2t − [e(i)]2t, where [e(i)]2t is the sharing when using the shares
computed by S for corrupted parties, and [ẽ(i)]2t is the sharing when using the shares re-
ceived from corrupted parties. Therefore, the difference d(i) computed by S is identical to
that in Hybrid1.

• When Pj is corrupted, S can learn the value ẽ(i) reconstructed by Pj from the shares of
[e(i)]t held by honest parties. S can also compute the correct e(i). Therefore, the difference
d(i) computed by S is identical to that in Hybrid1.

Therefore, the distribution of Hybrid2 is identical to the distribution of Hybrid1.
Hybrid3: In this hybrid, S uses random elements as shares of [e(i)]2t of honest parties when

Pj is corrupted. Recall that we have shown that for ([r]t, [r]2t, Pj) where Pj is corrupted, the
shares of [r]2t held by honest parties are uniformly random. Therefore, the shares of [e(i)]2t are
also uniformly random in this case. The distribution of Hybrid3 is identical to the distribution
of Hybrid2.

Hybrid4: In this hybrid, S emulates FdoubleRand and does not generate the shares of honest
parties. Note that these shares are not used in Hybrid3. Therefore, the distribution of Hybrid4

is identical to the distribution of Hybrid3.
Note that Hybrid4 is the execution in the ideal world, and the distribution of Hybrid4 is

identical to the distribution of Hybrid0, the execution in the real world.

Using F ′mult-mal in the Protocol DN-MAIN-MAL. In the Protocol DN-MAIN-MAL (Proto-
col 7.12), all parties invoke Fmult-mal for each multiplication gate. Note that F ′mult-mal invoke
Fmult-mal for each multiplication. Therefore, we view F ′mult-mal as an interface of Fmult-mal. All
parties initialize F ′mult-mal in the beginning of the protocol with the number of multiplications
they need to compute (which is determined by the circuit). Then we replace each invocation of
Fmult-mal by F ′mult-mal. Following from Lemma 7.9, we conclude the following theorem.
Theorem 1.1. Let n be a positive integer and F be a finite field of size |F| ≥ n + 1. For
all arithmetic circuit C over F, there is an information-theoretic n-party MPC protocol, which
achieves malicious security (with abort) against a fully malicious adversary controlling t < n/2
corrupted parties, with communication complexity O(|C| · n + n2 · κ + n · κ2) elements, where
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κ is the security parameter and |C| is the circuit size. Furthermore, the concrete efficiency is 4
elements per party per multiplication gate.

8.2 Achieving Malicious Security for the round-compression
Variant

For the round-compression variant, recall that the evaluation is done by first partitioning
the circuit into a sequence of two-layer sub-circuits and then evaluating each sub-circuit. For
multiplication gates in the first layer of all sub-circuits, we use the improved DN multiplication
protocol IMPROVED-DN-MULT to compute the outputs. For multiplication gates in the second
layer of all sub-circuits, we use our efficient multiplication protocol MULT to prepare Beaver
triples. In particular, the correctness requires Pking to distribute the same value to all other
parties for each multiplication gate in the first layer of all sub-circuits.

Thus, an adversary can launch attack in the following two places:
• An adversary may distribute different values to other parties when Pking is corrupted in

IMPROVED-DN-MULT.
• An adversary may launch additive attacks in the multiplication protocols IMPROVED-DN-

MULT and MULT.
We will check these two points separately. We first show how to check that all parties receive the
same values from Pking in IMPROVED-DN-MULT.

Checking Consistency. The idea is to compute a random linear combination of the values they
received in IMPROVED-DN-MULT and exchange their results. If a party receives different val-
ues, this party will abort. We will use the functionality Fcoin introduced in Chapter 5 to generate
a random element. The protocol CHECKCONSISTENCY appears in Protocol 8.2. Recall that the
communication complexity of the instaniation of Fcoin is O(n2 · κ) bits. The communication
complexity of CHECKCONSISTENCY is O(n2 · κ) bits.

Figure 8.2: Protocol CHECKCONSISTENCY(N, {x(1), . . . , x(N)})

1. All parties invoke Fcoin to generate a random element r ∈ K. All parties locally
compute

x := x(1) + x(2) · r + . . .+ x(N) · rN−1.

2. All parties exchange their results x’s and check whether they are the same. If a party
Pi receives different x’s, Pi aborts.

Lemma 8.2. If there exists two honest parties who receive different set of values {x(1), . . . , x(N)},
then with overwhelming probability, at least one honest party will abort in the protocol CHECK-
CONSISTENCY.
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Proof. Suppose Pi, Pj are two honest parties and they receive {x(1), . . . , x(N)} and {x̃(1), . . . , x̃(N)}
respectively. Suppose that there exists i ∈ [N ] such that x(i) 6= x̃(i). Consider the following two
polynomials in K:

f(r) = x(1) + x(2) · r + . . .+ x(N) · rN−1

f̃(r) = x̃(1) + x̃(2) · r + . . .+ x̃(N) · rN−1

Since there exists i ∈ [N ] such that x(i) 6= x̃(i), f(·) and f̃(·) are two different polynomials. The
number of r such that f(r) = f̃(r) is bounded by the degree of f(·) − f̃(·), which is N − 1.
Since r is uniformly chosen from K, the probability that f(r) = f̃(r) is at most N−1

|K| ≤
N−1
2κ

.

Therefore, with overwhelming probability, f(r) 6= f̃(r), which means that Pi, Pj will receive
different values from each other and abort in the protocol CHECKCONSISTENCY.

Main Protocol. The protocol MAIN-ROUND-MAL appears in Protocol 8.3.
Lemma 8.3. Let c be the number of clients and n = 2t+ 1 be the number of parties. The proto-
col MAIN-ROUND-MAL securely computes the ideal functionality Fmain-mal in the {Frand,Fzero,
FdoubleRand,Fcoin,FmultVerify}-hybrid model in the presence of a fully malicious adversary control-
ling up to c clients and t parties.

Proof. As we argued in Chapter 2, it is sufficient to focus on adversaries who control exactly t
parties. The correctness of MAIN-ROUND-MAL follows from the description.

Let A denote the adversary. We will construct a simulator S to simulate the behaviors of
honest parties and honest clients. Recall that Corr denotes the set of corrupted parties and H
denotes the set of honest parties.

Simulation for MAIN-ROUND-MAL. We describe the strategy of S phase by phase.

• Simulation for Input Phase:
For an input x belongs to an honest client, S randomly samples t elements as the shares of
[x]t of corrupted parties. Then S sends these shares to corrupted parties.
For an input x belongs to a corrupted client, S receives from the adversary the shares held
by honest parties. Note that, S learns t+ 1 shares of [x]t. S reconstructs the whole sharing
[x]t and sends x as the input of this corrupted client to Fmain-mal.
Note that for each input sharing, S learns the shares held by corrupted parties.

• Simulation for Evaluation Phase – Preparing Correlated Randomness:
In this part, S emulates Frand,Fzero,FdoubleRand and receives the shares of corrupted parties.
S follows the protocol EXPANDZERO and EXPAND to compute the shares of corrupted
parties.

• Simulation for Evaluation Phase – Evaluating Two-Layer Circuits:
In this part, S simulates the behaviors of honest parties in EVALUATE for each sub-circuit.
For each sub-circuit with all the input sharings prepared, S will know the shares held by
corrupted parties. Note that this is true for the first sub-circuit. We describe the strategy of
S step by step.
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Figure 8.3: Protocol MAIN-ROUND-MAL

1. Input Phase:
Let Client1, . . . ,Clientc denote the clients who provide inputs. For every input gate
of Clienti, Clienti samples a random degree-t Shamir sharing of its input, [x]t, and
distributes the shares to all parties.

2. Evaluation Phase – Preparing Correlated Randomness:
All parties start with holding a degree-t sharing for each input gate. The circuit is
partitioned into a sequence of two-layer sub-circuits. Let N1 denote the number of
multiplications in the first layer of all sub-circuits, and N2 denote the number of mul-
tiplications in the second layer of all sub-circuits. All parties prepare the correlated
randomness as follows:
• All parties invoke Frand to prepare N1 random degree-t Shamir sharings. Then

all parties invoke Fzero to prepare N1 · t/n random degree-2t Shamir sharings of
0, and invoke EXPANDZERO to obtain N1 degree-2t Shamir sharings of 0. These
sharings are transformed to N1 pairs of sharings in the form of ([r]t, [o]2t, Pi).

• All parties invoke FdoubleRand to prepare N2 · t/n pairs of random double sharings.
Then all parties invoke EXPAND to obtainN2 pairs of double sharings in the form
of ([r]t, [r]2t, Pi).

3. Evaluation Phase – Evaluating Two-Layer Circuits:
All sub-circuits are evaluated in a predetermined topological order. For each sub-
circuit with all the input sharings prepared, all parties invoke EVALUATE to compute
the output sharings.

4. Verification Phase:
• Suppose e(1), . . . , e(N1) are the values all parties received in IMPROVED-DN-

MULT invoked in EVALUATE. All parties invoke CHECKCONSISTENCY to check
that they receive the same values.

• Suppose {([x(i)]t, [y
(i)]t, [z

(i)]t)}N1
i=1 denote the multiplication tuples computed

by IMPROVED-DN-MULT invoked in EVALUATE, and {([a(i)]t, [b
(i)]t, [c

(i)]t)}N2
i=1

denote the multiplication tuples computed by MULT invoked in EVALUATE. All
parties invoke FmultVerify to check the correctness of these N1 +N2 multiplication
tuples.

5. Output Phase:
For each output gate of Clienti, let [x]t denote the input sharing. All parties send their
shares of [x]t to Clienti. Clienti checks whether the shares of [x]t is consistent. If not,
Clienti aborts. Otherwise, Clienti reconstructs the result x.

In the first step, S follows the protocol to compute the shares of corrupted parties for
the input sharings of each multiplication gate in the second layer.
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In the second step, S simulates IMPROVED-DN-MULT and MULT as follows. For
IMPROVED-DN-MULT:
− Let [x]t, [y]t denote the input sharings. S has computed the shares of [x]t, [y]t

held by corrupted parties. Let ([r]t, [o]2t, Pi) denote the sharings associated with
this gate. S learns the shares of [r]t, [o]2t held by corrupted parties when emulat-
ing Frand,Fzero and simulating EXPANDZERO.

− S computes the shares of [e]2t := [x]t · [y]t+[r]t+[o]2t held by corrupted parties.
If Pi is corrupted, S samples random elements as shares of [e]2t of honest parties.

− Depending on whether Pi is honest, there are two cases:
· If Pi is honest, S receives the shares from corrupted parties. Let [ẽ]2t denote

the sharing when using the shares received from corrupted parties. This is
to distinguish from [e]2t which uses the shares computed by S for corrupted
parties. Then S computes the shares of [d]2t := [ẽ]2t−[e]2t held by corrupted
parties. Note that the shares of [d]2t held by honest parties are 0. S recon-
structs the secret d. Finally, S samples a random element as e and sends e to
corrupted parties.
· If Pi is corrupted, S sends the shares of [e]2t of honest parties to Pi. Note

that for [e]2t, S knows all the shares. S reconstructs the secret e. Then S
receives the value ẽ from Pi. If Pi sends different values to different honest
parties, S marks this execution as fail, and uses the value of the first honest
party. Finally, S computes d := ẽ− e.

− In the last step, S computes the shares of [z]t := ẽ − [r]t held by corrupted
parties.

For MULT:
− Let [x]t, [y]t denote the input sharings. S has computed the shares of [x]t, [y]t

held by corrupted parties. Let ([r]t, [r]2t, Pi) denote the sharings associated with
this gate. S learns the shares of [r]t, [r]2t held by corrupted parties when emulat-
ing FdoubleRand and simulating EXPAND.

− S computes the shares of [e]2t := [x]t · [y]t + [r]2t held by corrupted parties. If
Pi is corrupted, S samples random elements as shares of [e]2t of honest parties.

− Depending on whether Pi is honest, there are two cases:
· If Pi is honest, S receives the shares from corrupted parties. Let [ẽ]2t denote

the sharing when using the shares received from corrupted parties. This is
to distinguish from [e]2t which uses the shares computed by S for corrupted
parties. Then S computes the shares of [d]2t := [ẽ]2t − [e]2t held by cor-
rupted parties. Note that the shares of [d]2t held by honest parties are 0. S
reconstructs the secret d. Finally, for [e]t, S samples random elements as the
shares of corrupted parties.
· If Pi is corrupted, S sends the shares of [e]2t of honest parties to Pi. Note

that for [e]2t, S knows all the shares. S reconstructs the secret e. Then S
receives the shares of [e]t of honest parties from Pi. S reconstructs the whole
sharing and computes the secret of [e]t, denoted by ẽ. Finally, S computes
d := ẽ− e.
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− In the last step, S computes the shares of [z]t := [e]t − [r]t held by corrupted
parties.

In the rest of two steps (which only contain local computation), S follows the protocol
and computes the shares of corrupted parties for each degree-t Shamir sharing.

• Simulation for Verification Phase:
S first simulates CHECKCONSISTENCY. Note that e(1), . . . , e(N1) are either received
from corrupted Pking’s or explicitly generated by S. S follows the protocol honestly.
If any party aborts or S has marked this execution as fail, S sends abort toFmain-mal

and aborts.
S then emulates the functionality FmultVerify. Recall that in the simulation of the com-
putation phase, S has computed the shares of each multiplication tuple held by cor-
rupted parties and the difference. S directly sends these shares and differences to the
adversary as in FmultVerify. If there exists a non-zero difference, S sets b = abort.
Otherwise, S sets b = accept. Then S sends b to the adversary.
− If b = accept and the adversary replies continue, S moves to the next phase.
− Otherwise, S sends abort to Fmain-mal and aborts.

• Simulation for Output Phase:
For each output gate with [x]t associated with it, if the receiver is an honest client, S
receives from the adversary the shares held by corrupted parties. Then S checks whether
the shares are the same as the ones computed by S. If true, S accepts the output. Otherwise,
S rejects the output.
If the receiver is a corrupted client, S receives the result x from Fmain-mal. Then, based on
the shares of [x]t held by corrupted parties and the secret x, S reconstructs the shares held
by honest parties, and sends these shares to the adversary.
Finally, if S rejects any output of honest clients, S sends abort to Fmain-mal. Otherwise, S
sends continue to Fmain-mal.

Hybrid Arguments. Now we show that S perfectly simulates the behaviors of honest parties
with overwhelming probability. Consider the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S computes the input of corrupted clients and sends them toFmain-mal.

The distribution of Hybrid1 is identical to Hybrid0.
Hybrid2: In this hybrid, S simulates CHECKCONSISTENCY. Concretely, S checks whether

all honest parties receive the same values from Pking in IMPROVED-DN-MULT. If not, S sends
abort to Fmain-mal and aborts. According to Lemma 8.2, the probability that an honest party
aborts in this case is overwhelming. Therefore, the distribution of Hybrid2 is statistically close
to the distribution of Hybrid1.

Hybrid3: In this hybrid, S simulates the output phase as described above. Note that the out-
put phase is executed after the verification phase, which ensures the correctness of IMPROVED-
DN-MULT and MULT. Therefore, the output phase is executed only when the computation is
correct. For an output gate with [x]t associated with it, if the receiver is an honest client, the
shares that corrupted parties should hold are determined by the shares of honest parties. There-
fore, if corrupted parties send different shares from the ones computed by S, the shares of [x]t
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will be inconsistent and the client will reject the output. If the receiver is a corrupted client, the
shares of honest parties are determined by the output x and the shares held by corrupted parties.
Therefore, the shares prepared by S are identical to the real shares held by honest parties.

Therefore, the distribution of Hybrid3 is identical to the distribution of Hybrid2.
Hybrid4: In this hybrid, S computes the difference of each multiplication tuple in the compu-

tation phase. Then S simulates the verification phase. Note that FmultVerify simply checks whether
there is an incorrect multiplication tuple, which is equivalent to check whether there is a non-zero
difference.

Therefore, the distribution of Hybrid4 is identical to the distribution of Hybrid3.
Hybrid5: In this hybrid, S simulates EVALUATE. Since the parts which require interaction

are IMPROVED-DN-MULT and MULT, we only focus on the simulation of these two protocols.
We argue the following two points:

• When a corrupted party Pi behaves as Pking, the shares of [e]2t of honest parties are uni-
formly random in both IMPROVED-DN-MULT and MULT.

• When Pking’s send the same values to all honest parties in IMPROVED-DN-MULT, S ex-
tracts the correct difference for each multiplication tuple computed by IMPROVED-DN-
MULT and MULT.

For the first point, following from a similar argument in Lemma 6.1, the random sharing [r]t +
[o]2t in IMPROVED-DN-MULT and the random sharing [r]2t in MULT satisfy that the shares of
honest parties are uniformly random. Therefore, the shares of [e]2t of honest parties are uni-
formly random. For the second point, when Pking’s send the same values to all honest parties,
all degree-t Shamir sharings are consistent in the sense that the shares of corrupted parties com-
puted by S are consistent with the shares of honest parties. In this case, following from a similar
argument in Lemma 6.1, S extracts the correct difference for each multiplication tuple computed
by IMPROVED-DN-MULT and MULT.

Note that FmultVerify is only executed when all parties receive the same values from Pking’s in
IMPROVED-DN-MULT. Therefore, the above two points show that the distribution of Hybrid5

is identical to the distribution of Hybrid4.
Hybrid6: In this hybrid, S emulates Frand,FdoubleRand,Fzero and simulates EXPANDZERO and

EXPAND as described above. Note that only the shares of corrupted parties are used in the rest
of steps in Hybrid5. Therefore, the distribution of Hybrid6 is identical to the distribution of
Hybrid5.

Hybrid7: In this hybrid, S simulates the input phase. The only difference between Hybrid6

and Hybrid7 is that, in Hybrid6, S uses the real input of honest clients to generate the input
sharings, while in Hybrid7, S simply samples random elements as the shares of corrupted par-
ties. Note that the distributions of the shares of corrupted parties in both hybrids are the same.
Therefore, the distribution of Hybrid7 is the same as Hybrid6.

Note that Hybrid7 is the execution in the ideal world, and the distribution of Hybrid7 is
identical to the distribution of Hybrid0, the execution in the real world.

Analysis of the Concrete Efficiency. Compared with the semi-honest protocol MAIN-ROUND,
the maliciously secure protocol MAIN-ROUND-MAL only invokes CHECKCONSISTENCY and
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FmultVerify to check the correctness of the computation. Recall that CHECKCONSISTENCY re-
quires O(n2 · κ) bits. And when using our fast verification protocol MULTVERIFY to instan-
tiate FmultVerify, it requires O(n2 · κ + n · κ2) bits (when setting the compression factor k = κ
in MULTVERIFY). Regarding the round complexity of the verification phases, note that both
CHECKCONSISTENCY and MULTVERIFY only need constant number of rounds. Thus, we have
the following theorem.
Theorem 1.2. Let n be a positive integer and F be a finite field of size |F| ≥ n + 1. For
all arithmetic circuit C over F, there is an information-theoretic n-party MPC protocol, which
achieves malicious security (with abort) against a fully malicious adversary controlling t < n/2
corrupted parties, with communication complexity O(|C| · n + n2 · κ + n · κ2) elements, where
κ is the security parameter and |C| is the circuit size. Furthermore, the concrete efficiency is 4.5
elements per party per multiplication gate but halving the number of rounds (up to a constant
number of rounds).
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Part II

Sharing Transformation and Applications
to Dishonest Majority MPC with Packed

Secret Sharing
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Chapter 9

Introduction for Part II

In this part we initiate the study of sharing transformations which allow us to perform arbitrary
linear maps on the secrets of (possibly packed) secret-sharing schemes. More specifically, sup-
pose Σ and Σ′ are two linear secret sharing schemes over a finite field F. A set of n parties
{P1, P2, . . . , Pn} start with holding a Σ-sharingX . HereX could be the sharing of a single field
element or a vector of field elements (e.g., as in packed secret sharing where multiple secrets
are stored within a single sharing). The parties wish to compute a Σ′-sharing Y whose secret
is a linear map of the secret of X . Here a linear map means that each output secret is a linear
combination of the input secrets (recall that the secret can be a vector in F). We refer to this
problem as sharing transformation.

Restricted cases of sharing transformations occur frequently in the construction of secure
computation protocols based on secret sharing. For example,
• In the well-known BGW protocol [9] and DN protocol [28] and their followups (see [17,

24, 45] and the citations therein), when evaluating a multiplication gate, all parties first
locally compute a Shamir secret sharing of the result with a larger degree. To proceed the
computation, all parties wish to transform it to a Shamir secret sharing of the result with
a smaller degree. Here the two linear secret sharing schemes Σ,Σ′ are both the Shamir
secret sharing schemes but with different degrees.

• A recent line of works [21, 27, 62] use the notion of reverse multiplication-friendly em-
beddings (RMFE) to construct efficient information-theoretic MPC protocols over small
fields or rings Z/p`Z. This technique requires all parties to transform a secret sharing of a
vector of secrets that are encoded by an encoding scheme to another secret sharing of the
same secrets that are encoded by a different encoding scheme.

• A line of works [7, 29, 39, 41] focus on the strong honest majority setting (i.e., t =
(1/2− ε) ·n) and use the packed secret-sharing technique [34] to construct MPC protocols
with sub-linear communication complexity in the number of parties. The main technical
difficulty is to perform a linear map on the secrets of a single packed secret sharing (e.g.,
permutation or fan-out). In particular, depending on the circuit, each time the linear map
we need to perform can be different.

Unlike the above results, our sharing transformation protocol (1) can perform arbitrary linear
maps (2) is not restricted to a specific secret-sharing scheme and (3) can achieve optimal commu-
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nication complexity1. Our transformation can find applications to different protocols based on
different secret sharing schemes. In this part we focus on applications to information-theoretic
(IT) MPC protocols. Furthermore, since we can handle any linear secret sharing scheme, our
sharing transformation works for an arbitrary packing factor k as long as t ≤ n− 2k + 1 where
n is the number of participants and t is the number of corrupted parties by the adversary. This
allows us to present the first IT MPC protocols with online communication complexity per gate
sub-linear in the number of parties in the circuit-independent prepossessing model for a variety
of corruption thresholds based on packed secret sharing.

Previous Results in the Dishonest Majority Setting. In the dishonest majority setting, pre-
processing model is required for the existence of information-theoretic MPC protocols. For the
case where t = n−1, any function can be computed with IT security in the preprocessing model
with online communication complexity of O(n) field elements per gate across all parties [30].
Existing protocols in the literature even for t ∈ [(n + 1)/2, n − 1] still required communication
complexity of O(n) elements per gate.

Previous Results in the (Strong) Honest Majority Setting. In the (strong) honest majority
setting, information-theoretic MPC protocols exist in the plain model. The best known protocols
in the so called optimal threshold regime tolerating t = (n − 1)/2 corrupted parties require
communicating O(n) field elements per gate (ignoring circuit independent terms) [13, 17, 24,
28, 38, 44, 60]. There are no constructions known beating this barrier even in the semi-honest
setting despite over a decade of research.

In a remarkable result, Damgård et al. [29] showed an unconditional MPC protocol with
communication complexity of O(log |C| · 1/ε) per gate (ignoring circuit independent terms)
tolerating t = (1/3 − ε) · n corrupted parties. This was later extended by Genkin et al. [39] to
obtain a construction tolerating t = (1/2 − ε) · n corrupted parties with also a constant factor
improvement in the communication complexity. These works rely on the packed secret sharing
technique introduced by Franklin and Yung [34] where k secrets are packed into a single secret
sharing. An incomparable result was given by Garay et al. [37] who obtained a protocol with
communication complexity O(log1+δ n) per gate where δ is any positive constant.

Two recent independent works [7, 41] also use the packed secret sharing technique in the
MPC paradigm. The work [41] uses the packed secret sharing and achieves O(1) elements per
gate in the preprocessing phase. However, it still requires O(n) elements per gate in the online
phase. On the other hand, the work [7] achieves O(1) elements per gate only for a special class
of circuits that have a highly repetitive structure.

1To be more precise, our protocol achieves linear communication complexity in the summation of the sharing
sizes of the two secret sharing schemes in the transformation. This is optimal (up to a constant factor) since it
matches the communication complexity of using an ideal functionality to do sharing transformation: the size of the
input is the sharing size of the first secret sharing scheme, the size of the output is the sharing size of the second
secret sharing scheme, and the communication complexity is the size of the input and output.

90



9.1 Our Contributions

Sharing Transformation. For our arbitrary linear-map transformation on (packed) linear se-
cret sharing schemes we obtain the following informal result focusing on share size 1 (i.e., each
share is a single field element).
Theorem 9.1 (Informal). Let k = (n − t + 1)/2. For all k tuples of {(Σi,Σ

′
i, fi)}ki=1 linear

secret sharing schemes with injective sharing functions and for all Σi-sharings {Xi}ki=1, there
is an information-theoretic MPC protocol with semi-honest security against t corrupted parties
that transformsXi to a Σ′i-sharing Yi such that the secret of Yi is equal to the result of applying
a linear map fi on the secret of Xi for all i ∈ {1, . . . , k} (Here the secrets of Xi and Yi can
be vectors). The cost of the protocol is O(n3/k2) elements of communication per sharing in a
(sharing independent) preprocessing stage leading to preprocessed data of size O(n2/k), and
O(n2/k) elements of communication per sharing in the online phase. When t = (1 − ε) · n
for a positive constant ε, the overall communication complexity is O(n) elements per sharing
transformation.

The formal theorem is stated in Theorem 11.1. In Chapter 11, we show that our sharing
transformation works for any share size ` (with an increase in the communication complexity
by a factor `), and is naturally extended to any finite fields and rings Z/p`Z. The main appli-
cation of our sharing transformation technique is to construct MPC protocols. And we achieve
malicious security by directly compiling our semi-honest MPC protocol instead of relying on
a maliciously secure sharing transformation protocol. Therefore, we do not attempt to achieve
malicious security for our sharing transformation technique.

We now turn our attention to constructing general MPC using our sharing transformation
technique.

Dishonest Majority Setting. In the setting of dishonest majority where the number of cor-
rupted parties t = (1 − ε) · n for a positive constant ε, our MPC protocol achieves the cost of
O(1/ε2) elements of (the size of) preprocessing data, and O(1/ε) elements of communication
per gate among all parties. Thus when ε is a constant (e.g., up to 99 percent of all parties may
be corrupted), the achieved communication complexity in the online phase is O(1) elements per
gate.

Honest Majority Setting. As a corollary of our results in the dishonest majority setting, we
can achieve O(1) elements per gate of online communication and O(1) elements of preprocess-
ing data per gate across all parties in the honest majority setting. In particular, the preprocessing
data can be efficiently prepared relying on our efficient multiplication protocol and efficient mul-
tiplication verification protocol in Part I. As a result, we obtain an information-theoretic MPC
protocol with O(n) elements of communication per gate in the preprocessing phase, and O(1)
elements of communication per gate in the online phase.

Our main results are summarized below. Note that we have omitted the additive terms of
the overhead of the communication complexity in the informal theorems below. The formal
theorems are stated in Theorem 12.1 and Theorem 14.1 respectively, where the additive terms

91



are dependent on n and the depth of the evaluated circuit. Our first theorem is for the semi-honest
setting:
Theorem 1.3 (Informal). For an arithmetic circuit C over a finite field F of size |F| ≥ |C| + n,
there exists an information-theoretic MPC protocol in the preprocessing model which securely
computes the arithmetic circuit C in the presence of a semi-honest adversary controlling up
to t parties. The cost of the protocol is O(|C| · n2/k2) elements of preprocessing data, and
O(|C| · n/k) elements of communication where k = n−t+1

2
is the packing parameter. For the

case where k = O(n), the achieved communication complexity in the online phase is O(1)
elements per gate.

Our theorem also holds in the presence of a malicious adversary for all n−1
3
≤ t ≤ n− 1.

Theorem 1.4 (Informal). For an arithmetic circuit C over a finite field F of size |F| ≥ 2κ, where
κ is the security parameter, and for all n−1

3
≤ t ≤ n − 1, there exists an information-theoretic

MPC protocol in the preprocessing model which securely computes the arithmetic circuit C in
the presence of a fully malicious adversary controlling up to t parties. The cost of the protocol
is O(|C| · n2/k2) elements of preprocessing data, and O(|C| · n/k) elements of communica-
tion where k = n−t+1

2
is the packing parameter. For the case where k = O(n), the achieved

communication complexity in the online phase is O(1) elements per gate.
Moreover, we also propose an alternative solution to achieve the same results for small finite

fields of size |F| ≥ 2n based on the Hall’s Marriage Theorem in the graph theory, which may be
of independent interest. See more details in Chapter 10.2.4 and Chapter 13.

9.2 Related Works
Sharing Transformation and Sharing Conversion. In this work, we study the problem of
sharing transformation, where we want to transform the shares of one or multiple secrets under
one secret sharing scheme into shares of another secret sharing scheme and apply a function on
the secrets. In particular, we require the two secret sharing schemes as well as the function to be
linear in the same finite commutative ring.

On the other hand, a line of works [3, 15, 32, 33, 47, 58, 61, 63] study the problem of sharing
conversion where they focus on the identity function (i.e., keep the secret unchanged) but two
secret sharing schemes that are not in the same finite commutative ring, e.g., converting a secret
sharing in the binary field to a secret sharing in a prime field. The problem of sharing conversion
appears to be much difficult than the problem of sharing transformation since we need to handle
two different rings or fields. In particular, our technique does not work for the problem of sharing
conversion.

Sharing Transformation via Pseudo-Random Secret Sharing [12]. The work [12] also stud-
ies the problem of sharing transformation relying on the technique of PRSS (Pseudo-Random
Secret Sharing) initially studied in [26]. At a high level, the idea is to first prepare replicated
secret sharings and then transform them to correlated random packed Shamir sharings, which are
used for sharing transformations.

The main advantage of this approach is that, after some initial setup, replicated secret shar-
ings can be prepared without interaction relying on pseudo-random generators. Relying on this
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technique, the work [12] can realize network routing, a key step of using the packed secret shar-
ing technique in MPC, with no extra cost.

However, both the communication complexity for the setup and the computation complexity
for generating each replicated secret sharing grows exponentially with the number of corrupted
parties. It restricts the technique in [12] to be only practical for a small constant number of
parties.

Information-Theoretic MPC with Dishonest Majority. In [30], Damgård et al. introduced
the well-known protocol SPDZ in the all-but-one corruption setting, i.e., the number of cor-
rupted parties is t = n − 1. The online phase of SPDZ is information-theoretic and therefore
can be viewed as an information-theoretic protocol in the preprocessing model. The cost of the
SPDZ protocol isO(n) elements of preprocessing data andO(n) elements of communication per
multiplication gate among all parties. Also in the all-but-one corruption setting, a recent break-
through [25] shows that information-theoretic protocols in the preprocessing model are possible
to achieve with sublinear communication complexity in the circuit size at a cost of a large amount
of preprocessing data. Concretely, Couteau presents an MPC protocol for layered circuits in the
preprocessing model, which achieves communication complexity of O(n · |C|/ log log log |C|)
elements, at the cost of O(|C|2/ log log log |C|) elements of preprocessing data. We note that,
however, the communication complexity of the protocol in [25] is still linear in the number of
parties and the protocol is impractical for a large circuit due to the amount of preprocessing data.
In fact, Ishai et al. [51] showed that it is possible to achieve a communication complexity that
is only linear in the input size and independent of the circuit size at the cost of an exponential
amount of preprocessing data in the input size.

Compared with [25, 30], we focus on a general corruption threshold where the number of
corrupted parties t = (1 − ε) · n for a positive constant ε. Our protocol achieves the cost of
O(1) elements of preprocessing data and O(1) elements of communication per gate among all
parties. One advantage of our protocol is that one may trade the corruption threshold with the
real speed-up in the protocol, which is otherwise not possible in [25, 30].

We note that a folklore solution in our setting is to choose a random small committee and then
evaluate the circuit among parties in the small committee. Since there are ε · n honest parties,
if each time we add a random party into the committee, the probability of selecting an honest
party is ε. Let κ be the security parameter. To ensure that with probability 1 − 2−κ, there is at
least one honest party in the committee, the size of the committee should be at least O(κ). If
parties in the selected committee run the protocol in [30], the achieved cost is O(κ) elements
of preprocessing data and O(κ) elements of communication per gate among all parties, which
is κ times of the cost of our construction. If parties run the protocol in [25], the achieved cost
is O(|C|/ log log log |C|) elements of preprocessing data and O(κ/(ε · log log log |C|)) elements
of communication per gate among all parties. Note that, however, the circuit size is bounded by
a polynomial of the security parameter κ, which means the term log log log |C| is much smaller
than κ. Therefore, no matter which protocols are used in the folklore solution, our protocol is
always o(κ) times faster.

93



Instantiation of Beaver Triples in the Preprocessing Phase. A line of works focus on gen-
erating the preprocessed data (i.e., Beaver triples) for SPDZ-style protocols based on various
cryptographic assumptions. For example, the works [30, 54] use somewhat homomorphic en-
cryption schemes and achieve O(n2) communication per Beaver triple. The work [53] uses OT
and also achieves O(n2) communication per Beaver triple. A recent breakthrough by Boyle, et
al [14] (with a concrete efficient instantiation in [16]) shows that it is possible to achieve a sub-
linear communication complexity in the number of Beaver triples based on the assumption of
LWE or Ring-LPN.

On the other hand, our construction requires to prepare packed Beaver triples in the pre-
processing phase. We leave the question of extending the techniques in [14, 16, 30, 53, 54] to
prepare packed Beaver triples to future works.

Information-Theoretic MPC with Strong Honest Majority. In the setting of strong honest
majority setting where the number of corrupted parties t = (1/2− ε) ·n for a positive constant ε,
a rich line of works [7, 12, 29, 39, 41, 46, 52] makes use of the packed secret sharing technique
to construct efficient multiparty computation protocols. In particular, the recent work [46] gives
the first information-theoretic MPC protocol in this setting which achieves O(1) communication
complexity per gate among all parties.

Communication Complexity versus Computation Complexity. In the dishonest majority
setting with corruption threshold t = (1 − ε) · n for a positive constant ε, our work achieves
O(|C|) total amount of preprocessing data and online communication. However, our construc-
tion has online computation complexity O(|C| · n), which grows linearly with the number of
parties. The linear computation complexity is due to the network routing: when all parties col-
lect secrets from multiple packed sharings, the computation complexity grows linearly with the
number of different packed sharings. It means that our use of packed secret sharing does not
help reduce the computation complexity. Also, our sharing transformation protocol requires lin-
ear computation complexity due to a similar reason.

In the strong honest majority setting, the work [29] achieves sublinear communication (but
with a log |C| factor compared with our work) and computation complexity in the number of
parties. We may achieve a similar result in our setting by the following potential approaches:
• We may directly extend the network routing protocol in [29] to our setting.

At a high level, the work [29] transforms a general circuit to a SIMD circuit by using
the Beneš network so that only a limited number of different sharing transformations is
required to perform. The transformation increases the circuit size by a log |C| factor. The
use of Beneš network has two advantages:

1. First, after the transformation, the computation only requires to perform a limited
number of different sharing transformations. Therefore, the generic approach of do-
ing sharing transformation (which is only efficient when the same transformation is
performed multiple times) suffices.

2. Second, there is no need to do network routing for a SIMD circuit (except the inserted
sharing transformations due to the use of Beneš network).
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These two advantages allow them to also achieve sublinear computation complexity.
In our setting, we may apply the same circuit transformation, use the generic approach for
sharing transformations, and then use our protocol to evaluate the circuit.

• We may combine the technique of party virtualization [19] and the protocol in [29] as
follows:

We first randomly select N random constant size committees. Each committee simu-
lates one virtual party by using a maximal threshold dishonest majority protocol that
has linear overhead in the circuit size (such as the SPDZ protocol). Note that if a
committee contains at least one honest party, the corresponding virtual party behaves
honestly. By carefully adjusting the size of the committee and the number of commit-
tees, we may ensure that with overwhelming probability, over 2/3 of virtual parties
are honest.

Then the N virtual parties run the protocol in [29], which achieves sublinear commu-
nication and computation complexity in the number of virtual parties.

Now we analyze the computation complexity of the above approach. Note that the circuit
for simulating a virtual party is proportional to the computation complexity of this party.
Since each virtual party is simulated by a constant size committee, the simulation of a
virtual party only increases the computation complexity by a constant factor. Therefore
the achieved computation complexity remains sublinear in the number of parties. (Note
that the communication complexity is always smaller than the computation complexity.)

We leave the formal descriptions and verifications of the above two approaches to future
works.
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Chapter 10

Technical Overview

In this chapter, we give an overview of our techniques. We use bold letters to represent vectors.

Reducing Sharing Transformation to Random Sharing Preparation. Usually, sharing trans-
formation is solved by using a pair of random sharings (R,R′) such thatR is a random Σ-sharing
andR′ is a random Σ′-sharing which satisfies that the secret ofR′ is equal to the result of apply-
ing f on the secret ofR, where f is the desired linear map. Then all parties can run the following
steps to efficiently transformX to Y .

1. All parties locally computeX +R and send their shares to the first party P1.

2. P1 reconstructs the secret ofX+R, denoted byw. Then P1 computes f(w) and generates
a Σ′-sharing of f(w), denoted byW . Finally, P1 distributes the shares ofW to all parties.

3. All parties locally compute Y = W −R′.
If we use rec, rec′ to denote the reconstruction maps of Σ and Σ′ (which are linear by definition)
respectively, the correctness follows from that

rec′(Y ) = rec′(W )−rec′(R′) = f(w)−f(rec(R)) = f(rec(X+R)−rec(R)) = f(rec(X)).

And the security follows from the fact that X + R is a random Σ-sharing and thus reveals no
information about the secret of X . Therefore, the problem of sharing transformation is reduced
to preparing a pair of random sharings (R,R′). Let Σ̃ = Σ̃(Σ,Σ′, f) be the secret sharing
scheme which satisfies that a Σ̃-sharing of a secret x consists of X which is a Σ-sharing of x,
and Y which is a Σ′-sharing of f(x). Then, the goal becomes to prepare a random Σ̃-sharing.

The generic approach of preparing random sharings of a linear secret sharing scheme over F
is as follows:

1. Each party Pi first samples a random sharing Ri and distributes the shares to all other
parties.

2. All parties use a linear randomness extractor over F to extract a batch of random shar-
ings such that they remain uniformly random even given the random sharings sampled by
corrupted parties. For a large finite field, we can use the transpose of a Vandermonde ma-
trix [28] as a linear randomness extractor. The use of a randomness extractor is to reduce
the communication complexity per random sharing. Alternatively, we can simply add all
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random sharings {Ri}ni=1 and output a single random sharing, which results in quadratic
communication complexity in the number of parties.

If t is the number of corrupted parties, all parties can extract n− t random sharings when using a
large finite field. Then, the amortized communication cost per sharing is n2/(n−t) field elements
(assuming each share is a single field element). When n − t = O(n), e.g., the honest majority
setting, the amortized cost becomes n2/(n− t) = O(n), which is generally good enough since it
matches the communication complexity of delivering a random sharing by a trusted party, which
seems like the best we can hope, up to a constant factor.

Thus when we need to prepare many random sharings for the same linear secret sharing
scheme, the generic approach is already good enough. And in particular, it is good enough
for random Σ̃-sharings which are used for the same sharing transformation defined by Σ̃ =
Σ̃(Σ,Σ′, f), since Σ̃ is also a linear secret sharing scheme. This is exactly the case when we need
to do degree reduction in [9, 28] and change the encoding of the secrets in [21, 27, 62]. However,
it is a different story if we need to prepare random sharings for different linear secret sharing
schemes: If only a constant number of random sharings are needed for each linear secret sharing
scheme, the amortized cost per sharing becomes O(n2) field elements. This is exactly the case
when we need to perform permutation on the secrets of a packed secret sharing in [7, 29, 39].
In their setting, the permutations are determined by the circuit structure. In particular, these
permutations can all be distinct in the worst case. As a result, the cost of preparing random
sharings becomes the dominating term in the communication complexity in the MPC protocols.
To avoid it, previous works either restrict the number of different secret sharing schemes they
need to prepare random sharings for [29, 39] or restrict the types of circuits [7].

This leads to the following fundamental question: Can we prepare random sharings (used
for sharing transformations) for different linear secret sharing schemes with amortized commu-
nication complexity O(n)?

10.1 Preparing Random Sharings for Different Linear Secret
Sharing Schemes

To better expose our idea, we focus on a large finite field F. In the following, we use n for the
number of parties, and t for the number of corrupted parties. We assume semi-honest security in
the technical overview.

Linear Secret Sharing Scheme over F. For a linear secret sharing scheme Σ over F, we use
Z = Fk̃ to denote the secret space. k̃ is also referred to as the secret size of Σ. For simplicity,
we focus on the linear secret sharing schemes that have share size 1 (i.e., each share is a single
field element even though the secret is a vector of k̃ elements). Let share : Z × Fr̃ → Fn be
the deterministic sharing map which takes as input a secret x and r̃ random field elements, and
outputs a Σ-sharing of x. We focus on linear secret sharing schemes whose sharing maps are
injective, which implies that k̃ + r̃ ≤ n. Let rec : Fn → Z be the reconstruction map which
takes as input a Σ-sharing and outputs the secret of the input sharing. As discussed above, we
have shown that preparing many random sharings for the same linear secret sharing scheme can
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be efficiently achieved.
We use the standard Shamir secret sharing scheme over F, and use [x]t to denote a degree-t

Shamir sharing of x. A degree-t Shamir sharing requires t + 1 shares to reconstruct the secret.
And any t shares of a degree-t Shamir sharing are independent of the secret.

10.1.1 Starting Point - Preparing a Random Sharing for a Single Linear
Secret Sharing Scheme

Let Σ be an arbitrary linear secret sharing scheme. Although we have already shown how to
prepare a random sharing for a single linear secret sharing scheme Σ, we consider the following
process which is easy to be extended (discussed later).

1. All parties prepare k̃+ r̃ random degree-t Shamir sharings. Let τ be the secrets of the first
k̃ sharings, and ρ be the secrets of the last r̃ sharings. Our goal is to compute a random
Σ-sharing of τ with random tape ρ, i.e., share(τ ,ρ).

2. Since share is F-linear, for all j ∈ {1, 2, . . . , n}, the j-th share of share(τ ,ρ) is a linear
combination of the values in τ and ρ. Thus, all parties can locally compute a degree-t
Shamir sharing of the j-th share of share(τ ,ρ) by using the degree-t Shamir sharings of
the values in τ and ρ prepared in Step 1 and applying linear combinations on their local
shares. Let [Xj]t denote the resulting sharing.

3. For all j ∈ {1, 2, . . . , n}, all parties send their shares of [Xj]t to Pj to let Pj reconstruct
Xj . All parties takeX = (X1, . . . , Xn) as output.

Note that τ and ρ are all uniform field elements, and X = share(τ ,ρ). Therefore, the output
X is a random Σ-sharing.

We note that this approach requires to prepare k̃+r̃ = O(n) random degree-t Shamir sharings
and communicate n2 field elements in order to prepare a random Σ-sharing, which is far from
O(n). To improve the efficiency, we try to prepare random sharings for a batch of (potentially
different) secret sharing schemes each time.

10.1.2 Preparing Random Sharings for a Batch of Different Linear Secret
Sharing Schemes

We note that the above vanilla process can be viewed as all parties securely evaluating a circuit
for the sharing map share of Σ. In particular, (1) the circuit only involves linear operations, and
(2) circuits for different secret sharing schemes (i.e., share1, share2, . . . , sharek) all satisfy that
each output value is a linear combination of all input values with different coefficients. When
we want to prepare random sharings for a batch of different secret sharing schemes, the joint
circuit is very similar to a SIMD circuit (which is a circuit that contains many copies of the same
sub-circuit). The only difference is that, in our case, each sub-circuit corresponds to a different
secret sharing scheme, and therefore the coefficients used in different sub-circuits are distinct.
On the other hand, a SIMD circuit would use the same coefficients in all sub-circuits. Thus, it
motivates us to explore the packed secret-sharing technique in [34], which is originally used to
evaluate a SIMD circuit.
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Starting Idea. Suppose Σ1,Σ2, . . . ,Σk are k arbitrary linear secret sharing schemes (Recall
that we want to prepare random sharings for different sharing transformations, and every different
sharing transformation requires to prepare a random sharing of a different secret sharing scheme).
We assume that they all have share size 1 (i.e., each share is a single field element) for simplicity.
We consider to use a packed secret sharing scheme that can store k secrets in each sharing. Our
attempt is as follows:

1. All parties first prepare n random packed secret sharings (Our construction will use the
packed Shamir secret sharings introduced below). The secrets are denoted by r1, r2, . . . , rn,
where each secret rj is a vector of k random elements in F.

2. For all i ∈ {1, 2, . . . , k}, we want to use the i-th values of all secret vectors to prepare a
random sharing of Σi. With more details, suppose Σi has secret space Zi = Fk̃i , and the
sharing map of Σi is sharei : Zi × Fr̃i → Fn. Consider the vector (r1,i, r2,i, . . . , rn,i)
which contains the i-th values of all secret vectors. We plan to use the first k̃i values as
the secret τi, and the next r̃i values as the random tape ρi. Recall that we require sharei
to be injective. We have k̃i + r̃i ≤ n. Therefore, there are enough values for τi and ρi.
The goal is to compute a random Σi-sharing Xi of the secret τi with random tape ρi, i.e.,
Xi = sharei(τi,ρi).

3. For each party Pj , let uj denote the j-th shares ofX1, . . . ,Xk. We want to use the packed
secret sharings of r1, . . . , rn to compute a single packed secret sharing of uj .

4. After obtaining a packed secret sharing of uj , we can reconstruct the sharing to Pj so that
he learns the j-th share of each of X1, . . . ,Xk. Thus, we start with n packed secret shar-
ings (of r1, . . . , rn) of the same secret sharing scheme and end with k sharingsX1, . . . ,Xk

of k potentially different secret sharing schemes.
Clearly, the main question is how to realize Step 3. We observe that, since Σi is a linear secret

sharing scheme, the j-th share of Xi can be written as a linear combination of the values in τi
and ρi. Therefore, the j-th share of Xi is a linear combination of the values (r1,i, r2,i, . . . , rn,i).
Since it holds for all i ∈ {1, 2, . . . , k}, there exists constant vectors c1, . . . , cn ∈ Fk such that

uj := c1 ∗ r1 + . . .+ cn ∗ rn,

where ∗ denotes the coordinate-wise multiplication operation. Thus, what we need is a packed
secret sharing scheme that supports efficient coordinate-wise multiplication with a constant vec-
tor. We note that the packed Shamir secret sharing scheme fits our need as we show next.

Packed Shamir Secret Sharing Scheme and Multiplication-Friendliness. The packed Shamir
secret sharing scheme [34] is a natural generalization of the standard Shamir secret sharing
scheme [64]. It allows to secret-share a batch of secrets within a single Shamir sharing. For a
vector x ∈ Fk, we use [x]d to denote a degree-d packed Shamir sharing, where k−1 ≤ d ≤ n−1.
It requires d+1 shares to reconstruct the whole sharing, and any d−k+1 shares are independent
of the secrets. The packed Shamir secret sharing scheme has the following nice properties:
• Linear Homomorphism: For all d ≥ k − 1 and x,y ∈ Fk, [x+ y]d = [x]d + [y]d.
• Multiplicative: For all d1, d2 ≥ k − 1 subject to d1 + d2 < n, and for all x,y ∈ Fk,

[x ∗ y]d1+d2 = [x]d1 · [y]d2 , where the multiplications are performed on the corresponding
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shares.
Note that when d ≤ n − k, all parties can locally multiply a public vector c ∈ Fk with a

degree-d packed Shamir sharing [x]d:
1. All parties first locally compute a degree-(k − 1) packed Shamir sharing of c, denoted by

[c]k−1. Note that for a degree-(k− 1) packed Shamir sharing, all shares are determined by
the secret c.

2. All parties then locally compute [c ∗ x]n−1 = [c]k−1 · [x]n−k.
We simply write [c ∗x]n−1 = c · [x]n−k to denote the above process. We refer to this property as
multiplication-friendliness.

To make sure that the packed Shamir secret sharing scheme is secure against t corrupted
parties, we also require d ≥ t + k − 1. When d = n − k and k = (n − t + 1)/2, the degree-
(n− k) packed Shamir secret sharing scheme is both multiplication-friendly and secure against
t corrupted parties.

Observe that when we use the degree-(n − k) packed Shamir secret sharing scheme in our
attempt, all parties can locally compute a degree-(n− 1) packed Shamir sharing of uj by

[uj]n−1 = c1 · [r1]n−k + . . .+ cn · [rn]n−k,

which solves the problem.

Summary of Our Construction. In summary, all parties run the following steps to prepare
random sharings for k different linear secret sharing schemes Σ1,Σ2, . . . ,Σk.

1. Prepare Packed Shamir Sharings: All parties prepare n random degree-(n − k) packed
Shamir sharings, denoted by [r1]n−k, . . . , [rn]n−k.

2. Use Packed Secrets as Randomness for Target LSSS: For all i ∈ {1, 2, . . . , k}, let τi =
(r1,i, . . . , rk̃i,i) and ρi = (rk̃i+1,i, . . . , rk̃i+r̃i,i). LetXi = sharei(τi,ρi).

3. Compute a Single Packed Shamir Sharing for All j-th Shares of Target LSSS via Local Op-
erations: For all j ∈ {1, 2, . . . , n}, letuj be the j-th shares of (X1, . . . ,Xk). All parties lo-
cally compute a degree-(n−1) packed Shamir sharing of uj by using [r1]n−k, . . . , [rn]n−k.
The resulting sharing is denoted by [uj]n−1.

4. Reconstruct the Single Packed Shamir Sharing of All j-th Shares to Pj: For all j ∈
{1, 2, . . . , n}, all parties reconstruct the sharing [uj]n−1 to Pj to let him learn uj =

(u
(1)
j , . . . , u

(k)
j ). Then all parties take {Xi = (u

(i)
1 , . . . , u

(i)
n )}ki=1 as output.

We note that in Step 4, [uj]n−1 is not a random degree-(n − 1) packed Shamir sharing of
uj . Directly sending the shares of [uj]n−1 to Pj may leak the information about honest parties’
shares. To solve it, all parties also prepare n random degree-(n− 1) packed Shamir sharings of
0 ∈ Fk, denoted by [o1]n−1, . . . , [on]n−1. Then all parties use [oj]n−1 to refresh the shares of
[uj]n−1 by computing [uj]n−1 := [uj]n−1 + [oj]n−1. Now [uj]n−1 is a random degree-(n − 1)
packed Shamir sharing of uj . All parties send their shares of [uj]n−1 to Pj to let him reconstruct
uj .
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Communication Complexity. Thus, to prepare random sharings for k linear secret sharing
schemes, our construction requires to prepare n random degree-(n− k) packed Shamir sharings
and n random degree-(n − 1) packed Shamir sharings of 0 ∈ Fk. And the communication
complexity is n2 field elements. On average, each random sharing costs 2n/k packed Shamir
sharings and n2/k elements of communication. When we use the generic approach to prepare
random packed Shamir sharings, the total communication complexity per random sharing is
O(n2/k) elements.

Recall that k = (n−t+1)/2. When t = (1−ε)·n for a positive constant ε, the communication
complexity per random sharing isO(n) elements, which matches the communication complexity
of delivering a random sharing by a trusted party up to a constant factor. In Chapter 11, we show
that our technique works for any share size ` (with an increase in the communication complexity
by a factor `), and is naturally extended to any finite fields and rings Z/p`Z.

Efficient Sharing Transformation. Recall that in the problem of sharing transformation, all
parties start with holding a sharingX of a linear secret sharing scheme Σ. They want to compute
a sharing Y of another linear secret sharing scheme Σ′ such that the secret of Y is a linear map
of the secret ofX .

As we discussed above, sharing transformation can be achieved efficiently with the help of
a pair of random sharings (R,R′) such that R is a random Σ-sharing and R′ is a random Σ′-
sharing which satisfies that the secret of R′ is equal to the result of applying the desired linear
map on the secret of R. A key insight is that (R,R′) can just be seen as a linear secret sharing
on its own. With our technique of preparing random sharings for different linear secret sharing
schemes, we can efficiently prepare a pair of random sharings (R,R′), allowing efficient sharing
transformation fromX to Y .

When t = (1−ε) ·n for a positive constant ε, each sharing transformation only requiresO(n)
field elements of communication.

10.2 Application: MPC via Packed Shamir Secret Sharing
Schemes

In this section, we show that our technique for sharing transformation allows us to design an ef-
ficient MPC protocol via packed Shamir secret sharing schemes. We focus on the dishonest ma-
jority setting and information-theoretic setting in the circuit-independent preprocessing model.
In the preprocessing model, all parties receive correlated randomness from a trusted party before
the computation. The preprocessing model enables the possibility of an information-theoretic
protocol in the dishonest majority setting, which otherwise cannot exist in the plain model. The
cost of a protocol in the preprocessing model is measured by both the amount of preprocess-
ing data prepared in the preprocessing phase and the amount of communication in the online
phase [18, 25].

Let n be the number of parties, and t be the number of corrupted parties. For any positive con-
stant ε, we show that there is an information-theoretic MPC protocol in the circuit-independent
preprocessing model with semi-honest security (or malicious security) that computes an arith-
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metic circuit C over a large finite field F (with |F| ≥ |C| + n) against t = (1 − ε) · n corrupted
parties with O(|C|) field elements of preprocessing data and O(|C|) field elements of communi-
cation.

Later on, we will propose an alternative solution for small finite fields of size |F| ≥ 2n in
Chapter 10.2.4.

Review the Packed Shamir Secret Sharing Scheme. We recall the notion of the packed
Shamir secret sharing scheme. Let α1, . . . , αn be n distinct elements in F and pos = (p1, p2, . . . , pk)
be another k distinct elements in F. A degree-d (d ≥ k − 1) packed Shamir sharing of x =
(x1, . . . , xk) ∈ Fk is a vector (w1, . . . , wn) for which there exists a polynomial f(·) ∈ F[X]
of degree at most d such that f(pi) = xi for all i ∈ {1, 2, . . . , k}, and f(αi) = wi for all
i ∈ {1, 2, . . . , n}. The i-th share wi is held by party Pi.

In our protocol, we will always use the same elements α1, . . . , αn for the positions of the
shares of all parties. However, we may use different elements pos for the secrets. We will use
[x‖pos]d to denote a degree-d packed Shamir sharing of x ∈ Fk stored at positions pos. Let
β = (β1, . . . , βk) be distinct field elements in F that are different from α1, . . . , αn. We will use
β as the default positions for the secrets, and simply write [x]d = [x‖β]d.

Recall that t is the number of corrupted parties. Let k = (n− t+ 1)/2 and d = n− k. As we
have shown in Chapter 10.1, all parties can locally multiply a public vector with a degree-(n−k)
packed Shamir sharing, and a degree-(n−k) packed Shamir sharing is secure against t corrupted
parties.

An Overview of Our Construction. At a high-level,
1. All parties start with sharing their input values by using packed Shamir sharings.

2. In each layer, addition gates and multiplication gates are divided into groups of size k.
Each time we will evaluate a group of k gates:

(a) For each group of k gates, all parties prepare two packed Shamir sharings, one for
the first inputs of all gates, and the other one for the second inputs of all gates. Note
that the secrets we want to be in a single sharing can be scattered in different output
sharings from previous layers. This step is referred to as network routing.

(b) After preparing the two input sharings, all parties evaluate these k gates. Addition
gates can be locally computed since the packed Shamir secret sharing scheme is lin-
early homomorphic. For multiplication gates, we extend the technique of Beaver
triples [5] to our setting, which we refer to as packed Beaver triples. All parties need
to prepare packed Beaver triples in the preprocessing phase.

3. After evaluating the whole circuit, all parties reconstruct the sharings they hold to the
parties who should receive the result.

Sparsely Packed Shamir Sharings. Our idea is to use a different position to store the output
value of each gate. Recall that |F| ≥ |C| + n. Let β1, β2, . . . , β|C| be |C| distinct field elements
that are different from α1, α2, . . . , αn. (Recall that we have already defined β = (β1, . . . , βk),
which are used as the default positions for a packed Shamir sharing.) We associate the field
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element βi with the i-th gate in C. We will use βi as the position to store the output value of the
i-th gate in a degree-(n− k) packed Shamir sharing (see an example below).

Concretely, for each group of k gates, all parties will compute a degree-(n − k) packed
Shamir sharing such that the results are stored at the positions associated with these k gates
respectively. For example, when k = 3, for a batch of 3 gates which are associated with the
positions β1, β3, β6 respectively, all parties will compute a degree-(n−k) packed Shamir sharing
[(z1, z3, z6)‖(β1, β3, β6)]n−k for this batch of gates, where z1, z3, z6 are the output wires of these
3 gates.

10.2.1 Network Routing

In each intermediate layer, for every group of k gates, suppose x are the first inputs of these k
gates, and y are the second inputs of these k gates. All parties will prepare two degree-(n − k)
packed Shamir sharings [x]n−k and [y]n−k stored at the default positions using the following
approach. The reason of choosing the default positions is to use the packed Beaver triples, which
use the default positions since the preprocessing phase is circuit-independent (discussed later).
We focus on how to obtain [x]n−k.

Let x = (x1, x2, . . . , xk). For simplicity, we assume that x1, x2, . . . , xk are output wires from
k distinct gates. Later on, we will show how to handle the scenario where the same output wire
is used multiple times by using fan-out operations. Since we use a different position to store
the output of each gate, the positions of these k gates are all different. Let p1, . . . , pk denote
the positions of these k gates and pos = (p1, . . . , pk). We first show that all parties can locally
compute a degree-(n− 1) packed Shamir sharing [x‖pos]n−1.

Selecting the Correct Secrets. For all i ∈ {1, 2, . . . , k}, let [x(i)‖pos(i)]n−k be the degree-
(n − k) packed Shamir sharing that contains the secret xi at position pi from some previous
layer. Let ei be the i-th unit vector in Fk (i.e., only the i-th term is 1 and all other terms are 0).
All parties locally compute a degree-(k − 1) packed Shamir sharing [ei‖pos]k−1. Consider the
following degree-(n− 1) packed Shamir sharing:

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k.

We claim that, the resulting sharing satisfies that the value stored at position pi is xi and the
values stored at other positions in pos are all 0. To see this, recall that each packed Shamir
sharing corresponds to a polynomial. Let f be the polynomial corresponding to [ei‖pos]k−1,
and g be the polynomial corresponding to [x(i)‖pos(i)]n−k. Then f satisfies that f(pi) = 1
and f(pj) = 0 for all j 6= i, and g satisfies that g(pi) = xi. Note that h = f · g is the
polynomial corresponding to the resulting sharing [ei‖pos]k−1 · [x(i)‖pos(i)]n−k, which satisfies
that h(pi) = f(pi) · g(pi) = 1 · xi = xi, and h(pj) = f(pj) · g(pj) = 0 · g(pj) = 0 for all j 6= i.
Thus, the resulting sharing has value xi in the position pi and 0 in all other positions in pos.
Effectively, we select the secret xi from [x(i)‖pos(i)]n−k at position pi and zero-out the values
stored at other positions in pos.
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Getting all Secrets into a Single Packed Shamir Sharing. Thus, for the following degree-
(n− 1) packed Shamir sharing

k∑
i=1

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k,

it has value xi stored in the position pi for all i ∈ {1, 2, . . . , k}, which means that it is a
degree-(n − 1) packed Shamir sharing [x‖pos]n−1. Therefore, all parties can locally compute
[x‖pos]n−1 =

∑k
i=1[ei‖pos]k−1 · [x(i)‖pos(i)]n−k.

Applying Sharing Transformation. Finally, to obtain [x]n−k = [x‖β]n−k, all parties only
need to do a sharing transformation from [x‖pos]n−1 to [x]n−k. Relying on our technique for
sharing transformation, we can achieve this step with O(n) field elements of communication.

Therefore, our protocol for network routing only requires a local computation for [x‖pos]n−1

and an efficient sharing transformation for [x]n−k with O(n) field elements of communication.

Handling Fan-out Operations. The above solution only works when all the wire values of x
come from different gates. In a general case, x may contain many wire values from the same
gate. We modify the above protocol as follows:

1. Suppose x′1, . . . , x
′
k′ are the different values in x. Let x′ = (x′1, . . . , x

′
k′ , 0, . . . , 0) ∈ Fk.

For all i ∈ {1, 2, . . . , k′}, let pi be the position associated with the gate that outputs x′i. We
choose pk′+1, . . . , pk to be the first (k − k′) unused positions and set pos = (p1, . . . , pk).
Then, all parties follow a similar approach to locally compute a degree-(n − 1) packed
Shamir sharing of [x′‖pos]n−1.

2. Note that x′ contains all different values in x. Thus, there is a linear map f : Fk → Fk
such that x = f(x′). Therefore, relying on our technique for sharing transformation, all
parties transform [x′‖pos]n−1 to [x]n−k.

The communication complexity remains O(n) field elements.

10.2.2 Evaluating Multiplication Gates Using Packed Beaver Triples
For a group of k multiplication gates, suppose all parties have prepared two degree-(n−k) packed
Shamir sharings [x]n−k and [y]n−k. Let pos be the positions associated with these k gates. The
goal is to compute a degree-(n− k) packed Shamir sharing of x ∗ y stored at positions pos. To
this end, we extend the technique of Beaver triples [5] to our setting, which we refer to as packed
Beaver triples. We make use of a random packed Beaver triple ([a]n−k, [b]n−k, [c]n−k), where
a, b are random vectors in Fk and c = a ∗ b. All parties run the following steps:

1. All parties locally compute [x+a]n−k = [x]n−k+[a]n−k and [y+b]n−k = [y]n−k+[b]n−k.

2. The first party P1 collects the whole sharings [x + a]n−k, [y + b]n−k and reconstructs the
secrets x + a,y + b. Recall that x = (x1, . . . , xk) and a = (a1, . . . , ak) are vectors in
Fk, and x + a = (x1 + a1, . . . , xk + ak). Similarly, y + b = (y1 + b1, . . . , yk + bk). P1

computes the sharings [x+ a]k−1, [y + b]k−1 and distributes the shares to other parties.
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3. All parties locally compute

[z]n−1 := [x+ a]k−1 · [y + b]k−1 − [x+ a]k−1 · [b]n−k − [y + b]k−1 · [a]n−k + [c]n−k.

Here the resulting sharing [z]n−1 has degree n − 1 due to the second term and the third
term.

4. Finally, all parties transform the sharing [z]n−1 to [z‖pos]n−k. Relying on our technique
of sharing transformation, this can be done with O(n) field elements of communication.

Note that in the above steps, all parties only reveal [x+ a]n−k and [y + b]n−k to P1. Recall that
[a]n−k and [b]n−k are random degree-(n−k) packed Shamir sharings. Therefore, [x+a]n−k and
[y + b]n−k are also random degree-(n − k) packed Shamir sharings, which leak no information
about x and y to P1. Thus, the security follows.

Therefore, to evaluate a group of k multiplication gates, all parties need to prepare a ran-
dom packed Beaver triple ([a]n−k, [b]n−k, [c]n−k), which is of size O(n) field elements. The
communication complexity is O(n) field elements.

10.2.3 Summary
In summary, our protocol works as follows. All parties first prepare enough packed Beaver
triples stored at the default positions in the preprocessing phase. Then in the online phase,
all parties evaluate the circuit layer by layer. For each layer, all parties first use the protocol
for network routing to prepare degree-(n − k) packed Shamir sharings for the inputs of this
layer. Then, for every group of addition gates, all parties can compute them locally due to
the linear homomorhpism of the packed Shamir secret sharing scheme. For every group of
multiplication gates, we use the technique of packed Beaver triple to evaluate these gates. In
particular, evaluating each group of multiplication gates will consume one fresh packed Beaver
triple prepared in the preprocessing phase.

When t = (1 − ε) · n for a positive constant ε, we have k = (n − t + 1)/2 = O(n). For
the amount of preprocessing data, we need to prepare a packed Beaver triple for each group of k
multiplication gates. Thus, the amount of preprocessing data is bounded by O( |C|

k
·n) = O(|C|).

For the amount of communication, note that all parties need to communicate during the network
routing and the evaluation of multiplication gates. Both protocols require O(n) elements of
communication to process k secrets. Thus, the amount of communication complexity is also
bounded by O( |C|

k
· n) = O(|C|).

Therefore, we obtain an information-theoretic MPC protocol in the circuit-independent pre-
processing model with semi-honest security that computes an arithmetic circuit C over a large
finite field F (with |F| ≥ |C| + n) against t = (1 − ε) · n corrupted parties with O(|C|) field
elements of preprocessing data and O(|C|) field elements of communication.

10.2.4 An Alternative Approach for Network Routing
We note that the main reason of the use of a large finite field is due to the network routing: by
storing the output value of each gate in a different position, all parties can locally collect the
secrets they want and compute a single sharing for these secrets.
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Now suppose we always use the default positions for the packed Shamir sharings. In this
way, we only need the field size |F| ≥ 2n. However, an immediate problem is that the secrets we
need to be in a single sharing may come from the same positions. On the other hand, if an input
sharing satisfies that its secrets come from different positions in the output sharings of previous
layers, we can prepare this input sharing as follows:

1. All parties first locally compute a degree-(n − 1) packed Shamir sharing such that it con-
tains all the secrets we need but the order may be incorrect.

2. To obtain the input sharing we need, all parties perform a permutation on the secrets of the
sharing that all parties have prepared in the first step.

To this end, we consider what we call the non-collision property stated in Property 10.1.
Property 10.1 (Non-collision). For each input sharing of each layer, the secrets of this input
sharing come from different positions in the output sharings of previous layers.

Unfortunately, this property does not hold in general. A counterexample is that we need the
same secret twice in a single input sharing. Then these two secrets will always come from the
same position. To solve this problem, we require that
• every output wire of the input layer and all intermediate layers is used exactly once as an

input wire of a later layer (which may not be the next layer).
This requirement can be met by assuming that there is a fan-out gate right after each (input,
addition, or multiplication) gate that copies the output wire the number of times it is used in later
layers. We will discuss how to evaluate fan-out gates efficiently later. With this requirement,
there is a bijective map between the output wires (of the input layer and all intermediate layers)
and the input wires (of the output layer and all intermediate layers).

Note that only meeting this requirement is not enough: it is still possible that two secrets of a
single input sharing come from the same position but in two different output sharings. Our idea
is to perform a permutation on each output sharing to achieve the non-collision property.

Since every output wire from every layer is only used once as an input wire of another layer,
the number of output sharings in the circuit is the same as the number of input sharings in the
circuit. Let m denote the number of output packed Shamir sharings of the input layer and all
intermediate layers in the circuit. Then the number of input packed Shamir sharings of the
output layer and all intermediate layers is also m. We label all the output sharings by 1, 2, . . . ,m
and all the input sharings also by 1, 2, . . . ,m. Consider a matrix N ∈ {1, 2, . . . ,m}m×k where
Ni,j is the index of the input sharing that the j-th secret of the i-th output sharing wants to go
to. Then for all ` ∈ {1, 2, . . . ,m}, there are exactly k entries ofN which are equal to `. We will
prove the following theorem.
Theorem 10.1. Let m ≥ 1, k ≥ 1 be integers. Let N be a matrix of dimension m × k in
{1, 2, . . . ,m}m×k such that for all ` ∈ {1, 2, . . . ,m}, the number of entries of N which are
equal to ` is k. Then, there exists m permutations p1, p2, . . . , pm over {1, 2, . . . , k} such that
after performing the permutation pi on the i-th row of N , the new matrix N ′ satisfies that each
column ofN ′ is a permutation over (1, 2, . . . ,m). Furthermore, the permutations p1, p2, . . . , pm
can be found within polynomial time.

Jumping ahead, when we apply pi to the i-th output sharing for all i ∈ {1, 2, . . . ,m}, The-
orem 10.1 guarantees that for all j ∈ {1, 2, . . . , k} the j-th secrets of all output sharings want
to go to different input sharings. Note that this ensures the non-collision property. During the
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computation, we will perform the permutation pi on the i-th output sharing right after it is com-
puted. Note that when preparing an input sharing, the secrets we need only come from the output
sharings which have been computed. The secrets of these output sharings have been properly per-
muted such that the secrets we want are in different positions. With the non-collision property,
we can achieve the network routing by following a similar approach to that in Chapter 10.2.1.

Evaluating Fan-Out Gates. We first model the problem as follows: given a degree-(n − k)
packed Shamir sharing [x]n−k along with a vector (n1, n2, . . . , nk) ∈ Nk, where ni ≥ 1 is
the number of times that xi is used in later layers, the goal is to compute n1+n2+...+nk

k
degree-

(n− k) packed Shamir sharings which contain ni copies of the value xi for all i ∈ {1, 2, . . . , k}.
(For simplicity, we assume that n1 + n2 + . . . + nk is a multiple of k. We refer the readers to
Chapter 13 for how we handle the edge case.) We first transform x to m = n1+n2+...+nk

k
vectors

x(1),x(2), . . . ,x(m) in Fk such that they contain ni copies of the value xi for all i ∈ {1, 2, . . . , k}.
All parties use the following algorithm to locally determine what values should be in each of these
m vectors.

1. All parties locally initiate an empty list L. From i = 1 to k, all parties locally insert ni
times of xi into L.

2. From i = 1 to m, all parties locally set x(i) to be the vector of the first k elements in L,
and then remove these elements from L. In this way, all parties determine the values that
should be in the m vectors x(1),x(2), . . . ,x(m).

For each x(i) ∈ {x(1),x(2), . . . ,x(m)}, note that there is a linear map L′i that maps x to x(i).
To obtain [x(i)]n−k from [x]n−k, all parties perform a sharing transformation to transform [x]n−k
to [L′i(x)]n−k.

Achieving Non-Collision Properties. We first show how to prove Theorem 10.1. Let N be
the matrix in Theorem 10.1. Our idea is to repeat the following steps:

1. In the `-th iteration, for each row ofN , we pick a value in the last k− `+ 1 entries of this
row (so that the first ` − 1 entries will not be chosen), such that the values we pick in all
rows form a permutation over {1, 2, . . . ,m}.

2. For each row of N , we swap the `-th entry with the value we picked in this row. In this
way, the `-th column ofN is a permutation over {1, 2, . . . ,m}.

Note that in each iteration, we switch two elements in each row. At the end of the above pro-
cess, we can compute the permutation for each row based on the elements we switched in each
iteration.

To make this idea work, we need to show that we can always find the values which form a
permutation over {1, 2, . . . ,m} in Step 1. We note that this problem has a close connection to
graph theory. We first introduce two basic notions.
• For a graph G = (V,E), we say G is a bipartite graph if there exists a partition (V1, V2) of
V such that all edges are between vertices in V1 and vertices in V2. Such a graph is denoted
by G = (V1, V2, E).

• For a bipartite graph G = (V1, V2, E) where |V1| = |V2|, a perfect matching is a subset
of edges E ∈ E which satisfies that each vertex in the sub-graph (V1, V2, E) has degree
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exactly 1.
Note that a permutation p over {1, 2, . . . ,m} corresponds to a perfect matching in a bipar-
tite graph: the set of vertices are V1 = V2 = {1, 2, . . . ,m}, and the set of edges are E =
{(i, p(i))}mi=1.

We transform this problem to finding a perfect matching in a bipartite graph. We explain our
solution for the first iteration. Consider a graphG = (V1, V2, E) where V1 = V2 = {1, 2, . . . ,m}.
For each entry Ni,j , there is an edge (i, Ni,j) in E. Then picking a value in each row is equiv-
alent to picking an edge for each vertex in V1. The chosen values forming a permutation over
{1, 2, . . . ,m} is equivalent to the chosen edges forming a perfect matching in G.

We use Hall’s Marriage Theorem to prove the existence of a perfect matching.
Theorem 10.2 (Hall’s Marriage Theorem). For a bipartite graph (V1, V2, E) such that |V1| =
|V2|, there exists a perfect matching iff for all subset V ′1 ⊂ V1, the number of the neighbors of
vertices in V2 is at least |V ′1 |.

Hall’s Marriage Theorem is a well-known theorem in graph theory which has many applica-
tions in mathematics and computer science. It provides a necessary and sufficient condition of
the existence of a perfect matching in a bipartite graph. In addition, there are known efficient
polynomial-time algorithms to find a perfect matching in a bipartite graph, e.g. the Hopcroft-
Karp algorithm.

To prove the existence of a perfect matching, we show that the graphG satisfies the necessary
and sufficient condition in Hall’s Marriage Theorem. We say a bipartite graph G′ = (V ′1 , V

′
2 , E

′)
is d-regular if the degree of each vertex in V ′1

⋃
V ′2 is d. A well-known corollary of Hall’s

Marriage Theorem states that:
Corollary 10.1. There exists a perfect matching in a d-regular bipartite graph.

Therefore, it is sufficient to show that the graph G is a d-regular bipartite graph.
For all vertex i ∈ V1, there is an edge (i, Ni,j) in E for each entry in the i-th row of N .

Therefore, the degree of the vertex i is k. For all vertex j ∈ V2, the degree of j equals to the
number of entries in N which equal to j. Note that there are exactly k entries which equals to
j. Thus, the degree of the vertex j is k. Therefore G is a k-regular graph. By Corollary 10.1,
there exists a perfect matching in G. The same arguments work for other iterations. We refer the
readers to Chapter 13 for more details.

With Theorem 10.1, the non-collision property can be achieved by performing a proper per-
mutation on the secrets of each output sharing. This can be done by using our sharing transfor-
mation protocol.

Summary. Thus, the alternative approach for the network routing is as follows:
1. First, after evaluating a group of k gates in the current layer, all parties evaluate fan-out

gates to copy each wire value the number of times that it will be used in the circuit.

2. Then, all parties perform a proper permutation on each output packed Shamir sharing of
the current layer to achieve the non-collision property.

3. After achieving the non-collision property, for each input packed Shamir sharing of the
next layer, all parties locally compute a packed Shamir sharing that contains the desired
secrets. This is done in a similar way to the approach in Chapter 10.2.1.
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4. Finally, they permute the secrets to the correct order to continue the computation.
We note that the first two steps can be done by using a single sharing transformation per input
sharing since the composition of two linear maps is still a linear map.

10.2.5 Other Results
Malicious Security of the Online Protocol. To achieve malicious security, we extend the idea
of using information-theoretic MACs introduced in [11, 30] to authenticate packed Shamir shar-
ings. Concretely, at the beginning of the computation, all parties will prepare a random degree-
(n − k) packed Shamir sharing [γ]n−k, where γ = (γ, γ, . . . , γ) ∈ Fk and γ is a random field
element. The secrets γ serve as the MAC key. To authenticate the secrets of a degree-(n − k)
packed Shamir sharing [x]n−k, all parties will compute a degree-(n− k) packed Shamir sharing
[γ ∗ x]n−k. We will show that almost all malicious behaviors of corrupted parties can be trans-
formed to additive attacks, i.e., adding errors to the secrets of degree-(n − k) packed Shamir
sharings.

Note that if the corrupted parties change the secrets x to x + δ1, they also need to change
the secrets γ ∗ x to γ ∗ x+ δ2 such that δ2 = γ ∗ δ1. However, since γ is a uniform value in F,
the probability of a success attack is at most 1/|F|. When the field size is large enough, we can
detect such an attack with overwhelming probability. See more details in Chapter 14.

Realizing Preprocessing in the Honest Majority Setting with Malicious Security. We then
focus on the malicious security in the standard honest majority setting where the number of cor-
rupted parties t = (n−1)/2. Our idea is to use an information-theoretic honest majority protocol
to prepare the preprocessing data and then use our maliciously secure protocol to evaluate the
circuit. Relying on our efficient multiplication protocol and efficient multiplication verification
protocol constructed in Part I, we obtain an information-theoretic n-party MPC protocol which
securely computes a single arithmetic circuit in the presence of a malicious adversary controlling
up to t = (n− 1)/2 parties with offline communication complexity O(|C|n) and online commu-
nication complexity O(|C|) among all parties. Note that the online communication is sublinear
in the number of parties. To the best of our knowledge, this is the first work that achieves sub-
linear online communication complexity in the number of parties in the information-theoretic
setting with honest majority. We refer the readers to Chapter 15.2 for more details.
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Chapter 11

Preparing Random Sharings for Different
Arithmetic Secret Sharing Schemes

11.1 Arithmetic Secret Sharing Schemes

Let R be a finite commutative ring. In this work, we consider the following arithmetic secret
sharing schemes from [2] (with slight modifications).
Definition 11.1 (Arithmetic Secret Sharing Schemes). The syntax of anR-arithmetic secret shar-
ing scheme Σ consists of the following data:
• A set of parties I = {1, . . . , n}.
• A secret space Z = Rk. k is also denoted as the number of secrets packed within Σ.
• A share space U = R`. ` is also denoted as the share size.
• A sharing space C ⊂ UI , where UI denotes the indexed Cartesian product

∏
i∈I U .

• An injectiveR-module homomorphism: share : Z×Rr → C, which maps a secret x ∈ Z
and a random tape ρ ∈ Rr, to a sharing X ∈ C. share is also denoted as the sharing
map of Σ.

• A surjective R-module homomorphism: rec : C → Z, which takes as input a sharing
X ∈ C and outputs a secret x ∈ Z. rec is also denoted as the reconstruction map of Σ.

The scheme Σ satisfies that for all x ∈ Z and ρ ∈ Rr, rec(share(x,ρ)) = x. We may refer to
Σ as the 6-tuple (n, Z, U, C, share, rec).

For a non-empty set A ⊂ I, the natural projection πA maps a tuple u = (ui)i∈I ∈ UI to the
tuple (ui)i∈A ∈ UA.
Definition 11.2 (Privacy Set and Reconstruction Set). Suppose A ⊂ I is nonempty. We say A is
a privacy set if for all x0,x1 ∈ Z, and for all vector v ∈ UA,

Pr
ρ

[πA(share(x0,ρ)) = v] = Pr
ρ

[πA(share(x1,ρ)) = v].

We sayA is a reconstruction set if there is anR-module homomorphism recA : πA(C)→ Z,
such that for allX ∈ C,

recA(πA(X)) = rec(X).
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Intuitively, for a privacy set A, the shares of parties in A are independent of the secret. For a
reconstruction set A, the shares of parties in A fully determine the secret.

Threshold Linear Secret Sharing Schemes and Multiplication-friendly Property. In this
work, we are interested in threshold arithmetic secret sharing schemes. Concretely, for a positive
integer t < n, a threshold-t arithmetic secret sharing scheme satisfies that for all A ⊂ I with
|A| ≤ t, A is a privacy set.

We are interested in the following property.
Property 11.1 (Multiplication-Friendliness). We say Σ = (n, Z = Rk, U, C, share, rec) is
multiplication-friendly if there is an R-arithmetic secret sharing scheme Σ′ = (n, Z = Rk, U ′,
C ′, share′, rec′) and n functions {fi : Rk × U → U ′}ni=1 such that for all c ∈ Rk and for all
X ∈ C,
• Y = (f1(c, X1), f2(c, X2), . . . , fn(c, Xn)) is in C ′, i.e., a sharing in Σ′. We will use
Y = c ·X to represent the computation process from c andX to Y .

• rec′(Y ) = c ∗ rec(X), where ∗ is the coordinate-wise multiplication operation.
Intuitively, for a multiplication-friendly scheme Σ, if all parties hold a Σ-sharing of a secret

x ∈ Z and a public vector c ∈ Rk, they can locally compute a Σ′-sharing of the secret c ∗ x,
where ∗ denotes the coordinate-wise multiplication operation. We have the following lemma.
Lemma 11.1. If Σ is a multiplication-friendly threshold-t R-arithmetic secret sharing scheme,
and Σ′ be theR-arithmetic secret sharing scheme defined in Property 11.1, then Σ′ has threshold
t.

Proof. We will prove that for all set A of t parties, for all x0,x1 ∈ Z, and for all vector v′ ∈
(U ′)A,

Pr
ρ′

[πA(share′(x0,ρ
′)) = v′] = Pr

ρ′
[πA(share′(x1,ρ

′)) = v′].

Since Σ has threshold t, for all v ∈ UA, we have

Pr
ρ

[πA(share(x0,ρ)) = v] = Pr
ρ

[πA(share(x1,ρ)) = v].

Let 1 denote the vector (1, 1, . . . , 1) ∈ Z and 0 denote the vector (0, 0, . . . , 0) ∈ Z. Then, for all
v′ ∈ (U ′)A,

Pr
ρ,ρ′

[πA(1·share(x0,ρ)+share′(0,ρ′)) = v′] = Pr
ρ,ρ′

[πA(1·share(x1,ρ)+share′(0,ρ′)) = v′].

It is sufficient to show that, for all x ∈ Z, 1 · share(x,ρ) + share′(0,ρ′) is a random
Σ′-sharing of x. Note that, 1 · share(x,ρ) is a Σ′-sharing of x. Then there exists ρ′′ such that
share′(x,ρ′′) = 1 · share(x,ρ). Thus 1 · share(x,ρ) + share′(0,ρ′) = share′(x,ρ′′) +
share′(0,ρ′) = share′(x,ρ′ + ρ′′). The last step follows from the fact that share′ is an R-
module homomorphism. When ρ′ is uniformly random, ρ′+ρ′′ is also uniformly random. Thus
share′(x,ρ′ + ρ′′) is a random Σ′-sharing of x.
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11.2 Packed Shamir Secret Sharing Scheme

In our work, we are interested in the packed Shamir secret sharing scheme. We use the packed
secret-sharing technique introduced by Franklin and Yung [34]. This is a generalization of the
standard Shamir secret sharing scheme [64]. Let F be a finite field of size |F| ≥ 2n. Let n be the
number of parties and k be the number of secrets that are packed in one sharing. Let α1, . . . , αn
be n distinct elements in F and pos = (p1, p2, . . . , pk) be another k distinct elements in F. A
degree-d (d ≥ k − 1) packed Shamir sharing of x = (x1, . . . , xk) ∈ Fk is a vector (w1, . . . , wn)
for which there exists a polynomial f(·) ∈ F[X] of degree at most d such that f(pi) = xi for all
i ∈ {1, 2, . . . , k}, and f(αi) = wi for all i ∈ {1, 2, . . . , n}. The i-th share wi is held by party
Pi. Reconstructing a degree-d packed Shamir sharing requires d + 1 shares and can be done by
Lagrange interpolation. For a random degree-d packed Shamir sharing of x, any d−k+1 shares
are independent of the secret x.

In our work, we will always use the same elements α1, . . . , αn for the shares of all parties.
However, we may use different elements pos for the secrets. We will use [x‖pos]d to denote a
degree-d packed Shamir sharing of x ∈ Fk stored at positions pos. In the following, operations
(addition and multiplication) between two packed Shamir sharings are coordinate-wise. We
recall two properties of the packed Shamir sharing scheme:
• Linear Homomorphism: For all d ≥ k − 1 and x,y ∈ Fk, [x + y‖pos]d = [x‖pos]d +

[y‖pos]d.
• Multiplicative: Let ∗ denote the coordinate-wise multiplication operation. For all d1, d2 ≥
k−1 subject to d1+d2 < n, and for allx,y ∈ Fk, [x∗y‖pos]d1+d2 = [x‖pos]d1 ·[y‖pos]d2 .

These two properties directly follow from the computation of the underlying polynomials.
Note that the second property implies that, for all k − 1 ≤ d ≤ n − k, a degree-d packed

Shamir secret sharing scheme is multiplication-friendly (defined in Property 11.1). Concretely,
for all x, c ∈ Fk, all parties can locally compute [c ∗ x‖pos]d+k−1 from [x‖pos]d and the public
vector c. To see this, all parties can locally transform c to a degree-(k−1) packed Shamir sharing
[c‖pos]k−1. Then, they can use the property of the packed Shamir sharing scheme to compute
[c ∗ x‖pos]d+k−1 = [c‖pos]k−1 · [x‖pos]d.

Recall that t is the number of corrupted parties. Also recall that a degree-d packed Shamir
secret sharing scheme is of threshold d− k+ 1. To ensure that the packed Shamir secret sharing
scheme has threshold t and is multiplication-friendly, we choose k such that t ≤ d − k + 1 and
d ≤ n− k. When d = n− k and k = (n− t+ 1)/2, both requirements hold and k is maximal.

11.3 Preparing Random Sharings for Different Arithmetic Se-
cret Sharing Schemes

In this part, we introduce our main contribution: an efficient protocol that prepares random
sharings for a batch of different arithmetic secret sharing schemes. LetR be a finite commutative
ring. Let Π = (n, Z̃, Ũ , C̃, shareΠ, recΠ) be an R-arithmetic secret sharing scheme. Our goal
is to realize the functionality Frand-sharing presented in Functionality 11.1.
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Figure 11.1: Functionality Frand-sharing(Π)

1. Frand-sharing receives the set of corrupted parties, denoted by Corr.
2. Frand-sharing receives from the adversary a set of shares {uj}j∈Corr where uj ∈ Ũ for all
j ∈ Corr.

3. Frand-sharing samples a random Π-sharingX such that the shares ofX held by corrupted
parties are identical to those received from the adversary, i.e., πCorr(X) = (uj)j∈Corr.
If such a sharing does not exist, Frand-sharing sends abort to all honest parties and halts.

4. Otherwise, Frand-sharing distributes the shares ofX to honest parties.

Initialization. Let Σ = (n, Z = Rk, U, C, share, rec) be a multiplication-friendly threshold-
t R-arithmetic secret sharing scheme. In the following, we will use [x] to denote a Σ-sharing of
x ∈ Rk. Let Σ′ = (n, Z ′ = Rk, U ′, C ′, share′, rec′) be theR-arithmetic secret sharing scheme
in Property 11.1. By Lemma 11.1, Σ′ has threshold t. We use 〈y〉 to denote a Σ′-sharing of
y ∈ Rk. For all c ∈ Rk, we will write

〈c ∗ x〉 = c · [x]

to represent the computation process from c and [x] to 〈c ∗ x〉 in Property 11.1.
Our construction will use the ideal functionality Frand = Frand-sharing(Σ) that prepares a ran-

dom Σ-sharing, and the ideal functionality FrandZero (Functionality 11.2) that prepares a random
Σ′-sharing of 0 ∈ Rk.

Figure 11.2: Functionality FrandZero

1. Let Σ′ = (n, Z ′ = Rk, U ′, C ′, share′, rec′). FrandZero receives the set of corrupted
parties, denoted by Corr.

2. FrandZero receives from the adversary a set of shares {u′j}j∈Corr, where u′j ∈ U ′ for all
Pj ∈ Corr.

3. FrandZero samples a random Σ′-sharing of 0 ∈ Rk, 〈0〉, such that the shares of corrupted
parties are identical to those received from the adversary, i.e., πCorr(〈0〉) = (u′j)j∈Corr.
If such a sharing does not exist, FrandZero sends abort to all honest parties and halts.

4. Otherwise, FrandZero distributes the shares of 〈0〉 to honest parties.

Let Π1,Π2, . . . ,Πk be k arbitrary R-arithmetic secret sharing schemes with the restriction
that all schemes have the same share size, i.e., the share space Ũ = R˜̀. Let Z̃i = Rk̃i be the
secret space of Πi and sharei : Z̃i × Rr̃i → C̃i be the sharing map. Since sharei is injective,
and C̃i ⊂ ŨI , we have k̃i + r̃i ≤ n · ˜̀.

The goal is to prepare k random sharings X1,X2, . . . ,Xk such that Xi is a random Πi-
sharing, i.e., realizing {Frand-sharing(Πi)}ki=1.
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Protocol Description. The construction of our protocol RAND-SHARING appears in Proto-
col 11.3.
Lemma 11.2. For any k R-arithmetic secret sharing schemes {Πi}ki=1 such that they have
the same share size, Protocol RAND-SHARING securely computes {Frand-sharing(Πi)}ki=1 in the
{Frand,FrandZero}-hybrid model against a semi-honest adversary who controls t parties.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr
denote the set of corrupted parties andH denote the set of honest parties.

The simulator S works as follows.

1. In Step 2, S emulates the functionality Frand: For all v ∈ {1, 2, . . . , n · ˜̀}, S receives the
shares of [rv] held by corrupted parties.

2. In Step 3, S emulates the functionality FrandZero: For all j ∈ {1, 2, . . . , n} and m ∈
{1, 2, . . . , ˜̀}, S receives the shares of 〈o(m)

j 〉 held by corrupted parties.
3. In Step 4, for all j ∈ {1, 2, . . . , n}, m ∈ {1, 2, . . . , ˜̀}, and v ∈ {1, . . . , n · ˜̀}, S locally

compute c(?,m)
j,v by following the protocol.

4. In Step 5, for all j ∈ {1, 2, . . . , n} and m ∈ {1, 2, . . . , ˜̀}, S follows the protocol and
computes the shares of 〈u(?,m)

j 〉 held by corrupted parties. S simulates the shares that are
sent from honest parties to corrupted parties as follows:

(a) For all i ∈ {1, 2, . . . , k}, S samples a random Πi-sharing and obtains the shares of
corrupted parties {u(i)

j }j∈Corr, where u(i)
j = (u

(i,1)
j , u

(i,2)
j , . . . , u

(i,˜̀)
j ) ∈ R˜̀.

(b) Then for all j ∈ {1, 2, . . . , n} and m ∈ {1, 2, . . . , ˜̀}, S computes u(?,m)
j .

(c) According to Lemma 11.1, Σ′ has threshold t. Therefore, the shares of a random
Σ′-sharing are independent of its secret. For all j ∈ Corr and m ∈ {1, 2, . . . , ˜̀}, S
samples a random Σ′-sharing 〈u(?,m)

j 〉 based on the secret u(?,m)
j and the shares of

〈u(?,m)
j 〉 held by corrupted parties computed by S.

(d) Finally, S sends the shares of 〈u(?,m)
j 〉 held by honest parties to the adversary.

5. In Step 6, for all i ∈ {1, 2, . . . , k}, S sends the shares {u(i)
j }j∈Corr to Frand-sharing(Πi).

This completes the description of the simulator. We show that the simulator S perfectly simulates
the behaviors of honest parties. Note that all parties only communicate with other parties in Step
5.

• We first show that the shares of corrupted parties, {u(i)
j }j∈Corr, sampled by S have the

same distribution as those in the real world. In the ideal world, S randomly samples the
shares of corrupted parties by first sampling random sharings of Π1,Π2, . . . ,Πk and then
obtaining the shares of corrupted parties. In the real world, the shares of corrupted parties
are computed by following sharei(τi,ρi) for all i ∈ {1, 2, . . . , k}. Recall that τi,ρi are
generated by Frand. And Σ has threshold t. Therefore, τi and ρi are uniformly random.
Thus, {u(i)

j }j∈Corr have the same distribution in both the ideal world and the real world.
• Then, we show that for all j ∈ Corr and m ∈ {1, 2, . . . , ˜̀}, the shares of 〈u(?,m)

j 〉 held
by honest parties (which are supposed to send to corrupted parties) generated by S have
the same distribution as those in the real world. Recall that 〈o(m)

j 〉 is a random Σ′-sharing
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Figure 11.3: Protocol RAND-SHARING

1. Let Π1, . . . ,Πk be k arbitraryR-arithmetic secret sharing schemes with the same share
space Ũ = R˜̀. For all i ∈ {1, . . . , k}, let Z̃i = Rk̃i be the secret space of Πi, and
sharei : Z̃i ×Rr̃i → C̃i be the sharing map of Πi. We have k̃i + r̃i ≤ n · ˜̀.

2. All parties invoke Frand and obtain n · ˜̀ random Σ-sharings, [r1], . . . , [rn·˜̀]. For all
i ∈ {1, . . . , k}, let τi = (r1,i, . . . , rk̃i,i) ∈ R

k̃i , and ρi = (rk̃i+1,i, rk̃i+2,i, . . . , rk̃i+r̃i,i) ∈
Rr̃i . The goal is to compute the Πi-sharingXi = sharei(τi,ρi).

3. All parties invoke FrandZero n · ˜̀ times and obtain n · ˜̀ random Σ′-sharings of 0 ∈ Rk,
denoted by {〈o(1)

j 〉, 〈o
(2)
j 〉, . . . , 〈o

(˜̀)
j 〉}nj=1.

4. For all i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , n}, and m ∈ {1, 2, . . . , ˜̀}, let L(i,m)
j : Z̃i ×

Rr̃i → R denote theR-module homomorphism such that for all τ ∈ Z̃i and ρ ∈ Rr̃i ,
L(i,m)
j (τ ,ρ) outputs them-th element of the j-th share of the Πi-sharing sharei(τ ,ρ).

Then there exist c(i,m)
j,1 , . . . , c

(i,m)

j,k̃i+r̃i
∈ R such that

L(i,m)
j (τ ,ρ) =

k̃i∑
v=1

c
(i,m)
j,v · τv +

r̃i∑
v=1

c
(i,m)

j,k̃i+v
· ρv.

For all j ∈ {1, 2, . . . , n}, m ∈ {1, 2, . . . , ˜̀}, and v ∈ {1, . . . , n · ˜̀}, let

c
(?,m)
j,v = (c

(1,m)
j,v , c

(2,m)
j,v , . . . , c

(k,m)
j,v ) ∈ Rk,

where c(i,m)
j,v = 0 for all v > k̃i + r̃i.

5. For all i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , n}, and m ∈ {1, 2, . . . , ˜̀}, let u(i,m)
j =

L(i,m)
j (τi,ρi). Let u(?,m)

j = (u
(1,m)
j , u

(2,m)
j , . . . , u

(k,m)
j ). For all j ∈ {1, 2, . . . , n} and

m ∈ {1, 2, . . . , ˜̀}, all parties locally compute a Σ′-sharing

〈u(?,m)
j 〉 = 〈o(m)

j 〉+
n·˜̀∑
v=1

c
(?,m)
j,v · [rv].

Then, all parties send their shares of 〈u(?,m)
j 〉 to Pj .

6. For all j ∈ {1, 2, . . . , n} andm ∈ {1, 2, . . . , ˜̀}, Pj reconstructs the Σ′-sharing 〈u(?,m)
j 〉

and learns u(?,m)
j = (u

(1,m)
j , u

(2,m)
j , . . . , u

(k,m)
j ). Then for all i ∈ {1, 2, . . . , k}, Pj sets

his share of the Πi-sharing, Xi, to be u(i)
j = (u

(i,1)
j , u

(i,2)
j , . . . , u

(i,˜̀)
j ). All parties take

X1,X2, . . . ,Xk as output.
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of 0. Therefore, in the real world, 〈u(?,m)
j 〉 is a random Σ′-sharing of u(?,m)

j given the
secret and the shares of corrupted parties. Since u(?,m)

j is determined by {τi,ρi}ki=1, which
are independent of the shares of {[rv]}n·

˜̀
v=1 and 〈o(m)

j 〉 held by corrupted parties, u(?,m)
j is

independent of the shares of 〈u(?,m)
j 〉 held by corrupted parties.

In the ideal world, recall that S learns the shares of {[rv]}n·
˜̀

v=1 held by corrupted parties in
Step 2. And S learns the shares of 〈o(m)

j 〉 held by corrupted parties in Step 3. Therefore,
S can compute the shares of 〈u(?,m)

j 〉 held by corrupted parties. Also recall that we have
shown that the secret, u(?,m)

j , which is a part of {u(i)
j }j∈Corr,i∈{1,...,k}, has the same distri-

bution as that in the real world. Therefore, the secret u(?,m)
j and the shares of 〈u(?,m)

j 〉 held
by corrupted parties have the same distribution in both the ideal world and the real world.
Finally, note that S samples a random Σ′-sharing 〈u(?,m)

j 〉 based on the secret u(?,m)
j sim-

ulated by S and the shares of 〈u(?,m)
j 〉 held by corrupted parties computed by S . Thus,

the shares of honest parties simulated by S have the same distribution as those in the real
world.
Recall that all parties only communicate with other parties in Step 5. Therefore, the joint
view of corrupted parties in the ideal world is identical to that in the real world.

• Finally, we show that the output of honest parties given the joint view of corrupted parties
in the ideal world has the same distribution as that in the real world.
Note that the joint view of corrupted parties is determined by (1) the shares of [rv] held by
corrupted parties for all v ∈ {1, 2, . . . , n · ˜̀}, (2) the shares of 〈o(m)

j 〉 held by corrupted
parties for all j ∈ {1, 2, . . . , n} and m ∈ {1, 2, . . . , ˜̀}, and (3) the shares of 〈u(?,m)

j 〉
held by honest parties for all j ∈ Corr and m ∈ {1, 2, . . . , ˜̀}. In the real world, (1)
and (2) are independent of {τi,ρi}ki=1 since Σ has threshold t. And (3) only depends
on the shares {u(i)

j }j∈Corr,i∈{1,...,k}. Thus, in the real world, for all i ∈ {1, 2, . . . , k},
Xi = sharei(τi,ρi) is a random Πi-sharing given the shares of corrupted parties. And
honest parties simply output their shares ofXi.
In the ideal world, S perfectly simulates the shares of Xi = sharei(τi,ρi) held by cor-
rupted parties and sends them to Frand-sharing(Πi). Then Frand-sharing(Πi) samples a random
Πi-sharing based on the shares of corrupted parties. The output of honest parties is their
shares ofXi for all i ∈ {1, 2, . . . , k}.
Therefore, the output of honest parties given the joint view of corrupted parties in the ideal
world has the same distribution as that in the real world.

We conclude that Protocol RAND-SHARING securely computes {Frand-sharing(Πi)}ki=1 in the
{Frand,FrandZero}-hybrid model against a semi-honest adversary who controls t parties.

Cost of Protocol 11.3. We measure the amount of the preprocessing data and the ring elements
that all parties need to send.

For the amount of preprocessing data, all parties need to prepare n · ˜̀ random Σ-sharings.
Let ` be the share size of Σ, i.e., the share space of Σ is U = R`. Thus, all Σ-sharings are of size
n2 · ˜̀· ` ring elements. All parties also need to prepare n · ˜̀ random Σ′-sharings of 0 ∈ Rk. Let

117



`′ be the share size of Σ′, i.e., the share space of Σ′ is U ′ = R`′ . Thus all Σ′-sharings are of size
n2 · ˜̀· `′ ring elements. In total, the amount of preprocessing data is n2 · ˜̀· (`+ `′) ring elements.

For the communication complexity, all parties only need to communicate in Step 5 of Proto-
col 11.3. The communication complexity is n2 · ˜̀· `′ ring elements.

11.4 Instantiating Protocol RAND-SHARING via Packed Shamir
Secret Sharing Scheme

For Large Finite Fields F. Recall that when k = (n−t+1)/2, a degree-(n−k) packed Shamir
secret sharing has threshold t and is multiplication-friendly. Therefore, we use a degree-(n− k)
packed Shamir secret sharing scheme to instantiate Σ in Protocol RAND-SHARING. Then Σ′ is
a degree-(n− 1) packed Shamir secret sharing scheme. For Σ and Σ′,
• The secret space is Fk, where k = (n− t+ 1)/2.
• The share space is F, i.e., each share is a single field element. Therefore ` = `′ = 1.
Thus, we obtain a protocol that prepares random sharings for Π1,Π2, . . . ,Πk with 2 ·n2 · ˜̀=

O(n2 · ˜̀) field elements of preprocessing data and n2 · ˜̀ field elements of communication. On
average, the cost per random sharing is O( n2

n−t+1
· ˜̀) field elements of both preprocessing data

and communication. Note that when t = (1 − ε) · n for a positive constant ε, the achieved
amortized cost per sharing is O(n · ˜̀) field elements. In particular, n · ˜̀ is the sharing size of Πi

for all i ∈ {1, 2, . . . , k}. Essentially, it costs the same as letting a trusted party generate a random
Πi-sharing and distribute to all parties.

For Small Fields Fq and Rings Z/p`Z. For a small field Fq, we can use a large extension field
of Fq so that the packed Shamir secret sharing scheme is available. For a ring Z/p`Z, we can
similarly use a large Galois ring of Z/p`Z so that the packed Shamir secret sharing scheme is
available [1].

However, the approach of using a large extension field (or a large Galois ring) leads to a
loss in the extension factor: While the share size grows up by the extension factor, the number
of secrets that can be packed is still k. To resolve this issue, we can use the notion of reverse
multiplication-friendly embedding (RMFE), which is first introduced in [21] for finite fields, and
then extended to rings Z/p`Z in [27].

We take an RMFE over a finite field Fq as example, where q is an exponential of a prime.
Informally, a pair of Fq-linear maps (φ, ψ) is a (r,m)q-reverse multiplication-friendly embedding
if φ : Frq → Fqm and ψ : Fqm → Frq satisfy that for all x,y ∈ Frq, x ∗ y = ψ(φ(x) · φ(y)).
Intuitively, instead of doing a coordinate-wise multiplication over Fq, an RMFE allows us to
first map each vector (by φ) to an element in the extension field Fqm and then perform a field
multiplication over Fqm . The result can finally be transformed (by ψ) to the coordinate-wise
multiplication between the input two vectors.

Now consider an arithmetic secret sharing scheme Σ over Fq:
• The secret space is Z = Fk·rq .
• The share space is U = Fqm , which can be viewed as Fmq .
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• For x ∈ Z, the sharing of x is computed as follows: We first divide x into k vectors of
dimension r. Then we map each vector to a field element in Fqm by using φ. Next we use
a degree-(n− k) packed Shamir secret sharing scheme over Fqm to store the k elements in
Fqm .

• For a sharingX , we first view it as a degree-(n− k) packed Shamir sharing over Fqm and
reconstruct its secret s ∈ Fkqm . To recover the secret, we apply φ−1 on each element in s.
(See [62] for an explicit construction of φ−1.)

Note that Σ have threshold t due to the use of the degree-(n − k) packed Shamir secret sharing
scheme. Also note that Σ is still multiplication-friendly: To multiply a constant vector c ∈ Fk·rq
with a Σ-sharing of x, we first transform c to a degree-(k − 1) packed Shamir sharing over Fqm
similarly as above. Then after multiplying the two packed Shamir sharings, we can reconstruct
the secret c ∗ x by using ψ to decode the secrets of the resulting packed Shamir sharing.

Therefore, relying on packed Shamir secret sharing schemes and RMFEs, we can use Σ to
instantiate Protocol RAND-SHARING for a small field Fq. For both Σ and Σ′,
• The secret space is Fk·rq , where k = (n− t+ 1)/2.
• The share space is Fmq , i.e., each share is m field elements. Therefore ` = `′ = m.

Note that, while the share size of Σ and Σ′ grows up by a factor of m, the number of secrets that
can be packed becomes k · r, which grows up by a factor of r. Thus, we obtain a protocol that
prepares random sharings for arbitrary Fq-arithmetic secret sharing schemes Π1,Π2, . . . ,Πk·r
with 2 ·n2 · ˜̀·m = O(n2 · ˜̀·m) field elements of preprocessing data, and n2 · ˜̀·m field elements
of communication. On average, the cost per random sharing is O( n2

n−t+1
· ˜̀· m

r
) field elements of

both preprocessing data and communication.
In [21], Cascudo, et al show that for all Fq, there exists a family of RMFEs with r slowly

grows to infinity andm/r is bounded by a constant. Thus, the amortized cost per random sharing
becomes O( n2

n−t+1
· ˜̀) field elements, which is the same as that for a large finite field.

A similar result for rings Z/p`Z can be achieved by using RMFEs over rings Z/p`Z con-
structed in [27].

11.5 Application of Frand-sharing

Let Σ and Σ′ be two threshold-t R-arithmetic secret sharing schemes. Let f : Z → Z ′

be an R-module homomorphism, where Z and Z ′ are the secret spaces of Σ and Σ′ respec-
tively. Suppose given a Σ-sharing, X , all parties want to compute a Σ′-sharing, Y , subject to
rec′(Y ) = f(rec(X)), where rec and rec′ are reconstruction maps of Σ and Σ′, respectively.
We refer to this problem as sharing transformation.

As discussed in Chapter 10, sharing transformation can be efficiently solved with the help
of a pair of random sharings (R,R′), where R is a Σ-sharing, and R′ is a Σ′-sharing subject
to rec′(R′) = f(rec(R)). Consider the following R-arithmetic secret sharing scheme Σ̃ =

Σ̃(Σ,Σ′, f):
• The secret space is Z, the same as that of Σ.
• The share space is U ×U ′, where U is the share space of Σ and U ′ is the share space of Σ′.
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• For a secret x ∈ Z, the sharing of x is the concatenation of a Σ-sharing of x and a Σ′-
sharing of f(x).

• For a sharing X , recall that each share of Σ̃ consists of one share of Σ and one share of
Σ′. The secret of X can be recovered by applying rec of Σ on the sharing which consists
of the shares of Σ inX .

Then, (R,R′) is a random Σ̃-sharing. The problem is reduced to prepare a random Σ̃-sharing,
which can be done by Frand-sharing(Σ̃).

We summarize the functionality Ftran in Functionality 11.4 and the protocol TRAN for Ftran

in Protocol 11.5.

Figure 11.4: Functionality Ftran

1. Ftran receives the set of corrupted parties, denoted by Corr. Ftran also receives two
threshold-t R-arithmetic secret sharing schemes Σ,Σ′ and an R-module homomor-
phism f : Z → Z ′.

2. Ftran receives a Σ-sharingX from all parties and computes f(rec(X)).

3. Ftran receives from the adversary a set of shares {u′j}j∈Corr, where u′j ∈ U ′ for all
Pj ∈ Corr.

4. Ftran samples a random Σ′-sharing, Y , such that rec′(Y ) = f(rec(X)) and the shares
of corrupted parties are identical to those received from the adversary, i.e., πCorr(Y ) =
(u′j)j∈Corr. If such a sharing does not exist, Ftran sends abort to honest parties and
halts.

5. Otherwise, Ftran distributes the shares of Y to honest parties.

Figure 11.5: Protocol TRAN

1. Let Σ,Σ′ be two threhsold-t R-arithmetic secret sharing schemes and f : Z → Z ′ be
anR-module homomorphism. All parties hold a Σ-sharing,X , at the beginning of the
protocol.

2. Let Σ̃ = Σ̃(Σ,Σ′, f) be the threshold-t R-arithmetic secret sharing scheme defined
above. All parties invoke Frand-sharing(Σ̃) and obtain a Σ̃-sharing (R,R′).

3. All parties locally computeX +R and send their shares to the first party P1.

4. P1 reconstructs the secret of X + R, denoted by w. Then P1 computes f(w) and
generates a Σ′-sharing of f(w), denoted by W . Finally, P1 distributes the shares of
W to all parties.

5. All parties locally compute Y = W −R′.
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Lemma 11.3. For all threshold-t R-arithmetic secret sharing schemes Σ,Σ′ and for all R-
module homomorphism f : Z → Z ′, Protocol TRAN securely computes Ftran in the Frand-sharing-
hybrid model against a semi-honest adversary who controls t parties.

We obtain the following theorem for our sharing transformation protocol.
Theorem 11.1. Let n be the number of parties, t be the number of corrupted parties, and k =
(n− t+ 1)/2. Let F be a finite field of size 2n. Let `1, `2 be two positive integers. For all k tuples
{(Σi,Σ

′
i, fi)}ki=1 and for all {Xi}ki=1 such that Σi,Σ

′
i are F-linear secret sharing schemes with

injective sharing functions and with share size `1, `2, fi is a linear map from the secret space
of Σi to that of Σ′i, and Xi is a Σi-sharing held by all parties, there is an information-theoretic
MPC protocol with semi-honest security against t corrupted parties that transforms Xi to a Σ′-
sharing Yi such that the secret of Yi is equal to the result of applying fi on the secret ofXi. The
cost of the protocol is O(n2 · (`1 + `2)) elements of preprocessing data and O(n2 · (`1 + `2))
elements of communication.
Remark 11.1. We note that the preprocessing phase only prepares random degree-(n − k)
packed Shamir sharings and random degree-(n − 1) packed Shamir sharings of 0 ∈ Fk. With
instantiation in Chapter 15.1, the preprocessing can be done with communication complexity
O(n

3

k
· (`1 + `2)) field elements for k sharing transformations.

Improvement of Protocol RAND-SHARING for a Concrete Sharing Transformation. Our
MPC protocol needs to perform the following sharing transformation. Let F be a large finite
field. Recall that for a packed Shamir secret sharing scheme over F, we use fixed α1, . . . , αn for
shares of all parties. For two (potentially different) vectors of field elements pos = (p1, . . . , pk)
and pos′ = (p′1, . . . , p

′
k) such that they are disjoint with {α1, . . . , αn}, all parties start with a

degree-(n − 1) packed Shamir sharing [x‖pos]n−1. They want to compute a degree-(n − k)
packed Shamir sharing [y‖pos′]n−k such that for all i ∈ {1, 2, . . . , k}, yi is equal to xj for some
j. In particular, it is possible that for two different indices i and i′, yi and yi′ are equal to the
same xj .

Let f : Fk → Fk be an F-linear map which satisfies that y = f(x). Then, we need to
prepare a pair of random sharings ([r‖pos]n−1, [f(r)‖pos′]n−k). In particular, we can view it as
a random sharing of the following F-arithmetic secret sharing scheme Π:
• The secret space Z = Fk.
• The share space U = F2.
• For a secret x ∈ Z, the sharing of x is ([x‖pos]n−1, [f(x)‖pos′]n−k).
• For a sharing X = (X1,X2), we view X1 as a degree-(n − 1) packed Shamir secret

sharing scheme and reconstruct the secret x.
We note that when directly using RAND-SHARING (instantiated by packed Shamir secret

sharing schemes, see Chapter 11.4) to prepare a random Π-sharing, the communication com-
plexity per sharing is 2n2

k
elements. This is because in Step 5 of RAND-SHARING, we need to

compute ˜̀ = 2 Σ′-sharings for the shares of each party, where ˜̀ is the share size of Π. These
sharings are then reconstructed to their corresponding holders, which incurs 2n2 elements of
communication for k sharings.

We observe that a random degree-d packed Shamir secret sharing scheme has the following
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nice properties:
• The shares of the first d+ 1 parties are uniformly random.
• The secret and the shares of the rest of n − d − 1 parties are determined by the shares of

the first d+ 1 parties.
When the secret of a random degree-d packed Shamir sharing is given,
• The shares of the first d− k + 1 parties are uniformly random.
• The shares of the rest of n− d+ k − 1 parties are determined by the secret and the shares

of the first d+ 1 parties.
Thus, when preparing a random degree-d packed Shamir sharing, we can view the shares of

the first d + 1 parties as the random tape for generating the whole sharing. In particular, the
secret will be determined by the shares of the first d + 1 parties. In Protocol RAND-SHARING,
all parties invoke Frand to obtain random Σ-sharings for the random tapes. The secrets of these
Σ-sharings can directly be viewed as the shares of the first d+1 parties. Thus, we can let the first
d + 1 parties reconstruct their shares in the preprocessing phase. In this way, we only need to
reconstruct shares for the rest of n− d− 1 parties in the online phase. Similarly, when preparing
a random degree-d packed Shamir sharing for a given input x, we can view the shares of the
first d − k + 1 parties as the random tape for generating the whole sharing. We can let the first
d − k + 1 parties reconstruct their shares in the preprocessing phase. In this way we only need
to reconstruct shares for the rest of n− d+ k − 1 parties in the online phase.

For the sharing transformation we are interested in, we need to prepare random sharings in
the form of ([r‖pos]n−1, [f(r)‖pos′]n−k). For the first sharing, it is a random degree-(n − 1)
packed Shamir sharing. We can let all parties reconstruct their shares in the preprocessing phase.
For the second sharing, it is a random degree-(n − k) packed Shamir sharing given the secret
f(r). We can let n − 2k + 1 parties reconstruct their shares in the preprocessing phase. Thus,
in the online phase, we only need to reconstruct the shares of [f(r)‖pos′]n−k of the last 2k − 1
parties.

Concretely, in the preprocessing phase, all parties prepare n random Σ-sharings. The i-
th sharing is reconstructed to Pi, and Pi takes the secret as its shares of the degree-(n − 1)
packed Shamir sharings in Π1, . . . ,Πk. (Recall that each time we prepare random sharings for
k arithmetic secret sharing schemes. Here we assume that Π1, . . . ,Πk are all in the form of Π
constructed above.) Then, all parties prepare n − 2k + 1 random Σ-sharings. The i-th sharing
is reconstructed to Pi, and Pi takes the secret as its shares of the degree-(n − k) packed Shamir
sharings in Π1, . . . ,Πk. After that, all parties prepare 2k − 1 Σ′-sharing of 0 ∈ Fk. Thus, the
preprocessing data consists of 2n− 2k+ 1 random Σ sharings and 2k− 1 random Σ′-sharings of
0 ∈ Fk. Since each Σ-sharing is also reconstructed to a single party, the amount of preprocessing
data is 2(2n− 2k + 1) · n+ (2k − 1) · n < 4n2 field elements.

In the online phase, all parties use the 2n − 2k + 1 random Σ-sharings to compute Σ′-
sharings of the shares of the last 2k − 1 parties of the degree-(n− k) packed Shamir sharings in
Π1, . . . ,Πk. Then they use random Σ′-sharings of 0 to mask these sharings and let the last 2k−1
parties reconstruct their shares. Thus, the communication complexity is (2k − 1) · n < 2k · n
field elements.

Thus, with this improvement, we obtain a protocol that prepares a random sharing for Π with
4n2/k field elements of preprocessing data, and 2n field elements of communication. When we
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use TRAN to perform the above sharing transformation, the amortized cost of TRAN is 4n2/k
field elements of preprocessing data and 4n elements of communication.

123



124



Chapter 12

Semi-Honest Protocol

In this chapter, we focus on the semi-honest security. We show how to use packed Shamir
sharing schemes and Ftran (introduced in Chapter 11.5) to evaluate a circuit against a semi-honest
adversary who controls t parties. We focus on a finite field F of size |F| ≥ |C|+ n, where |C| is
the circuit size. Let k = (n− t+ 1)/2.

Recall that we use [x‖pos]d to represent a degree-d packed Shamir sharing of x ∈ Fk stored
at positions pos = (p1, p2, . . . , pk). Also recall that the shares of a degree-d packed Shamir
sharing are at evaluation points α1, α2, . . . , αn. Let β = (β1, β2, . . . , βk) be k distinct elements
in F that are different from (α1, α2, . . . , αn). We use β as the default positions for a degree-d
packed Shamir sharing, and simply write [x]d = [x‖β]d.

12.1 Circuit-Independent Preprocessing Phase
In the circuit-independent preprocessing phase, all parties need to prepare packed Beaver triples.
For every group of k multiplication gates, all parties prepare a packed Beaver triple

([a]n−k, [b]n−k, [c]n−k)

where a, b are random vectors in Fk and c = a ∗ b. We will use the technique of packed Beaver
triples to compute multiplication gates in the online phase. The functionality Fprep for the circuit
independent preprocessing phase appears in Functionality 12.1.

12.2 Online Computation Phase
Recall that for the field size it holds that |F| ≥ |C| + n, where |C| is the circuit size. Let
β1, β2, . . . , β|C| be |C| distinct field elements that are different from α1, α2, . . . , αn. (Recall that
we have already defined β = (β1, . . . , βk), which are used as the default positions for a packed
Shamir sharing.) We associate the field element βi with the i-th gate in C. We will use βi as the
position to store the output value of the i-th gate in a degree-(n− k) packed Shamir sharing.

Concretely, for each layer, gates that have the same type are divided into groups of size k.
For each group of k gates, all parties will compute a degree-(n− k) packed Shamir sharing such
that the results are stored at the positions associated with these k gates respectively.
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Figure 12.1: Functionality Fprep

For every group of k multiplication gates:
1. Fprep receives the set of corrupted parties, denoted by Corr.
2. Fprep receives from the adversary a set of shares {(aj, bj, cj)}j∈Corr. Fprep samples two

random vectors a, b ∈ Fk and computes c = a ∗ b. Then Fprep computes three degree-
(n− k) packed Shamir sharings [a]n−k, [b]n−k, [c]n−k such that for all Pj ∈ Corr, the
j-th share of ([a]n−k, [b]n−k, [c]n−k) is (aj, bj, cj).

3. Fprep distributes the shares of ([a]n−k, [b]n−k, [c]n−k) to honest parties.

12.2.1 Input Layer
In the input layer, input gates are divided into groups of size k based on the input holders. For
a group of k input gates belonging to the same client, suppose x are the inputs, and pos =
(p1, p2, . . . , pk) are the positions associated with these k gates. The client generates a random
degree-(n− k) packed Shamir sharing [x‖pos]n−k and distributes the shares to all parties.

12.2.2 Network Routing
In each intermediate layer, all gates are divided into groups of size k based on their types (i.e.,
multiplication gates or addition gates). For a group of k gates, all parties prepare two degree-
(n − k) packed Shamir sharings, one for the first inputs of all gates, and the other one for the
second inputs of all gates.

Concretely, for a group k gates in the current layer, suppose x are the first inputs of these
k gates, and y are the second inputs of these k gates. All parties will prepare two degree-
(n− k) packed Shamir sharings [x]n−k and [y]n−k stored at the default positions. The reason of
choosing the default positions is to use the packed Beaver triples all parties have prepared in the
preprocessing phase. Recall that the packed Beaver triples all use the default positions. In the
following, we focus on inputs x.

Collecting Secrets from Previous Layers. Let x′1, x
′
2, . . . , x

′
`1

be the different values in x from
previous layers. Let c1, c2, . . . , c`2 be the constant values in x. Then `1 + `2 ≤ k. For each of the
rest of k − `1 − `2 values in x, it is the same as x′i for some i ∈ {1, 2, . . . , `1}. In this step, we
will prepare a degree-(n− 1) packed Shamir sharing that contains the secrets x′1, x

′
2, . . . , x

′
`1

and
c1, c2, . . . , c`2 .

Note that {x′i}
`1
i=1 are the output values of `1 different gates in previous layers. Let p1, p2, . . . , p`1

be the positions associated with these `1 gates. We choose another arbitrary k− `1 different posi-
tions p`1+1, . . . , pk which are also different from α1, α2, . . . , αn, and set pos = (p1, p2, . . . , pk).
Suppose for all 1 ≤ i ≤ `1, [x(i)‖pos(i)]n−k is the degree-(n − k) packed Shamir sharing from
some previous layer that contains the secret x′i stored at position pi.

Let ei be the i-th unit vector in Fk (i.e., only the i-th term is 1 and all other terms are 0).
All parties locally compute a degree-(k − 1) packed Shamir sharing [ei‖pos]k−1. Let x′ =
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(x′1, . . . , x
′
`1
, c1, . . . , c`2 , 0, . . . , 0) be a vector in Fk. Then all parties locally compute

`1∑
i=1

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k +

`2∑
i=1

ci · [e`1+i‖pos]k−1.

We show that this is a degree-(n − 1) packed Shamir sharing of x′ stored at positions pos. It
is clear that the resulting sharing has degree n − 1. We only need to show the following three
points:
• For all 1 ≤ j ≤ `1, the secret stored at position pj is equal to x′j .
• For all `1 + 1 ≤ j ≤ `1 + `2, the secret stored at position pj is equal to cj−`1 .
• For all `1 + `2 + 1 ≤ j ≤ k, the secret stored at position pj is equal to 0.

For all 1 ≤ i ≤ `1 +`2, let fi be the polynomial corresponding to [ei‖pos]k−1. For all 1 ≤ i ≤ `1,
let gi be the polynomial corresponding to [x(i)‖pos(i)]n−k. Then the polynomial corresponding
to the resulting sharing is h =

∑`1
i=1 fi · gi +

∑`2
i=1 ci · f`1+i.

Note that fi satisfies that fi(pi) = 1 and fi(pj) = 0 for all j 6= i. And gi satisfies that
gi(pi) = x′i. Therefore, for all 1 ≤ j ≤ `1,

h(pj) =

`1∑
i=1

fi(pj) · gi(pj) +

`2∑
i=1

ci · f`1+i(pj) = fj(pj) · gj(pj) = x′j.

For all `1 + 1 ≤ j ≤ `2,

h(pj) =

`1∑
i=1

fi(pj) · gi(pj) +

`2∑
i=1

ci · f`1+i(pj) = cj−`1 · fj(pj) = cj−`1 .

For all `1 + `2 + 1 ≤ j ≤ k,

h(pj) =

`1∑
i=1

fi(pj) · gi(pj) +

`2∑
i=1

ci · f`1+i(pj) = 0.

Thus, the resulting sharing is a degree-(n − 1) packed Shamir sharing of x′ stored at positions
pos, denoted by [x′‖pos]n−1.

Transforming to the Desired Sharing. Now all parties hold a degree-(n− 1) packed Shamir
sharing [x′‖pos]n−1. Recall that x′ contains all different values in x from previous layers and all
constant values. For each of the rest of values inx, it is the same as x′i for some i ∈ {1, 2, . . . , `1}.
Then there is a linear map f : Fk → Fk such that x = f(x′). Recall that β = (β1, . . . , βk) are the
default positions. Let Σ be the degree-(n − 1) packed Shamir secret sharing scheme that stores
secrets at positions pos. Let Σ′ be the degree-(n − k) packed Shamir secret sharing scheme
that stores secrets at positions β. Then [x′‖pos]n−1 is a Σ-sharing, and the sharing we want to
prepare, [x]n−k = [x‖β]n−k, is a Σ′-sharing with x = f(x′).

All parties invoke Ftran with (Σ,Σ′, f) and [x′‖pos]n−1, and obtain [x]n−k.
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Figure 12.2: Protocol NETWORK

1. Suppose all parties want to prepare a degree-(n−k) packed Shamir sharing of x stored
at the default positions β.

2. Let x′1, x
′
2, . . . , x

′
`1

be the different wire values in x from previous
layers. Let c1, c2, . . . , c`2 be the constant values in x. Let x′ =
(x′1, . . . , x

′
`1
, c1, . . . , c`2 , 0, . . . , 0) ∈ Fk.

3. For all 1 ≤ i ≤ `1, let [x(i)‖pos(i)]n−k be the degree-(n − k) packed Shamir shar-
ing from some previous layer that contains the secret x′i stored at position pi. Let
p`1+1, . . . , pk be the first k− `1 distinct positions that are different from p1, . . . , p`1 and
α1, . . . , αn. Let pos = (p1, . . . , pk).

4. Let ei be the i-th unit vector in Fk (i.e., only the i-th term is 1 and all other terms are
0). All parties locally compute a degree-(k − 1) packed Shamir sharing [ei‖pos]k−1.

5. All parties locally compute

[x′‖pos]n−1 =

`1∑
i=1

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k +

`2∑
i=1

ci · [e`1+i‖pos]k−1.

6. Let f : Fk → Fk be a linear map such that x = f(x′). Let Σ be the degree-(n − 1)
packed Shamir secret sharing scheme that stores secrets at positions pos. Let Σ′ be the
degree-(n− k) packed Shamir secret sharing scheme that stores secrets at positions β.
All parties invoke Ftran with (Σ,Σ′, f) and [x′‖pos]n−1, and output [x]n−k.

Summary of Network Routing. We describe the protocol NETWORK of preparing an input
degree-(n− k) packed Shamir sharing [x]n−k in Protocol 12.2.

12.2.3 Evaluating Addition Gates and Multiplication Gates
Addition Gates. For a group of k addition gates, recall that all parties have prepared two
degree-(n − k) packed Shamir sharings [x]n−k, [y]n−k where x are the first inputs of these k
gates, and y are the second inputs of these k gates. The description of PACKED-ADD appears in
Protocol 12.3. Note that in Step 3 of Protocol PACKED-ADD, we use the fact that a degree-(n−k)
packed Shamir sharing can be viewed as a degree-(n− 1) packed Shamir sharing.

Multiplication Gates. For a group of k multiplication gates, recall that all parties have pre-
pared two degree-(n − k) packed Shamir sharings [x]n−k, [y]n−k where x are the first inputs of
these k gates, and y are the second inputs of these k gates. Let ([a]n−k, [b]n−k, [c]n−k) be the
packed Beaver triple prepared in the preprocessing phase. We will use the technique of packed
Beaver triples to evaluate multiplication gates. The description of PACKED-MULT appears in
Protocol 12.4.
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Figure 12.3: Protocol PACKED-ADD

1. Suppose [x]n−k, [y]n−k are the input packed Shamir sharings of the addition gates.

2. All parties locally compute [z]n−k = [x]n−k + [y]n−k.

3. Suppose pos = (p1, p2, . . . , pk) are the positions associated with these k addition gates.
Recall that β = (β1, . . . , βk) are the default positions. Let Σ be the degree-(n − 1)
packed Shamir secret sharing scheme that stores secrets at positions β. Let Σ′ be the
degree-(n − k) packed Shamir secret sharing scheme that stores secrets at positions
pos. Let I : Fk → Fk be the identity map.
All parties invoke Ftran with (Σ,Σ′, I) and [z]n−k, and output [z‖pos]n−k.

Figure 12.4: Protocol PACKED-MULT

1. Suppose [x]n−k, [y]n−k are the input packed Shamir sharings of the multiplication
gates. All parties will use a fresh random packed Beaver triple ([a]n−k, [b]n−k, [c]n−k)
prepared in the preprocessing phase.

2. All parties locally compute [x+ a]n−k = [x]n−k + [a]n−k and [y + b]n−k = [y]n−k +
[b]n−k.

3. The first party P1 collects the whole sharings [x + a]n−k, [y + b]n−k and reconstructs
the secrets x + a,y + b. Then, P1 computes the sharings [x + a]k−1, [y + b]k−1 and
distributes the shares to other parties.

4. All parties locally compute

[z]n−1 := [x+ a]k−1 · [y + b]k−1 − [x+ a]k−1 · [b]n−k − [y + b]k−1 · [a]n−k + [c]n−k.

5. Suppose pos = (p1, p2, . . . , pk) are the positions associated with these k multiplication
gates. Recall that β = (β1, . . . , βk) are the default positions. Let Σ be the degree-
(n − 1) packed Shamir secret sharing scheme that stores secrets at positions β. Let
Σ′ be the degree-(n − k) packed Shamir secret sharing scheme that stores secrets at
positions pos. Let I : Fk → Fk be the identity map.
All parties invoke Ftran with (Σ,Σ′, I) and [z]n−1, and output [z‖pos]n−k.

12.2.4 Output Layer

In the output layer, output gates are divided into groups of size k based on the output receivers.
For a group of k output gates belonging to the same client, suppose x are the inputs. All parties
invoke the protocol NETWORK to prepare [x]n−k. Then, all parties send their shares to the client
to allow him to reconstruct the output.
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12.2.5 Main Protocol

Given the above protocols the main semi-honest protocol follows in a straightforward way. We
recall the Functionality Fmain in Functionality 6.13 and describe the main protocol PACKED-
MAIN in Protocol 12.5.

Figure 6.13: Functionality Fmain

1. Fmain receives from all clients their inputs.

2. Fmain evaluates the circuit and computes the output. Fmain distributes the output to all
clients.

Lemma 12.1. Protocol PACKED-MAIN securely computesFmain in the (Fprep,Ftran)-hybrid model
against a semi-honest adversary who controls t parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors
of honest parties. Let Corr denote the set of corrupted parties and H denote the set of honest
parties.

The correctness of PACKED-MAIN follows from (1) the correctness of the protocol NET-
WORK for network routing, and (2) the correctness of the protocols PACKED-ADD and PACKED-
MULT for addition gates and multiplication gates respectively.

We now describe the construction of the simulator S.

1. In Step 1, S emulates the functionality Fprep and receives the shares of corrupted parties.
2. In Step 2, S follows the protocol.
3. In Step 3, for every group of k input gates of Clienti, if Clienti is honest, S samples random

elements as the shares of corrupted parties. If Clienti is corrupted, S learns the inputs x
and the shares of corrupted parties (since S can access to the inputs and random tapes of
corrupted clients and corrupted parties). Note that in both cases, S learns the shares of
corrupted parties.

4. In Step 4.(a), S simulates NETWORK. Note that NETWORK only involves local compu-
tation and an invocation of Ftran. S follows the protocol in NETWORK and computes the
shares of corrupted parties. Then S emulates Ftran and receives the shares of corrupted par-
ties. At the end of NETWORK, S learns the shares of [x]n−k and [y]n−k held by corrupted
parties.
In Step 4.(b), for each group of addition gates with input sharings [x]n−k and [y]n−k, S
simulates PACKED-ADD. Note that PACKED-ADD only involves local computation and
an invocation of Ftran. S follows the protocol in PACKED-ADD and computes the shares of
corrupted parties. Then S emulates Ftran and receives the shares of corrupted parties. At
the end of PACKED-ADD, S learns the shares of [z]n−k held by corrupted parties.
In Step 4.(b), for each group of multiplication gates with input sharings [x]n−k and [y]n−k,
S simulates PACKED-MULT as follows:
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Figure 12.5: Protocol PACKED-MAIN

1. Preprocessing Phase. All parties invokeFprep to prepare enough packed Beaver triples
in the form of ([a]n−k, [b]n−k, [c]n−k), where a, b are random vectors in Fk and c =
a ∗ b.

2. Initialization. Let α1, α2, . . . , αn be distinct field elements in F which are used for the
shares of all parties in packed Shamir secret sharing schemes. Let β1, β2, . . . , β|C|
be |C| distinct field elements that are different from α1, α2, . . . , αn. Let β =
(β1, β2, . . . , βk) be the default positions for the packed Shamir secret sharing schemes.
We associate the field element βi with the i-th gate in C.

3. Input Phase. Let Client1,Client2, . . . ,Clientc denote the clients who provide inputs.
All input gates are divided into groups of size k based on the input holders. For every
group of k input gates of Clienti, suppose x are the inputs, and pos = (p1, p2, . . . , pk)
are the positions associated with these k gates. Clienti generates a random degree-
(n− k) packed Shamir sharing [x‖pos]n−k and distributes the shares to all parties.

4. Evaluation Phase. All parties evaluate the circuit layer by layer as follows:

(a) For the current layer, all gates are divided into groups of size k based on their
types (i.e., multiplication gates or addition gates). For each group of k gates, let
x be the first inputs of all gates, and y the second inputs of all gates. All parties
invoke NETWORK to prepare [x]n−k and [y]n−k.

(b) For each group of k gates, let pos be the positions associated with these k gates.
• If they are addition gates, all parties invoke PACKED-ADD on

([x]n−k, [y]n−k), and obtain [z‖pos]n−k.
• If they are multiplication gates, all parties invoke PACKED-MULT on

([x]n−k, [y]n−k) with a fresh packed Beaver triple ([a]n−k, [b]n−k, [c]n−k),
and obtain [z‖pos]n−k.

5. Output Phase. All output gates are divided into groups of size k based on the output
receiver. For every group of k output gates of Clienti, suppose x are the inputs. All
parties invoke the protocol NETWORK to prepare [x]n−k. Then, all parties send their
shares to Clienti to let him reconstruct the result x.

(a) The protocol PACKED-MULT consumes a fresh random packed Beaver triple

([a]n−k, [b]n−k, [c]n−k).

Recall that S learns the shares of these sharings held by corrupted parties when em-
ulating the functionality Fprep.

(b) In Step 2 of PACKED-MULT, S computes the shares of [x+a]n−k and [y+b]n−k held
by corrupted parties. Then S generates two random degree-(n − k) packed Shamir
sharings as [x+ a]n−k and [y + b]n−k based on the shares of corrupted parties.
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(c) Since the whole sharings [x + a]n−k and [y + b]n−k have been generated by S, S
honestly follows the protocol in Step 3 of PACKED-MULT. S learns the shares of
[x+ a]k−1 and [y + b]k−1 of corrupted parties at the end of this step.

(d) In Step 4 of PACKED-MULT, S computes the shares of [z]n−1 held by corrupted
parties.

(e) In Step 5 of PACKED-MULT, S emulates Ftran and receives the shares of corrupted
parties. At the end of this step, S learns the shares of [z]n−k held by corrupted parties.

5. In Step 5, S simulates NETWORK in the same way as that for Step 4.(a). S invokes Fmain

with the input of corrupted clients, and receives the output of corrupted clients. For each
group of output gates of Clienti, S has learned the shares of the input sharing [x]n−k held
by corrupted parties. If Clienti is honest, S does nothing. If Clienti is corrupted, S also
learns the secret x. S uses x and the shares of [x]n−k held by corrupted parties, which are
together k + (n − t) = n − k + 1 values (recall that t = n − 2k + 1), to reconstruct the
whole sharing [x]n−k and finally sends the shares of [x]n−k of honest parties to Clienti.

This completes the description of S.
We show that S perfectly simulates the behaviors of honest parties. It is sufficient to focus

on the places where honest parties and clients need to communicate with corrupted parties and
clients:

• In Step 3, honest clients need to share its input. In the real world, an honest client will
generate a random degree-(n−k) packed Shamir sharing and distribute the shares to other
parties. By the property of the degree-(n − k) packed Shamir secret sharing scheme, the
shares of corrupted parties are uniformly random. Therefore S perfectly simulates the
behaviors of honest clients.

• In Step 4.(b), honest parties need to communicate with corrupted parties when running
PACKED-MULT. In Step 3 of PACKED-MULT, all parties need to send their shares of
[x + a]n−k, [y + b]n−k to P1. And Pi needs to distribute [x + a]k−1 and [y + b]k−1 to all
parties.
Note that [x + a]n−k = [x]n−k + [a]n−k, and [a]n−k is a random degree-(n − k) packed
Shamir sharing given the shares of corrupted parties. Therefore [x+a]n−k is also a random
degree-(n − k) packed Shamir sharing given the shares of corrupted parties. Similarly,
[y+b]n−k is a random degree-(n−k) packed Shamir sharing given the shares of corrupted
parties. Also note that [x+a]k−1 and [y+ b]k−1 are fully determined by the secrets x+a
and y + b.
In the ideal world, S generates two random degree-(n − k) packed Shamir sharings as
[x+ a]n−k and [y + b]n−k based on the shares of corrupted parties. Then, the distribution
of these two random degree-(n− k) packed Shamir sharings is identical to that in the real
world. Note that it also implies that the distribution of the two secrets x + a and y + b is
identical to that in the real world. After sampling [x + a]n−k and [y + b]n−k, S honestly
follows Step 3 of PACKED-MULT. Thus, S perfectly simulates the behaviors of honest
parties.

• Finally, in Step 5, for each group of output gates of a corrupted client, honest parties need
to send their shares of the sharing associated with these gates to corrupted clients. Note
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that a degree-(n − k) packed Shamir sharing is determined by its secret and the shares of
corrupted parties. Since S learns the output of corrupted clients from Fmain and the shares
of corrupted parties, S can compute the shares of honest parties and perfectly simulate the
behaviors of honest parties.

Analysis of the Communication Complexity. We assume that the number of multiplication
gates is the same as the number of addition gates. We also assume that the number of input gates
and output gates is much smaller than the number of addition gates and multiplication gates. Let
C denote the circuit and DEPTH denote the circuit depth. We use I to denote the input size, G to
denote the number of gates, and O to denote the output size. Then |C| ≥ I +G+O.
• Cost of the Circuit Independent Preprocessing Phase: The size of the preprocessing data

per packed Beaver triple is 3n field elements. Therefore, the total size of the preprocessing
data for multiplication gates is ( G

2k
+ Depth) · 3n. Here G

2
is the estimated number of

multiplication gates, and G
2k

+ Depth is the number of packed Beaver triples required for
multiplication gates. The reason of adding Depth is because the multiplication gates are
grouped layer by layer. In each layer, if there are m multiplication gates, then we need to
prepare dm/ke < m/k + 1 packed Beaver triples.

• Cost of the Online Phase:

Input Phase: For every group of k input gates, the communication complexity is n
field elements. Let I denote the size of input. Then the cost of the input phase is
( I
k

+ c) · n field elements of communication. The reason of adding c is because the
input gates are grouped based on the input holders.

Evaluation Phase: For every group of k (addition or multiplication) gates, all parties
invoke NETWORK to prepare the two input sharings. Each invocation of NETWORK

involves one invocation of Ftran.
For addition gates, each invocation of PACKED-ADD involves one invocation ofFtran.
For multiplication gates, each invocation of PACKED-MULT involves 4n elements of
communication and one invocation of Ftran.
Thus, the evaluation phase cost ( G

2k
+ Depth) · 4n elements of communication and

(G
k

+ 2 · Depth) · 3 invocations of Ftran. When using TRAN to instantiate Ftran,
(G
k

+ 2 ·Depth) · 3 invocations of Ftran requires 12(G
k

+ 2 ·Depth) · n2

k
field elements

of preprocessing data, and 12(G
k

+ 2 · Depth) · n field elements of communication.

In total, the cost of the evaluation phase is 12(G
k

+ 2 · Depth) · n2

k
field elements of

preprocessing data, and 14(G
k

+ 2 · Depth) · n field elements of communication.

Output Phase: For every group of k output gates, all parties invoke NETWORK to
prepare the input sharing. Then all parties send their shares to the client who should
receive the result. Recall that each invocation of NETWORK involves one invocation
of Ftran. Thus, the output phase cost (O

k
+ c) ·n field elements of communication and

O
k

+ c invocations of Ftran.
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With a similar analysis, the cost of the output phase is 4(O
k

+ c) · n2

k
field elements of

preprocessing data, and 5(O
k

+ c) · n field elements of communication.

In summary, the total cost of the online phase is (12G
k

+ 4O
k

+24 ·Depth+4c) · n2

k
elements

of preprocessing data, and ( I
k

+ 14G
k

+ 5O
k

+28 ·Depth+6c) ·n elements of communication.
Thus, our semi-honest protocol requires 12|C| · n2

k2
+ O((Depth + c) · n2

k
) elements of pre-

processing data, and 14|C| · n
k

+O((Depth + c) · n) elements of communication.
Theorem 12.1. In the client-server model, let c denote the number of clients, n denote the num-
ber of parties (servers), and t denote the number of corrupted parties (servers). Let F be a finite
field of size |F| ≥ |C| + n. For an arithmetic circuit C over F, there exists an information-
theoretic MPC protocol in the preprocessing model which securely computes the arithmetic cir-
cuit C in the presence of a semi-honest adversary controlling up to c clients and t parties. The
cost of the protocol is O(|C| · n2

k2
+ (Depth + c) · n2

k
) field elements of preprocessing data and

O(|C| · n
k

+ (Depth + c) · n) field elements of communication, where k = n−t+1
2

and Depth is
the circuit depth.
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Chapter 13

An Alternative Approach for Network
Routing

In this chapter, we discuss an alternative approach for the network routing which works for small
fields |F| ≥ 2n.

13.1 Preliminaries: Hall’s Marriage Theorem

Definition 13.1 (Bipartite Graph). A graph G = (V,E) is a bipartite graph if there exists a
partition (V1, V2) of V such that for all edge (vi, vj) ∈ E, vi ∈ V1 and vj ∈ V2.

In the following, we will use (V1, V2, E) to denote a bipartite graph. We say a bipartite graph
(V1, V2, E) is d-regular if the degree of each vertex in V1

⋃
V2 is d.

Definition 13.2 (Perfect Matching). For a bipartite graph (V1, V2, E) such that |V1| = |V2|, a
perfect matching is a subset of edges E ∈ E which satisfies that each vertex in the sub-graph
(V1, V2, E) has degree 1.
Theorem 10.2 (Hall’s Marriage Theorem). For a bipartite graph (V1, V2, E) such that |V1| =
|V2|, there exists a perfect matching iff for all subset V ′1 ⊂ V1, the number of the neighbors of
vertices in V2 is at least |V ′1 |.

In this work, we will make use of the following two well-known corollaries of Hall’s Marriage
Theorem. For completeness, we also provide proofs for the corollaries.
Corollary 10.1. There exists a perfect matching in a d-regular bipartite graph.

Proof. Let G = (V1, V2, E) denote the d-regular bipartite graph. To show the existence of a
perfect matching in G, it is sufficient to examine the requirement of Hall’s Marriage Theorem.

For all subset V ′1 ⊂ V1, let N(V ′1) denote the set of vertices in V2 which are connected
to vertices in V ′1 . It is sufficient to show that |N(V ′1)| ≥ |V ′1 |. Consider the sub-graph G′ =
(V ′1 , N(V ′1), E ′) which contains all the edges between V ′1 and N(V ′1). Since G is a d-regular
graph, the number of edges in G′ is |E ′| = d · |V ′1 |. On the other hand, we have d · |N(V ′1)| ≥ |E ′|
since the degree of each vertex in |N(V ′1)| is upper bounded by d. Therefore d · |N(V ′1)| ≥ |E ′| =
d · |V ′1 |, which means |N(V ′1)| ≥ |V ′1 |.
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13.2 Network Routing using Hall’s Marriage Theorem
As discussed in Chapter 10.2.4, we will always use the default positions for the packed Shamir
secret sharing scheme in our construction. This means that
• For Protocol PACKED-ADD (Protocol 12.3), there is no need to run the last step and the

protocol only contains local computation.
• For Protocol PACKED-MULT (Protocol 12.4), the last step becomes a degree reduction.

Recall that our idea is to realize the non-collision property:
Property 10.1 (Non-collision). For each input sharing of each layer, the secrets of this input
sharing come from different positions in the output sharings of previous layers.

To this end, for each (input, addition, or multiplication) gate, we copy the output wire the
number of times it is used in later layers.

Evaluating Fan-Out Gates. Let [x]n−k denote the output packed Shamir sharing of a group of
(input, addition, or multiplication) gates, and let ni denote the number of times that the i-th secret
xi is used in later layers for all i ∈ {1, 2, . . . , k}. We first transform x to m = dn1+n2+...+nk

k
e

vectors x(1),x(2), . . . ,x(m) in Fk such that they contain ni copies of the value xi for all i ∈
{1, 2, . . . , k}. All parties use the following algorithm to locally determine what values should be
in each of these m vectors.

1. All parties locally initiate an empty list L. From i = 1 to k, all parties locally insert ni
times of xi into L.

2. From i = 1 to m, all parties locally set x(i) to be the vector of the first k elements in L,
and then remove these elements from L. For the last vector, we insert enough number of
0s if the number of elements in L is smaller than k. In this way, all parties determine the
values that should be in the m vectors x(1),x(2), . . . ,x(m).

For each x(i) ∈ {x(1),x(2), . . . ,x(m)}, to obtain [x(i)]n−k from [x]n−k, all parties set L′i to
be the F-linear map that maps x to x(i), and then perform a sharing transformation to transform
[x]n−k to [L′i(x)]n−k.

Achieving Non-Collision Properties. After performing the fan-out gates, there is a bijective
map between the output wires (of the input layer and all intermediate layers) and the input wires
(of the output layer and all intermediate layers).

In the following, when we use the term ”output sharings”, we refer to the output sharings
from the input layer and all intermediate layers. When we use the term ”input sharings”, we
refer to the input sharings of the output layer and all intermediate layers.

Since every output wire from every layer is only used once as an input wire of another layer,
the number of output sharings in the circuit is the same as the number of input sharings in
the circuit. Let m denote the number of output sharings in the circuit. Then the number of
input sharings is also m. We will label all the output sharings by 1, 2, . . . ,m and all the input
sharings also by 1, 2, . . . ,m. Consider a matrix N ∈ {1, 2, . . . ,m}m×k where Ni,j is the index
of the input sharing that the j-th secret of the i-th output sharing wants to go to. Then for all
` ∈ {1, 2, . . . ,m}, there are exactly k entries ofN which are equal to `. And the secrets at those
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positions are the secrets we want to collect for the `-th input sharing. We will prove the following
theorem.
Theorem 10.1. Let m ≥ 1, k ≥ 1 be integers. Let N be a matrix of dimension m × k in
{1, 2, . . . ,m}m×k such that for all ` ∈ {1, 2, . . . ,m}, the number of entries of N which are
equal to ` is k. Then, there exists m permutations p1, p2, . . . , pm over {1, 2, . . . , k} such that
after performing the permutation pi on the i-th row of N , the new matrix N ′ satisfies that each
column ofN ′ is a permutation over (1, 2, . . . ,m). Furthermore, the permutations p1, p2, . . . , pm
can be found within polynomial time.

Jumping ahead, when we apply pi to the i-th output sharing for all i ∈ {1, 2, . . . ,m}, The-
orem 10.1 guarantees that for all j ∈ {1, 2, . . . , k} the j-th secrets of all output sharings need
to go to different input sharings. Note that this ensures the non-collision property. During the
computation, we will perform the permutation pi on the i-th output sharing right after it is com-
puted. Note that when preparing an input sharing, the secrets we need only come from the output
sharings which have been computed. The secrets of these output sharings have been properly per-
muted such that the secrets we want are in different positions. Therefore, we can use Fselect-semi

to choose these secrets and obtain the desired input sharing. With the non-collision property, we
can achieve the network routing by following a similar approach to that in Chapter 12.2.2.

Proof of Theorem 10.1. We will prove the theorem by induction on k.
When k = 1,N is a matrix of dimension m× 1. Since each value ` ∈ {1, 2, . . . ,m} appears

once in N , and N only has one column, the column of N is a permutation of (1, 2, . . .m). The
permutations p1, p2, . . . , pm will just be the identities.

Assume the theorem holds for k = k′ ≥ 1. Let’s consider the case when k = k′ + 1.
We first construct a bipartite graph G = (V1, V2, E). Let V1 = V2 = {1, 2, . . . ,m}. For all
i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , k}, if Ni,j = `, we create an edge (i, `) ∈ V1 × V2 and
insert (i, `) in E.

Now we show that G is a regular-k bipartite graph. For all vertex i ∈ V1, we create an edge
for each entry in the i-th row of N . Therefore, the degree of the vertex i is k. For all vertex
` ∈ V2, we create an edge for each entry in N which is equal to `. Since in N , the number
of entries that are equal to ` is k, the degree of each vertex ` ∈ V2 is k. Thus, G is a regular-k
bipartite graph.

According to Corollary 10.1, there exists a perfect matching inG. Suppose (1, `1), . . . , (m, `m)
are the edges in the perfect matching. Then (`1, `2, . . . , `m) is a permutation of (1, 2, . . . ,m). For
all i ∈ {1, 2, . . . ,m}, let ji be the first position that Ni,ji = `i. Now for all i ∈ {1, 2, . . . ,m},
we switch the k-th entry and the ji-th entry in the i-th row, and denote the new matrix to be Ñ .
In this way, the last column of Ñ becomes a permutation of (1, 2, . . . ,m).

LetM be the sub-matrix of Ñ which contains the first k−1 columns. ThenM is a matrix in
{1, 2, . . . ,m}m×(k−1), and for all ` ∈ {1, 2, . . . ,m}, the number of entries ofM which are equal
to ` is k − 1. According to the induction hypothesis, there exists m permutations p′1, p

′
2, . . . , p

′
m

over {1, 2, . . . , k − 1} such that after performing the permutation p′i on the i-th row of M , the
new matrixM ′ satisfies that each column ofM ′ is a permutation of (1, 2, . . . ,m).

Now we construct the permutations p1, p2, . . . , pm over {1, 2, . . . , k} as follows: For all i ∈
{1, 2, . . . ,m}
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• for all j ∈ {1, 2, . . . , k − 1} and j 6= ji, pi(j) = p′i(j);
• for ji, pi(ji) = k;
• for k, pi(k) = p′i(ji).

Let N ′ denote the matrix after performing the permutation pi on the i-th row of N for all i ∈
{1, 2, . . . ,m}. Note that for all i ∈ {1, 2, . . . ,m}, performing the permutation pi on the i-th row
of N is equivalent to first switching the k-th entry and the ji-th entry and then performing the
permutation p′i on the first k− 1 entries. Therefore, for all j ∈ {1, 2, . . . , k− 1}, the j-th column
of N ′ is the same as the j-th column of M ′, and the k-th column of N ′ is the same as the k-th
column of Ñ . Therefore each column ofN ′ is a permutation of (1, 2, . . . ,m).

According to Corollary 10.1, the perfect matching of G can be found within polynomial
time. According to the induction hypothesis, p′1, p

′
2, . . . , p

′
m can be found within polynomial

time. Therefore, p1, p2, . . . , pm can be constructed within polynomial time.
Therefore, the theorem holds for all integers k ≥ 1.

Thus, to achieve the non-collision property, we perform the permutation computed from
the algorithm in Theorem 10.1 on x(i). Let L′′i denote the linear map that corresponds to this
permutation. Then, all parties can achieve the non-collision property by performing a sharing
transformation from [x(i)]n−k to [L′′i (x(i))]n−k.

We note that all parties can obtain [L′′i (x(i))]n−k directly from [x]n−k: Since L′i,L′′i are lin-
ear maps, Li = L′i ◦ L′′i is also a linear map. Thus, all parties can perform a single sharing
transformation from [x]n−k to [Li(x)]n−k.

Preparing Desired Input Sharings. Suppose [x(1)]n−k, . . . , [x
(k)]n−k are k degree-(n − k)

packed Shamir sharings from previous layers (which do not need to be distinct) and all parties
want to prepare a degree-t packed Shamir sharing [x]n−k that contains the ij-th secret of x(j) for
all j ∈ {1, 2, . . . , k}. According to the non-collision property, i1, i2, . . . , ik are all distinct. All
parties locally compute a degree-(n−1) packed Shamir sharing that contains the secrets we want
as follows:

1. For all j ∈ {1, 2, . . . , k}, let ej denote a vector in Fk where all entries of ej are 0 except
the ij-th entry is 1. All parties locally transform ej to a degree-(k − 1) packed Shamir
sharing [ej]k−1.

2. All parties locally compute

[x′]n−1 =
k∑
j=1

[ej]k−1 · [x(j)]n−k.

The correctness follows from the facts that [ej]k−1 · [x(j)]n−k = [ej ∗ x(j)]n−1 and ej ∗ x(j) is a
vector in Fk where all entries are 0 except the ij-th entry is x(j)

ij
.

To obtain [x]n−k from [x′]n−1, let L denote the linear map that maps x′ to x, all parties
perform a sharing transformation from [x′]n−1 to [x]n−k.
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Summary. We summarize the alternative approach for the network routing in Protocol NETWORK-
HALL-PART I and NETWORK-HALL-PART II (described in Protocol 13.1 and Protocol 13.2
respectively).

Figure 13.1: Protocol NETWORK-HALL-1

1. Circuit Preprocessing:
• For each layer of the circuit, all gates are divided into groups of size k based

on their types. For every group of k (input, addition, or multiplication) gates,
let x denote the values associated with the output wires of these k gates. Let
ni denote the number of times that the i-th secret xi is used in later layers for
all i ∈ {1, 2, . . . , k}. All parties transform x to m = dn1+n2+...+nk

k
e vectors

x(1),x(2), . . . ,x(m) in Fk such that they contain ni copies of the value xi for all
i ∈ {1, 2, . . . , k}. All parties use the following algorithm to locally determine
what values should be in each of these m vectors.

(a) All parties locally initiate an empty list List. From i = 1 to k, all parties
locally insert ni times of xi into List.

(b) From i = 1 to m, all parties locally set x(i) to be the vector of the first
k elements in List, and then remove these elements from List. For the last
vector, we insert enough number of 0s if the number of elements in List is
smaller than k.

• LetN denote the number of output sharings of the input layer and all intermediate
layers. Then the number of input sharings of the output layer and all intermediate
layers is also N . The output sharings are labeled by 1, 2, . . . , N , and the input
sharings are also labeled by 1, 2, . . . , N . All parties construct a matrix M ∈
{1, 2, . . . , N}N×k whereMi,j is the index of the input sharing that the j-th secret
in the i-th output sharing wants to go. All parties use a deterministic algorithm
that all parties agree on to compute N permutations p1, p2, . . . , pN such that after
applying pi to the i-th row of M , the new matrix M ′ satisfies that each column
of M ′ is a permutation of (1, 2, . . . , N). The existence of such an algorithm is
guaranteed by Theorem 10.1. Then, all parties associate pi with the i-th output
sharing.

Now we can replace the protocol NETWORK by NETWORK-HALL. In particular, the protocol
works for any finite field F of size |F| ≥ 2n.
Theorem 13.1. In the client-server model, let c denote the number of clients, n denote the num-
ber of parties (servers), and t denote the number of corrupted parties (servers). Let F be a
finite field of size |F| ≥ 2n. For an arithmetic circuit C over F, there exists an information-
theoretic MPC protocol in the preprocessing model which securely computes the arithmetic cir-
cuit C in the presence of a semi-honest adversary controlling up to c clients and t parties. The
cost of the protocol is O(|C| · n2

k2
+ (Depth + c) · n2

k
) field elements of preprocessing data and
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Figure 13.2: Protocol NETWORK-HALL-2

2. Achieving the Non-Collision Property: For every group of k (input, addition, or
multiplication) gates, let x denote the values associated with the output wires of these
k gates. After all parties compute [x]n−k, all parties does the following:

(a) Recall the vectors x(1), . . . ,x(m) computed in the last step. For all i ∈
{1, 2, . . . ,m}, let L′i denote the linear map that maps x to x(i). Also recall the
permutation associated with each vector x(i) computed in the last step. Let L′′i
denote the linear map that corresponds to the permutation associated with x(i).

(b) For all i ∈ {1, 2, . . . ,m}, let Li = L′′i ◦ L′i. Let Σ be the degree-(n − 1) packed
Shamir secret sharing scheme. Let Σ′ be the degree-(n−k) packed Shamir secret
sharing scheme.
All parties invoke Ftran with (Σ,Σ′, Li) and [x]n−k, and output [Li(x)]n−k.

3. Preparing Desired Input Sharings: Suppose all parties want to prepare a degree-
(n − k) packed Shamir sharing of x. Suppose [x(1)]n−k, . . . , [x

(k)]n−k are k degree-
(n−k) packed Shamir sharings from previous layers (which do not need to be distinct)
such that x(j) contains the value xj at position ij for all j ∈ {1, 2, . . . , k}. According
to the non-collision property, i1, i2, . . . , ik are all distinct.

(a) For all j ∈ {1, 2, . . . , k}, let eij denote a vector in Fk where all entries of eij are
0 except the ij-th entry is 1. All parties locally transform eij to a degree-(k − 1)
packed Shamir sharing [eij ]k−1.

(b) All parties locally compute

[x′]n−1 =
k∑
j=1

[eij ]k−1 · [x(j)]n−k.

(c) Let f : Fk → Fk be a linear map such that x = f(x′). Let Σ be the degree-
(n − 1) packed Shamir secret sharing scheme. Let Σ′ be the degree-(n − k)
packed Shamir secret sharing scheme.
All parties invoke Ftran with (Σ,Σ′, f) and [x′]n−1, and output [x]n−k.

O(|C| · n
k

+ (Depth + c) · n) field elements of communication, where k = n−t+1
2

and Depth is
the circuit depth.
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Chapter 14

Maliciously Secure Protocol

In this chapter, we discuss how to achieve malicious security. One difficulty is that corrupted
parties can change the secret of a degree-(n− k) packed Shamir sharing by changing their own
shares locally. We extend the idea of using information-theoretic MACs introduced in [11, 30]
to authenticate packed Shamir sharings.

Concretely, all parties will prepare a random degree-(n − k) packed Shamir sharing [γ]n−k,
where γ = (γ, γ, . . . , γ) ∈ Fk and γ is a random field element in F, in the preprocessing
phase (using the default positions). During the computation, a degree-(n − k) packed Shamir
sharing [x‖pos]n−k is authenticated by computing a degree-(n− k) packed Shamir sharing [γ ∗
x‖pos]n−k. We use [[x‖pos]]n−k to denote the pair ([x‖pos]n−k, [γ ∗ x‖pos]n−k). Note that if
corrupted parties change the secret x to x′, they also need to change the secret γ ∗ x to γ ∗ x′.
However, since γ is a uniform vector in Fk, the probability of a success attack is at most 1/|F|.
When the field size is large enough, we can detect such an attack with overwhelming probability.
Therefore in the following, we assume |F| ≥ 2κ, where κ is the security parameter.

Recall that t is the number of corrupted parties, and k = (n − t + 1)/2. Then the number
of honest parties is n − t = 2k − 1. We focus on n−1

3
≤ t ≤ n − 1. Then k satisfies that

2k − 2 ≤ n− k. The benefit is that for any 2k − 1 field elements in F, there is a degree-(n− k)
packed Shamir sharing such that the shares of honest parties are these 2k − 1 elements. In this
way, we can transform any attack that adds errors to the shares of honest parties to an attack that
adds errors to the secrets.

14.1 Performing Sharing Transformation with Malicious Se-
curity

We will only focus on the sharing transformation we use in our semi-honest protocol: For two
(potentially different) vectors of field elements pos = (p1, . . . , pk) and pos′ = (p′1, . . . , p

′
k) such

that they are disjoint with {α1, . . . , αn}, all parties start with a degree-(n − 1) packed Shamir
sharing [x‖pos]n−1. They want to compute a degree-(n−k) packed Shamir sharing [y‖pos′]n−k
such that for all i ∈ {1, 2, . . . , k}, yi is equal to xj for some j.

We first construct a protocol that allows all parties to prepare a pair of random sharings for the
above transformation. It follows from Protocol RAND-SHARING with the concrete improvement
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discussed in Chapter 11.5.

14.1.1 Preparing Random Sharings for Sharing Transformations

Let Π = Π(pos, pos′, f) be the F-linear secret sharing scheme defined as follows:
• The secret space Z = Fk.
• The share space U = F2.
• For a secret x ∈ Z, the sharing of x is ([x‖pos]n−1, [f(x)‖pos′]n−k).
• For a sharing X = (X1,X2), we view X1 as a degree-(n − 1) packed Shamir secret

sharing scheme and reconstruct the secret x.
Our goal is to prepare a pair of random sharings ([r‖pos]n−1, [f(r)‖pos′]n−k) where r is a

random vector in Fk. In the malicious security setting, we allow an adversary to add a constant
vector to the secret of the second sharing. We summarize the functionality Frand-sharing-mal in
Functionality 14.1.

Figure 14.1: Functionality Frand-sharing-mal

1. Frand-sharing-mal receives the set of corrupted parties, denoted by Corr. Frand-sharing-mal also
receives Π = Π(pos, pos′, f).

2. Frand-sharing-mal receives from the adversary a set of shares {(uj, vj)}j∈Corr, and a con-
stant vector d ∈ Fk.

3. Frand-sharing-mal samples a random vector r ∈ Fk and computes f(r) + d.

4. Frand-sharing-mal samples a pair of random sharings ([r‖pos]n−1, [f(r) + d‖pos′]n−k)
such that for all Pj ∈ Corr, the j-th share of ([r‖pos]n−1, [f(r) + d‖pos′]n−k) is
(uj, vj).

5. Frand-sharing-mal distributes the shares of ([r‖pos]n−1, [f(r) +d‖pos′]n−k) to honest par-
ties.

Let Π1,Π2, . . . ,Πk be k F-linear secret sharing schemes in the above form. We will prepare
k random sharings, one for each secret sharing scheme. Our protocol will use Frand to prepare
random degree-(n− k) packed Shamir sharings, and FrandZero to prepare random degree-(n− 1)
packed Shamir sharings of 0. The description of Protocol RAND-SHARING-MAL appears in
Protocol 14.2.
Lemma 14.1. For all k ≤ (n + 2)/3, Protocol RAND-SHARING-MAL securely computes
Frand-sharing-mal in the {Frand,FrandZero}-hybrid model against a fully malicious adversary who con-
trols t = n− 2k + 1 parties.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr
denote the set of corrupted parties andH denote the set of honest parties.

The simulator S works as follows.
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Figure 14.2: Protocol RAND-SHARING-MAL

1. For all i ∈ {1, 2, . . . , k}, let Πi = Σ(posi, pos
′
i, fi).

2. All parties invoke FrandZero and obtain (2k− 1) random degree-(n− 1) packed Shamir
sharings of 0, [o1]n−1, . . . , [o2k−1]n−1.

3. For all j ∈ {1, . . . , n}, all parties invoke Frand and obtain a random degree-(n − k)
packed Shamir sharing [rj]n−k. Then all parties send their shares to Pj . Pj views it
as a degree-(n − 1) packed Shamir sharing and reconstructs rj , which is used as his
shares of the degree-(n− 1) packed Shamir sharings in Π1, . . . ,Πk.

4. For all j ∈ {1, . . . , n − 2k + 1}, all parties invoke Frand and obtain a random degree-
(n− k) packed Shamir sharing [rn+j]n−k. Then all parties send their shares to Pj . Pj
views it as a degree-(n − 1) packed Shamir sharing and reconstructs rn+j , which is
used as his shares of the degree-(n− k) packed Shamir sharings in Π1, . . . ,Πk.

5. For all i ∈ {1, . . . , k}, the shares of the degree-(n − 1) packed Shamir sharing
in Πi, [τi‖posi]n−1, are set to be (r1,i, . . . , rn,i). And the first n − 2k + 1 shares
of the degree-(n − k) packed Shamir sharing in Πi, [fi(τi)‖pos′i]n−k, are set to be
(rn+1,i, . . . , r2n−2k+1,i).

6. Note that each value in τi is a linear combination of (r1,i, . . . , rn,i). Each value in
fi(τi) is a linear combination of the values in τi. And for all j ∈ {n− 2k + 2, . . . , n},
the j-th share of [fi(τi)‖pos′i]n−k is a linear combination of its first n− 2k + 1 shares
(rn+1,i, . . . , r2n−2k+1,i) and the secret fi(τi). Thus, the j-th share of [fi(τi)‖pos′i]n−k is
a linear combination of (r1,i, . . . , r2n−2k+1,i). Let c(i)

j,1, . . . , c
(j)
j,2n−2k+1 be the coefficient

such that the j-th share of [fi(τi)‖pos′i]n−k

rn+j,i =
2n−2k+1∑
v=1

c
(i)
j,v · rv,i.

For all j ∈ {n−2k+2, . . . , n} and v ∈ {1, . . . , 2n−2k+1}, let cj,v = (c
(1)
j,v , . . . , c

(k)
j,v ).

7. For all j ∈ {n− 2k + 2, . . . , n}, all parties locally compute

[rn+j]n−1 = [oj−n+2k−1]n−1 +
2n−2k+1∑
v=1

cj,v · [rv]n−k.

Then, all parties send their shares of [rn+j]n−1 to Pj .

8. For all j ∈ {n − 2k + 2, . . . , n}, Pj reconstructs [rn+j]n−1 and learns rn+j . Then,
for all i ∈ {1, 2, . . . , k}, all parties output [τi‖posi]n−1 = (r1,i, . . . , rn,i) and
[fi(τi)‖pos′i]n−k = (rn+1,i, . . . , r2n,i).
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1. In Step 2, S emulates the functionalityFrandZero and receives the shares of [o1]n−1, . . . , [o2k−1]n−1

held by corrupted parties.
2. In Step 3, S emulates the functionality Frand and receives the shares of each [rj]n−k held

by corrupted parties.
• For all corrupted party Pj , S generates a random degree-(n − k) packed Shamir

sharing [rj]n−k based on the shares held by corrupted parties. Then S sends the
shares held by honest parties to Pj .

• For all honest party Pj , S receives from corrupted parties their shares of [rj]n−k.
Then S sets a degree-(n− 1) packed Shamir sharing [δj]n−1 as follows:
(a) The share of each honest party is set to be 0.
(b) The share of each corrupted party is set to be the share of [rj]n−k received from

this corrupted party minus the same share that this corrupted party should hold.
S reconstructs δj and views it as an additive attack towards Pj’s shares.

3. In Step 4, S follows the same strategy as that in Step 3 but only for the first n − 2k +
1 parties. For each honest party Pj , S extracts the additive attack towards Pj’s shares,
denoted by δ′j .

4. In Step 7, for all j ∈ {n−2k+2, . . . , n}, S computes the shares of [rn+j]n−1 that corrupted
parties should hold. Then, for each Pj ∈ {Pn−2k+2, . . . , Pn},
• If Pj is corrupted, S samples a random vector in Fk as rn+j . Based on rn+j and the

shares of [rn+j]n−1 that corrupted parties should hold, S randomly samples the shares
of honest parties. Finally, S sends the shares of rn+j held by honest parties to Pj .

• If Pj is honest, S receives from corrupted parties their shares of [rn+j]n−1. Then S
sets a degree-(n− 1) packed Shamir sharing [δ′j]n−1 as follows:
(a) The share of each honest party is set to be 0.
(b) The share of each corrupted party is set to be the share of [rn+j]n−1 received

from this corrupted party minus the same share that this corrupted party should
hold.

S reconstructs δ′j and views it as an additive attack towards Pj’s shares.
Now S transforms the additive attacks towards the shares of honest parties to an additive
attack towards the secret of the second sharing in each Πi. For all i ∈ {1, 2, . . . , k},
• S computes a degree-(2k− 2) packed Shamir sharing [d

(i)
1 ‖posi]2k−2 which is deter-

mined by using (δj,i)j∈H as the shares of honest parties. d(i)
1 is viewed as an additive

attack towards the secret of the first sharing in Πi.
• S computes a degree-(2k− 2) packed Shamir sharing [d

(i)
2 ‖pos′i]2k−2 which is deter-

mined by using (δ′j,i)j∈H as the shares of honest parties. d(i)
2 is viewed as an additive

attack towards the secret of the second sharing in Πi.
S computes d(i) = d

(i)
2 − fi(d

(i)
1 ).

5. Recall that S has computed rj and rn+j for all corrupted party Pj . Let shj([d
(i)
1 ‖posi]2k−2)

denote the j-th share of [d
(i)
1 ‖posi]2k−2, and shj([d

(i)
2 ‖pos′i]2k−2) denote the j-th share of

[d
(i)
2 ‖pos′i]2k−2. For all i ∈ {1, 2, . . . , k}, S sends {rj,i + shj([d

(i)
1 ‖posi]2k−2), rn+j,i +

shj([d
(i)
2 ‖pos′i]2k−2)}j∈Corr and d(i) to Frand-sharing-mal(Πi).
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This completes the description of the simulator. Now, we show that the simulator we con-
structed above perfectly simulate the behaviors of honest parties.

We first show that the messages that honest parties send to corrupted parties have the same
distribution in both worlds. In Step 3, for each corrupted party Pj , honest parties need to send
their shares of [rj]n−k to Pj . Recall that [rj]n−k is a random degree-(n − k) packed Shamir
sharing generated by Frand. In the ideal world, S honestly follows Frand to compute the shares of
honest parties. Therefore, the shares of [rj]n−k held by honest parties have the same distribution
in both worlds. Similarly, in Step 4, for each corrupted party Pj of the first n − 2k + 1 parties,
the shares of [rn+j]n−k held by honest parties have the same distribution in both worlds.

In Step 7, for each corrupted party Pj ∈∈ {Pn−2k+2, . . . , Pn}, honest parties need to send
their shares of [rn+j]n−1 to Pj . Recall that rn+j are used as the j-th shares of the degree-(n− k)
packed Shamir sharings in Π1, . . . ,Πk. Since the degree-(n − k) packed Shamir secret sharing
scheme has threshold t, the shares of corrupted parties are uniformly random. Therefore rn+j is
uniformly distributed in Fk. Since all parties use a random degree-(n−1) packed Shamir sharing
[oj−n+2k−1]n−1 as a random mask, [rn+j]n−1 is a random degree-(n− 1) packed Shamir sharing
of rn+j given the secret rn+j and the shares of corrupted parties. In the ideal world, S randomly
samples the secret rn+j and randomly samples the shares of honest parties in [rn+j]n−1 based on
the secret rn+j and the shares of corrupted parties. Thus, the shares of [rn+j]n−1 held by honest
parties have the same distribution in both worlds.

Now it is sufficient to show that the shares of the output sharings held by honest parties have
the same distribution in both worlds. We note that the only thing that corrupted parties can do is
to send incorrect shares to honest parties.

• In the real world, in Step 3 for each honest party Pj , Pj uses the shares he received as a
degree-(n− 1) packed Shamir sharing and reconstructs r̃j (Here we use the tilde notation
to distinguish from the correct secret rj that Pj should obtain.) Compared with the shares
that Pj should received, the difference is the degree-(n−1) packed Shamir sharing [δj]n−1

we constructed above. Thus, δj = r̃j − rj . In the ideal world, S can compute [δj]n−1 as
described above. Similarly, in Step 4 and Step 7, S can extract δ′j = r̃n+j − rn+j .

• Now for all i ∈ {1, 2, . . . , k} and for each honest party Pj , the j-th share of the first
sharing in Πi is deviated by δj,i due to the malicious behaviors of corrupted parties. Let
[τi‖posi]n−1 denote the first sharing that all parties should obtain. Then the shares that
honest parties actually obtain are equal to the shares of [τi‖posi]n−1 + [d

(i)
1 ‖posi]2k−2,

where recall that [d
(i)
1 ‖posi]2k−2 is the degree-(2k− 2) packed Shamir sharing determined

by using (δj,i)j∈H as the shares of honest parties. Note that when k ≤ (n + 2)/3, we
have 2k − 2 ≤ n − 1. Therefore [τi‖posi]n−1 + [d

(i)
1 ‖posi]2k−2 = [τi + d

(i)
1 ‖posi]n−1.

Since [τi‖posi]n−1 is a random degree-(n− 1) packed Shamir sharing given the shares of
corrupted parties, [τi+d

(i)
1 ‖posi]n−1 is also a random degree-(n−1) packed Shamir sharing

given the shares of corrupted parties. Thus, by sending the shares of [τi +d
(i)
1 ‖posi]n−1 of

corrupted parties toFrand-sharing-mal, Frand-sharing-mal generates the shares of [τi+d
(i)
1 ‖posi]n−1

of honest parties with the same distribution as that in the real world.
Similarly, for the second sharing [fi(τi)‖pos′i]n−k and for each honest party Pj , the j-th
share is deviated by δ′j,i due to the malicious behaviors of corrupted parties. Then the
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shares that honest parties actually obtain are equal to the shares of [fi(τi)‖pos′i]n−k +

[d
(i)
2 ‖pos′i]2k−2, where recall that [d

(i)
2 ‖pos′i]2k−2 is the degree-(2k − 2) packed Shamir

sharing determined by using (δ′j,i)j∈H as the shares of honest parties. Note that when
k ≤ (n+ 2)/3, we have 2k − 2 ≤ n− k. Therefore [fi(τi)‖pos′i]n−k + [d

(i)
2 ‖pos′i]2k−2 =

[fi(τi)+d
(i)
2 ‖pos′i]n−k. Note that a degree-(n−k) packed Shamir sharing is determined by

the secret and the shares of corrupted parties. Since we have provided the shares of [τi +

d
(i)
1 ‖posi]n−1 of corrupted parties to Frand-sharing-mal, the secret generated by Frand-sharing-mal

would correspond to τi + d
(i)
1 . Then the additive errors to the secret becomes (fi(τi) +

d
(i)
2 ) − fi(τi + d

(i)
1 ) = d

(i)
2 − fi(d

(i)
1 ) = d(i). Thus, by sending the shares of [fi(τi) +

d
(i)
2 ‖pos′i]n−k of corrupted parties and the additive errors d(i), Frand-sharing-mal generates the

shares of [fi(τi) + d
(i)
2 ‖pos′i]n−k of honest parties with the same distribution as that in the

real world.

We conclude that when k ≤ (n + 2)/3, Protocol RAND-SHARING-MAL securely computes
Frand-sharing-mal in the {Frand,FrandZero}-hybrid model against a fully malicious adversary who con-
trols t = n− 2k + 1 parties.

14.1.2 Performing Sharing Transformation

Now we present the concrete protocol for performing the sharing transformation that we are
interested in. We modify the protocol TRAN by requiring that P1 distributes a degree-(2k − 2)
packed Shamir sharing of the reconstruction result. In this way, the whole sharing is determined
by the shares of honest parties. Note that when k ≤ (n + 2)/3, we have 2k − 2 ≤ n− k. Thus,
all parties can still obtain a degree-(n− k) Shamir sharing at the end.

The description of the protocol TRAN-MAL appears in Protocol 14.3.

Figure 14.3: Protocol TRAN-MAL

1. All parties agree on the tuple (pos, pos′, f) where pos, pos′ are two vectors of field
elements in Fk and f : Fk → Fk is a linear map. All parties start with a degree-(n− 1)
packed Shamir sharing [x‖pos]n−1. The goal is to compute [f(x)‖pos′]n−k.

2. Let Π = Π(pos, pos′, f) defined in Chapter 14.1.1. All parties invoke
Frand-sharing-mal(Π) to prepare a random Π-sharing ([r‖pos]n−1, [f(r)‖pos′]n−k).

3. All parties locally compute [x+r‖pos]n−1 = [x‖pos]n−1 +[r‖pos]n−1 and send their
shares to the first party P1.

4. P1 reconstructs the secret x+ r. Then P1 computes f(x+ r) and generates a degree-
(2k−2) packed Shamir sharing [f(x+r)‖pos′]2k−2. Finally, P1 distributes the shares
of [f(x+ r)‖pos′]2k−2 to all parties.

5. All parties locally compute [f(x)‖pos′]n−k = [f(x+ r)‖pos′]2k−2− [f(r)‖pos′]n−k.
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14.2 Circuit-Independent Preprocessing Phase

In the circuit independent preprocessing phase, all parties prepare the following correlated ran-
dom sharings:

• All parties prepare a random degree-(n − k) packed Shamir sharing [γ]n−k, where γ =
(γ, γ, . . . , γ) ∈ Fk and γ is a random field element, which is served as the MAC key.

• For every group of k input gates and output gates:

1. All parties prepare an authenticated random degree-(n− k) packed Shamir sharings
[[r]]n−k = ([r]n−k, [γ ∗r]n−k). In addition, all parties prepare another random degree-
(n − k) packed Shamir sharing [∆]n−k and compute the sharing [∆ ∗ r]n−k. Note
that ([r]n−k, [∆ ∗ r]n−k) can be seen as an authentication of the sharing [r]n−k under
the MAC key [∆]n−k. We will use ([r]n−k, [∆ ∗ r]n−k) to allow a client to verify the
correctness of the secret r in the input protocol and the output protocol.

2. For every group of k output gates, all parties also prepare a random degree-(n − 1)
packed Shamir sharing of 0, denoted by [o]n−1. We will use [o]n−1 to protect the
shares of honest parties.

• For every group of k multiplication gates:

1. All parties prepare an authenticated packed Beaver triple ([[a]]n−k, [[b]]n−k, [[c]]n−k)
where a, b are random vectors in Fk and c = a ∗ b.

2. All parties prepare two random degree-(n − 1) packed Shamir sharings of 0, de-
noted by [o(1)]n−1, [o(2)]n−1. In the multiplication protocol, these sharings are used
as random masks to protect the shares of honest parties.

• All parties also prepare the following sharings for the verification of the computation:
All parties prepare two random degree-(n − 1) packed Shamir sharings of 0, denoted by
[o(1)]n−1 and [o(2)]n−1. These two sharings are used to protect the shares of honest parties
when checking the correctness of multiplications.

The functionality Fprep-mal for the circuit independent preprocessing phase appears in Func-
tionality 14.4. The size of the preprocessing data among all parties in Fprep-mal is summarized as
follows:

• The sharing of the MAC key [γ]n−k: n elements.
• Per input gate: 4n/k elements.
• Per output gate: 5n/k elements.
• Per multiplication gate: 8n/k elements.
• For the verification of the computation: 2 · n elements.

147



Figure 14.4: Functionality Fprep-mal

Fprep-mal receives the set of corrupted parties, denoted by Corr. Fprep-mal samples a random
field element γ ∈ F and sets γ = (γ, γ, . . . , γ) ∈ Fk. Let d ∈ {n− k, n− 1}. We define the
following two procedures.
• RANDSHARING(r, d): Fprep-mal receives from the adversary a set of shares {rj}j∈Corr.

Then Fprep-mal samples a random degree-d packed Shamir sharing [r]d such that for all
Pj ∈ Corr, the j-th share of [r]d is rj . Finally, Fprep-mal distributes the shares of [r]d to
honest parties.

• AUTHSHARING(r): Fprep-mal receives from the adversary a set of shares
{(rj, uj)}j∈Corr. Then Fprep-mal computes two degree-(n − k) packed Shamir sharings
([r]n−k, [γ ∗ r]n−k) such that for all Pj ∈ Corr, the j-th shares of ([r]n−k, [γ ∗ r]n−k)
are rj, uj respectively. Finally, Fprep-mal distributes the shares of [[r]]n−k = ([r]n−k, [γ ∗
r]n−k) to honest parties.

The ideal functionality Fprep-mal runs the following steps.
1. Fprep-mal invokes RANDSHARING(γ, n− k) to prepare [γ]n−k.

2. For every group of k input gates and output gates:

(a) Fprep-mal samples a random vector r ∈ Fk and invokes AUTHSHARING(r) to
prepare [[r]]n−k.

(b) Fprep-mal samples a random vector ∆ ∈ Fk and invokes RANDSHARING(∆, n−k)
and RANDSHARING(∆ ∗ r, n− k) to prepare ([∆]n−k, [∆ ∗ r]n−k).

(c) For every group of k output gates, Fprep-mal invokes RANDSHARING(0, n− 1) to
prepare [o]n−1, where o = 0.

3. For every group of k multiplication gates:

(a) Fprep-mal samples two random vectors a, b ∈ Fk and computes c = a ∗ b. Then,
Fprep-mal invokes AUTHSHARING(a), AUTHSHARING(b), and AUTHSHAR-
ING(c) to prepare ([[a]]n−k, [[b]]n−k, [[c]]n−k).

(b) Fprep-mal invokes two times of RANDSHARING(0, n − 1) to prepare [o(1)]n−1,
[o(2)]n−1, where o(1) = o(2) = 0.

4. All parties prepare the following random sharings for the verification of the com-
putation: All parties invoke two times of RANDSHARING(0, n − 1) to prepare
[o(1)]n−1, [o

(2)]n−1, where o(1) = o(2) = 0.

14.3 Online Computation Phase

14.3.1 Input Layer

For a group of k input gates belonging to the same client, let x be the values associated with
these k input gates. Suppose pos are the positions associated with these k gates. The goal is
to compute an authenticated sharing [[x‖pos]]n−k. Recall that for every group of k input gates,
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all parties have prepared the random sharings [[r]]n−k, [∆]n−k, [∆ ∗ r]n−k in Fprep-mal, where
[[r]]n−k = ([r]n−k, [γ ∗ r]n−k). At a high-level, all parties first send the random sharing [r]n−k to
the client, and make use of the random sharings [∆]n−k, [∆ ∗ r]n−k to allow the client to verify
the correctness of the secret r. Then, the client samples a random degree-(k− 1) packed Shamir
sharing [x+ r]k−1 and distributes the shares to all parties. In this way, all parties can compute

[x]n−k = [x+ r]k−1 − [r]n−k

[γ ∗ x]n−1 = [x+ r]k−1 · [γ]n−k − [γ ∗ r]n−k

which is [[x]]n−1 = ([x]n−k, [γ ∗ x]n−1). Finally, all parties apply two times of TRAN-MAL to
transform [[x]]n−1 to [[x‖pos]]n−k. The description of INPUT-MAL appears in Protocol 14.5.

Figure 14.5: Protocol INPUT-MAL

1. Suppose x ∈ Fk is the input associated with the input gates which belongs to
Client. Also suppose pos are the positions associated with these gates. Let
[[r]]n−k, [∆]n−k, [∆ ∗ r]n−k be the random sharings prepared for these input gates in
Fprep-mal. Recall that [[r]]n−k = ([r]n−k, [γ ∗ r]n−k).

2. All parties send their shares of [r]n−k, [∆]n−k, [∆ ∗ r]n−k to Client.
3. Client checks whether the shares of [r]n−k, [∆]n−k, [∆ ∗ r]n−k form valid degree-

(n− k) packed Shamir sharings. If not, Client aborts. Otherwise, Client reconstructs
the secret r,∆,∆ ∗ r and checks the MAC of r, i.e., whether the third secret is equal
to the coordinate-wise multiplication of the first two secrets. If not, Client aborts.

4. If both checks pass, Client generates a random degree-(k − 1) packed Shamir sharing
of x+ r, denoted by [x+ r]k−1, and distributes the shares to all parties.

5. All parties locally compute

[x]n−k = [x+ r]k−1 − [r]n−k

[γ ∗ x]n−1 = [x+ r]k−1 · [γ]n−k − [γ ∗ r]n−k

and set [[x]]n−1 = ([x]n−k, [γ ∗ x]n−1).

6. Recall that β are the default positions for the packed Shamir secret sharing scheme.
All parties invoke TRAN-MAL on [x]n−k with (β, pos, I), where I is the identity map,
and obtain [x‖pos]n−k. All parties invoke TRAN-MAL on [γ ∗ x]n−1 with (β, pos, I)
and obtain [γ ∗ x‖pos]n−k.

7. All parties take [[x‖pos]]n−k = ([x‖pos]n−k, [γ ∗ x‖pos]n−k) as output.

14.3.2 Network Routing
We follow the same approach as that in our semi-honest protocol to realize network routing. To
obtain an authenticated degree-(n−k) packed Shamir sharing [[x]]n−k, we will apply the network
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routing protocol to compute each of ([x]n−k, [γ ∗ x]n−k). The description of NETWORK-MAL

appears in Protocol 14.6.

Figure 14.6: Protocol NETWORK-MAL

1. Suppose all parties want to prepare an authenticated degree-(n − k) packed Shamir
sharing of x stored at the default positions β.

2. Let x′1, x
′
2, . . . , x

′
`1

be the different wire values in x from previous
layers. Let c1, c2, . . . , c`2 be the constant values in x. Let x′ =
(x′1, . . . , x

′
`1
, c1, . . . , c`2 , 0, . . . , 0) ∈ Fk.

3. For all 1 ≤ i ≤ `1, let [[x(i)‖pos(i)]]n−k be the degree-(n − k) packed Shamir shar-
ing from some previous layer that contains the secret x′i stored at position pi. Let
p`1+1, . . . , pk be the first k − `1 distinct positions that are different from p1, . . . , p`1
and α1, . . . , αn. (In particular, pi ∈ {β1, . . . , βk} for all i ∈ {`1 + 1, . . . , k}.) Let
pos = (p1, . . . , pk).

4. Let ei be the i-th unit vector in Fk (i.e., only the i-th term is 1 and all other terms are
0). All parties locally compute a degree-(k − 1) packed Shamir sharing [ei‖pos]k−1.

5. All parties locally compute

[x′‖pos]n−1 =

`1∑
i=1

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k +

`2∑
i=1

ci · [e`1+i‖pos]k−1

[γ ∗ x′‖pos]n−1 =

`1∑
i=1

[ei‖pos]k−1 · [γ ∗ x(i)‖pos(i)]n−k

+

`2∑
i=1

ci · [e`1+i‖pos]k−1 · [γ]n−k

6. Let f : Fk → Fk be a linear map such that x = f(x′). Recall that β are the default
positions for the packed Shamir secret sharing scheme. All parties invoke TRAN-MAL

on [x′‖pos]n−1 with (pos,β, f) and obtain [x]n−k. All parties invoke TRAN-MAL on
[γ ∗ x′‖pos]n−1 with (pos,β, f) and obtain [γ ∗ x]n−k.

7. All parties take [[x]]n−k = ([x]n−k, [γ ∗ x]n−k) as output.

14.3.3 Evaluating Addition Gates and Multiplication Gates
Addition Gates. We follow the same approach as that in our semi-honest protocol to evaluate
addition gates. To obtain an authenticated degree-(n − k) packed Shamir sharing [[z‖pos]]n−k
(the output sharing), we will invoke TRAN-MAL two times to transform [[z]]n−k to [[z‖pos]]n−k.
The description of PACKED-ADD-MAL appears in Protocol 14.7.
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Figure 14.7: Protocol PACKED-ADD-MAL

1. Suppose [[x]]n−k, [[y]]n−k are the input packed Shamir sharings of the addition gates.

2. All parties locally compute [[z]]n−k = [[x]]n−k + [[y]]n−k.

3. Suppose pos are the positions associated with these k addition gates. Recall that β
are the default positions. All parties invoke TRAN-MAL on [z]n−k with (β, pos, I),
where I is the identity map, and obtain [z‖pos]n−k. All parties invoke TRAN-MAL on
[γ ∗ z]n−1 with (β, pos, I) and obtain [γ ∗ z‖pos]n−k.

4. All parties take [[z‖pos]]n−k = ([z‖pos]n−k, [γ ∗ z‖pos]n−k) as output.

Multiplication Gates. For a group of k multiplication gates, let [[x]]n−k, [[y]]n−k be the input
sharings. Recall that all parties have prepared the following random sharings in Fprep-mal:
• An authenticated packed Beaver triple: ([[a]]n−k, [[b]]n−k, [[c]]n−k).
• Three degree-(n− 1) packed Shamir sharings of 0: [o(1)]n−1, [o

(2)]n−1.
The goal is to compute an authenticated output sharing [[z‖pos]]n−k = [[x ∗ y‖pos]]n−k, where
pos are the positions associated with these k gates. We follow a similar approach as that in our
semi-honest protocol. The first difference is that, all parties will use [o(1)]n−1, [o

(2)]n−1 to refresh
their shares when letting P1 reconstructs x + a and y + b. The second difference is that P1

not only needs to distribute degree-(k − 1) packed Shamir sharings of x + a,y + b, but also a
degree-(k − 1) packed Shamir sharing of (x + a) · (y + b). In this way, all parties can locally
compute an authenticated degree-(n− 1) packed Shamir sharing of z = x ∗ y. The correctness
of the sharings distributed by P1 will be checked later. Finally, we will invoke TRAN-MAL two
times to transform [[z]]n−1 to [[z‖pos]]n−k.

The description of PACKED-MULT-MAL appears in Protocol 14.8.

14.3.4 Output Layer
For a group of k output gates belonging to the same client, let x ∈ Fk be the values associated
with these k output gates. All parties hold [[x]]n−k. Let [[r]]n−k, ([∆]n−k, [∆ ∗ r]n−k), [o]n−1 be
the random sharings prepared for these k output gates in Fprep-mal. To reconstruct the secret x to
the client:

1. All parties send to P1 their shares of [x+ r]n−1 := [o]n−1 + [x]n−k + [r]n−k.

2. P1 reconstructs x+r and distributes a degree-(2k−2) packed Shamir sharing [x+r]2k−2.
Before reconstructing the secret to the client, all parties verify the correctness of the computation.

Verification of the Computation. To check the correctness of the computation, it is sufficient
to verify the following points:

1. For Input Phase:
• Each degree-(k − 1) packed Shamir sharing distributed by a client is a valid degree-

(k − 1) packed Shamir sharing.
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Figure 14.8: Protocol PACKED-MULT-MAL

1. Suppose [[x]]n−k, [[y]]n−k are the input packed Shamir sharings of the multiplication
gates. All parties will use the following random sahrings prepared in the preprocessing
phase
• An authenticated packed Beaver triple: ([[a]]n−k, [[b]]n−k, [[c]]n−k).
• Three degree-(n− 1) packed Shamir sharings of 0: [o(1)]n−1, [o

(2)]n−1.

2. All parties locally compute [x+a]n−1 = [o(1)]n−1 + [x]n−k + [a]n−k and [y+b]n−1 =
[o(2)]n−1 + [y]n−k + [b]n−k.

3. The first party P1 collects the whole sharings [x + a]n−1, [y + b]n−1 and reconstructs
the secrets x + a,y + b. Then, P1 computes (x + a) · (y + b) and the sharings
[x+a]k−1, [y+b]k−1, [(x+a) · (y+b)]k−1. Finally, P1 distributes the shares to other
parties.

4. All parties locally compute

[z]n−1 = [(x+ a) · (y + b)]k−1 − [x+ a]k−1 · [b]n−k
−[y + b]k−1 · [a]n−k + [c]n−k

[γ ∗ z]n−1 = [γ]n−k · [(x+ a) · (y + b)]k−1 − [x+ a]k−1 · [γ ∗ b]n−k
−[y + b]k−1 · [γ ∗ a]n−k + [γ ∗ c]n−k

and set [[z]]n−1 = ([z]n−1, [γ ∗ z]n−1).

5. Suppose pos are the positions associated with these k multiplication gates. Recall that
β are the default positions. All parties invoke TRAN-MAL on [z]n−1 with (β, pos, I),
where I is the identity map, and obtain [z‖pos]n−k. All parties invoke TRAN-MAL on
[γ ∗ z]n−1 with (β, pos, I) and obtain [γ ∗ z‖pos]n−k.

6. All parties take [[z‖pos]]n−k = ([z‖pos]n−k, [γ ∗ z‖pos]n−k) as output.

• All parties obtain correct [[x‖pos]]n−k from [[x]]n−1 when using TRAN.

2. For Network Routing: All parties obtain correct [[x]]n−k from [[x′‖pos]]n−1 when using
TRAN.

3. For Addition Gates: All parties obtain a correct output sharing [[z‖pos]]n−k from [[z]]n−k
when using TRAN.

4. For Multiplication Gates:
• [x + a]k−1, [y + b]k−1, [(x + a) · (y + b)]k−1 are valid degree-(k − 1) packed

Shamir sharings. The first two secrets are identical to the secrets of [[x + a]]n−k =
[[x]]n−k + [[a]]n−k and [[y + b]]n−k = [[y]]n−k + [[b]]n−k, and the third secret is equal to
the coordinate-wise multiplication between the first two secrets.

• All parties obtain a correct output sharing [[z‖pos]]n−k from [[z]]n−1 when using
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TRAN.

5. For Output Gates: The secret of [x + r]2k−2 is identical to the secret of [[x + r]]n−k =
[[x]]n−k + [[r]]n−k.

We will use an ideal functionality Fcom that allows all parties to commit their values. The
description of Fcom appears in Functionality 14.9. It has been shown in [30] that Fcom can be
realized with the cost of 2n2 + n elements of preprocessing data and 4n2 elements of communi-
cation.

Figure 14.9: Functionality Fcom

1. On input (Commit, v, i, τv) by Pi,Fcom stores (v, i, τv) and outputs (i, τv) to all parties,
where τv represents a handle for the commitment.

2. On input (Open, i, τv) by Pi, Fcom outputs (v, i, τv) to all parties if exists, or abort
otherwise.

We will first verify that all degree-(k − 1) packed Shamir sharings are valid.

Verification of Degree-(k−1) Packed Shamir Sharings. The verification is done by comput-
ing a random linear combination of all degree-(k − 1) packed Shamir sharings and checking the
correctness of the resulting degree-(k−1) packed Shamir sharing by each party. Note that we do
not need to protect the secrecy of these sharings since they are generated by P1 or a client, who
can be corrupted. The description of CHECK-CONSISTENCY appears in Protocol 14.10. Recall
that the cost of Fcom is 2n2 + n elements of preprocessing data and 4n2 elements of communi-
cation. The total cost of CHECK-CONSISTENCY is 2n3 + n2 elements of preprocessing data and
4n3 + n2 elements of communication.
Lemma 14.2. If there exists i ∈ {1, 2, . . . ,m} such that the shares of [x(i)]k−1 of honest parties
do not correspond to a valid degree-(k − 1) packed Shamir sharing, with probability at least
1−m/|F|, all honest parties abort in CHECK-CONSISTENCY.

Proof. By Fcom, all parties obtain a uniform element λ in Step 3. Consider the polynomial

[F (λ)]k−1 = [x(1)]k−1 + [x(2)]k−1 · λ+ . . .+ [x(m)]k−1 · λm−1.

By Lagrange interpolation, for any m different points λ(1), λ(2), . . . , λ(m), there is a one-to-one
linear map from {[F (λ(i))]k−1}mi=1 to {[x(i)]k−1}mi=1. Thus, if there exists i ∈ {1, 2, . . . ,m} such
that the shares of [x(i)]k−1 of honest parties do not correspond to a valid degree-(k − 1) packed
Shamir sharing, then the number of λ ∈ F such that the shares of [F (λ)]k−1 of honest parties
correspond to a valid degree-(k − 1) packed Shamir sharing is bounded by m − 1. Since λ is a
uniform element in F, the probability of sampling such a λ is bounded by (m− 1)/|F| ≤ m/|F|.
Note that for every λ where the shares of [F (λ)]k−1 of honest parties do not correspond to a valid
degree-(k−1) packed Shamir sharing, all honest parties will abort since they will always receive
the correct shares of honest parties. Thus, the lemma holds.
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Figure 14.10: Protocol CHECK-CONSISTENCY

1. Let m be the number of degree-(k− 1) packed Shamir sharings that all parties need to
check. These m sharings are denoted by

[x(1)]k−1, [x
(2)]k−1, . . . , [x

(m)]k−1.

2. Each party Pi samples a random field element λi ∈ F and invokes Fcom with
(Commit, λi, i, τλi).

3. Each party Pi invokes Fcom with (Open, i, τλi). All parties set λ = λ1 +λ2 + . . .+λn.

4. All parties locally compute

[x]k−1 = [x(1)]k−1 + [x(2)]k−1 · λ+ . . .+ [x(m)]k−1 · λm−1.

5. All parties send their shares of [x]k−1 to all other parties. Then each party Pi checks
whether the shares of [x]k−1 form a valid degree-(k − 1) packed Shamir sharing. If
not, Pi aborts. Otherwise, Pi accepts.

Verification of the Secrets of Degree-(2k − 2) Packed Shamir Sharings. In this part, for a
pair of sharings ([x]2k−2, [[x]]n−k), we want to verify that the secret of [x]2k−2 is identical to that
authenticated in [[x]]n−k. We assume that we do not need to protect the privacy of the secret.

This can be used to verify the secrets of [x+ a]k−1, [y + b]k−1 for multiplication gates (note
that we can always view a degree-(k − 1) packed Shamir sharing as a degree-(2k − 2) packed
Shamir sharing), and the secret of [x + r]2k−2 for output gates. Also for the correctness of
[(x + a) · (y + b)]k−1, note that [(x + a) · (y + b)]k−1 − [x + a]k−1 · [y + b]k−1 should be a
degree-(2k−2) packed Shamir sharing of 0. We can also verify the secret of [(x+a)·(y+b)]k−1.

At a high-level, we simply compute a random linear combination of all pairs of random
sharings and then reconstruct the resulting pair of sharings. The verification protocol will use the
two degree-(n − 1) packed Shamir sharings of 0, [o(1)]n−1 and [o(2)]n−1, prepared in Fprep-mal.
The description of CHECK-SECRET appears in Protocol 14.11. Recall that the cost of Fcom is
2n2 + n elements of preprocessing data and 4n2 elements of communication. The total cost
of CHECK-SECRET is 8n3 + 4n2 elements of preprocessing data and 16n3 + n2 elements of
communication.

Informally, the effectiveness of CHECK-SECRET comes from the following two points:
• For all i ∈ {1, 2, . . . ,m}, corrupted parties cannot change the secret of [u(i)]2k−2 and the

secret authenticated by [[u(i)]]n−k. The former is because the secret of a degree-(2k − 2)
packed Shamir sharing is determined by the shares of honest parties. The latter is due to
the security of the information-theoretic MAC.

• If there exists i ∈ {1, 2, . . . ,m} such that the secret of [u(i)]2k−2 is different from the
secret authenticated by [[u(i)]]n−k, with overwhelming probability (when the underlying
field F is large enough), the secret of [u]2k−2 is different from the secret authenticated by
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Figure 14.11: Protocol CHECK-SECRET

1. Let {([u(i)]2k−2, [[u
(i)]]n−k)}mi=1 be them pairs of sharings that all parties want to check.

Let [o(1)]n−1, [o
(2)]n−1 be the random degree-(n − 1) packed Shamir sharings of 0

prepared in Fprep-mal, and [γ]n−k be the degree-(n − k) packed Shamir sharing of the
authentication key prepared in Fprep-mal.

2. Each party Pi samples a random field element λi ∈ F and invokes Fcom with
(Commit, λi, i, τλi).

3. Each party Pi invokes Fcom with (Open, i, τλi). All parties set λ = λ1 +λ2 + . . .+λn.

4. All parties locally compute

[u]2k−2 = [u(1)]2k−2 + [u(2)]2k−2 · λ+ . . .+ [u(m)]2k−2 · λm−1,

[u]n−1 = [o(1)]n−1 + [u(1)]n−k + [u(2)]n−k · λ+ . . .+ [u(m)]n−k · λm−1,

[γ ∗ u]n−1 = [o(2)]n−1 + [γ ∗ u(1)]n−k + [γ ∗ u(2)]n−k · λ+ . . .

+[γ ∗ u(m)]n−k · λm−1.

5. All parties send their shares of [u]2k−2 to all other parties. All parties also commit their
shares of [u]n−1, [γ ∗ u]n−1, [γ]n−k using Fcom.

6. All parties open their shares of [u]n−1, [γ ∗ u]n−1, [γ]n−k using Fcom. Then each party
Pi checks the following:

(a) The shares of [u]2k−2 form a valid degree-(2k − 2) packed Shamir sharing.

(b) The shares of [γ]n−k form a valid degree-(n− k) packed Shamir sharing and the
secret γ is in the form of (γ, γ, . . . , γ) ∈ Fk.

(c) The secrets of [u]n−1, [γ ∗ u]n−1, [γ]n−k satisfy that the second secret is equal to
the coordinate-wise multiplication of the first secret and the third secret.

(d) The secret of [u]2k−2 is the same as the secret of [u]n−1.

If all checks pass, Pi accepts. Otherwise, Pi aborts.

[[u]]n−1 = ([u]n−1, [γ ∗ u]n−1).
The formal argument is deferred to the final proof of the whole protocol.

Security of TRAN. In the final proof of the whole protocol, we will show that what an ad-
versary can do in TRAN is to insert an additive error to the secret of the resulting sharing.
Since we obtain [[f(x)‖pos]]n−k from [[x‖pos]]n−1 by invoking TRAN on [x‖pos]n−1 and [γ ∗
x‖pos]n−1 separately, by the security of the information-theoretic MAC, any additive errors in-
serted by the adversary will lead to an invalid authenticated degree-(n−k) packed Shamir sharing
[[f(x)‖pos]]n−k with overwhelming probability. Such attacks can be detected when verifying that
the reconstruction of the authenticated sharings when evaluating multiplication gates and output
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gates are correct, which is covered by Protocol CHECK-SECRET.

Reconstructing the Output. After all parties verify the computation, they reconstruct the
function output to the clients. For a group of k output gates belonging to the same client,
let x ∈ Fk be the values associated with these k output gates. All parties hold [[x]]n−k. Let
[[r]]n−k, ([∆]n−k, [∆ ∗ r]n−k), [o]n−1 be the random sharings prepared for these k output gates
in Fprep-mal. Recall that all parties have obtained a degree-(2k − 2) packed Shamir sharing
[x+ r]2k−2. To reconstruct the secret x to the client:

1. All parties send their shares of [x + r]2k−2 to the client to allow him to reconstruct the
secret x+ r.

2. All parties send their shares of [r]n−k, [∆]n−k, [∆ ∗ r]n−k to the client to allow him to
reconstruct and verify the secret r.

Finally, the client can compute x = (x + r) − r. The description of OUTPUT-MAL appears in
Protocol 14.12.

Figure 14.12: Protocol OUTPUT-MAL

1. Suppose x ∈ Fk is the output associated with the output gates which belongs to Client.
Let [[r]]n−k, ([∆]n−k, [∆ ∗ r]n−k), [o]n−1 be the random sharings prepared for these
output gates in Fprep-mal. Recall that [[r]]n−k = ([r]n−k, [γ ∗ r]n−k). All parties hold
[x+ r]2k−2 at the beginning of the protocol.

2. All parties send their shares of [x+ r]2k−2, [r]n−k, [∆]n−k, [∆ ∗ r]n−k to Client.
3. Client checks whether the shares of [x + r]2k−2 form a valid degree-(2k − 2) packed

Shamir sharing. If not, Client aborts. Otherwise, Client reconstructs the secret x+ r.

4. Client checks whether the shares of [r]n−k, [∆]n−k, [∆ ∗ r]n−k form valid degree-
(n− k) packed Shamir sharings. If not, Client aborts. Otherwise, Client reconstructs
the secret r,∆,∆ ∗ r and checks the MAC of r, i.e., whether the third secret is equal
to the coordinate-wise multiplication of the first two secrets. If not, Client aborts.

5. If all checks pass, Client computes x = (x+ r)− r.

14.4 Main Protocol

Now we are ready to introduce the main protocol. We restate the ideal functionality Fmain-mal

below. The description of PACKED-MAIN-MAL appears in Protocol 14.13.
Lemma 14.3. For all k ≤ (n+2)/3, Protocol PACKED-MAIN-MAL securely computesFmain-mal

in the {Fprep-mal, Frand-sharing-mal,Fcom}-hybrid model against a fully malicious adversary who
controls t = n− 2k + 1 parties.
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Figure 7.11: Functionality Fmain-mal

1. Fmain-mal receives from all clients their inputs.

2. Fmain-mal evaluates the circuits and computes the output. Fmain-mal first sends the output
of corrupted clients to the adversary.
• If the adversary replies continue, Fmain-mal distributes the output to honest

clients.
• If the adversary replies abort, Fmain-mal sends abort to honest clients.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors
of honest parties. Let Corr denote the set of corrupted parties and H denote the set of honest
parties.

Throughout the simulator, S will keep tracking the shares that should be held by corrupted
parties. We will maintain the invariant that for all degree-(2k − 2) packed Shamir sharings
(including degree-(k − 1) packed Shamir sharings), S will learn the whole sharings and their
secrets. For every authenticated degree-(n − k) packed Shamir sharing [[x‖pos]]n−k, S will
compute a pair of vectors, which are the additive errors to the secret and its MAC due to the
behaviors of corrupted parties.

Simulation of PACKED-MAIN-MAL. In the preprocessing phase, S emulates the functional-
ity Fprep-mal and receives the shares of corrupted parties.

Simulating the Input Phase. In Step 3, for every group of k input gates of Clienti, S simu-
lates INPUT-MAL. In Step 1 of INPUT-MAL, recall that S has learnt the shares of [[r]]n−k, ([∆]n−k,
[∆ ∗ r]n−k) of corrupted parties when emulating Fprep-mal. Starting from Step 2 of INPUT-MAL,
there are two cases:

• If Clienti is honest, in Step 2, S receives the shares of [r]n−k, [∆]n−k, [∆ ∗ r]n−k of cor-
rupted parties.
In Step 3, for each sharing [p]n−k ∈ {[r]n−k, [∆]n−k, [∆ ∗ r]n−k}, S computes a sharing
[δ(p)]n−k which is defined as follows:

1. The shares of all honest parties are set to be 0.
2. For each corrupted party Pj , the j-th share is equal to the j-th share of [p]n−k received

from Pj minus the same share that Pj should hold.
S checks whether [δ(p)]n−k is a valid degree-(n − k) packed Shamir sharing of 0. If not,
S aborts on behalf of Clienti.
Otherwise, in Step 4, S generates a random vector as x + r and honestly follows the
protocol by generating a random degree-(k − 1) packed Shamir sharing [x + r]k−1 and
distributing the shares to corrupted parties.
In Step 5, S computes the shares of [[x]]n−1 held by corrupted parties.

• If Clienti is corrupted, in Step 2, S samples two random vectors r,∆ and computes the
whole sharings [r]n−k, [∆]n−k, [∆ ∗ r]n−k. Then S sends the shares of honest parties to
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Figure 14.13: Protocol PACKED-MAIN-MAL

1. Preprocessing Phase. All parties invoke Fprep-mal to prepare correlated randomness
for the online phase.

2. Initialization. Let α1, . . . , αn be distinct field elements in F which are used for the
shares of all parties in packed Shamir secret sharing schemes. Let β1, . . . , β|C| be |C|
distinct field elements that are different from α1, . . . , αn. Let β = (β1, . . . , βk) be the
default positions for the packed Shamir secret sharing schemes. We associate the field
element βi with the i-th gate in C.

3. Input Phase. Let Client1, . . . ,Clientc denote the clients who provide inputs. All input
gates are divided into groups of size k based on the input holders. For every group of
k input gates of Clienti, suppose x are the inputs, and pos = (p1, . . . , pk) are the
positions associated with these k gates. All parties and Clienti invokes INPUT-MAL to
obtain [[x‖pos]]n−k.

4. Evaluation Phase. All parties evaluate the circuit layer by layer as follows:

(a) For the current layer, all gates are divided into groups of size k based on their
types (i.e., multiplication gates or addition gates). For each group of k gates, let
x,y be the inputs of all gates. All parties invoke NETWORK-MAL to prepare
[[x]]n−k and [[y]]n−k.

(b) For each group of k gates, let pos be the positions associated with these k gates.
For addition gates, all parties invoke PACKED-ADD-MAL on ([[x]]n−k, [[y]]n−k),
and obtain [[z‖pos]]n−k. For multiplication gates, all parties invoke PACKED-
MULT-MAL on ([[x]]n−k, [[y]]n−k) and obtain [[z‖pos]]n−k.

5. Output Phase. All output gates are divided into groups of size k based on the output
receiver. For every group of k output gates of Clienti, suppose x are the inputs. All
parties invoke the protocol NETWORK-MAL to prepare [[x]]n−k. Then, all parties run
the following steps.

(a) Let [[r]]n−k, ([∆]n−k, [∆ ∗ r]n−k), [o]n−1 be the random sharings prepared for
these k output gates inFprep-mal. All parties send to P1 their shares of [x+r]n−1 :=
[o]n−1 + [x]n−k + [r]n−k.

(b) P1 reconstructs x + r and distributes a degree-(2k − 2) packed Shamir sharing
[x+ r]2k−2.

Now all parties verify the computation. (1) All parties invoke CHECK-CONSISTENCY

to check the correctness of all degree-(k − 1) packed Shamir sharings. (2) All parties
invoke CHECK-SECRET to check the correctness of the secrets of the degree-(2k − 2)
(including degree-(k − 1)) packed Shamir sharings generated by P1.
If all parties accept the verification, all parties and Clienti invoke OUTPUT to recon-
struct the output x to Clienti.
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Clienti on behalf of honest parties.
In Step 4, S receives from Clienti the shares of [x + r]k−1 of honest parties. S checks
whether the shares of [x+r]k−1 held by honest parties form a valid degree-(k− 1) packed
Shamir sharing. If true, S recovers the whole sharing [x+r]k−1, reconstructs the secret of
[x+ r]2k−2, and computes x = (x+ r)− r. Otherwise, S sets the shares of [x+ r]k−1 of
corrupted parties to be all 0 and sets x = 0. In this case, S will abort during the verification
of degree-(k − 1) packed Shamir sharings.
In Step 5, S computes the shares of [[x]]n−1 held by corrupted parties.

In Step 6 of INPUT MAL, S simulates TRAN-MAL. The simulation is done as follows:

1. In Step 2, S emulates the ideal functionality Frand-sharing-mal and receives the shares of
corrupted parties and the additive error d. Suppose these two sharings are denoted by
([r‖pos]n−1, [f(r) + d‖pos′]n−k).

2. In Step 3, S generates a random degree-(n− 1) packed Shamir sharing as [x+ r‖pos]n−1

based on the shares held by corrupted parties. S reconstructs the secret x+r and computes
f(x+ r).

3. In Step 4, S honestly follows the protocol and learns the shares of [f(x + r)‖pos′]2k−2

of honest parties. Since it is a degree-(2k − 2) packed Shamir sharing, S recovers the
whole sharing by using honest parties’ shares. Then S reconstructs the secret f(x+ r) (to
distinguish from the correct secret).

4. In Step 5, S computes the shares of the resulting sharing held by corrupted parties. Note
that the resulting sharing has secret f(x+ r)− (f(r) +d). On the other hand, the correct
secret should be f(x). Therefore, effectively, the adversary inserts an additive error

δ = (f(x+ r)− (f(r) + d))− f(x) = f(x+ r)− f(x+ r)− d.

Note that S learns f(x+ r), f(x+ r),d. S computes the error δ.

Let δ1, δ2 be the additive errors in the invocation of TRAN-MAL on [x]n−1 and the invocation of
TRAN-MAL on [γ ∗ x]n−1. We associate (δ1, δ2) with the authenticated sharing [[x‖pos]]n−k.
S invokes the ideal functionality Fmain-mal and sends to Fmain-mal the input of corrupted parties

extracted above. Then S receives the output of corrupted parties from Fmain-mal.
Simulating the Evaluation Phase. In Step 4.(a), S simulates NETWORK-MAL.

1. The first 5 steps only involve local computation. S computes the shares of ([x′‖pos]n−1, [γ∗
x′‖pos]n−1) held by corrupted parties. For all i ∈ {1, 2, . . . , `1}, each value x′i is in
the authenticated degree-(n − k) packed Shamir sharing [[x(i)‖pos(i)]]n−k. Recall that for
every authenticated degree-(n − k) packed Shamir sharing, S has computed a pair of
vectors, which are the additive errors to the secret and its MAC due to the behaviors of
corrupted parties. S extracts the errors associated with the value x′i and its MAC for all
i ∈ {1, 2, . . . , `1}. Then, for all i > `1, S sets the errors associated with the value x′i and
its MAC to be 0. In this way, S obtains two vectors (δ′1, δ

′
2), which are the additive errors

to the secrets of ([x′‖pos]n−1, [γ ∗ x′‖pos]n−1).
2. In Step 6, S simulates TRAN-MAL as described above, and extracts the additive errors
δ′′1 , δ

′′
2 in the invocation of TRAN-MAL on [x′‖pos]n−1 and the invocation of TRAN-MAL
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on [γ ∗ x′‖pos]n−1. Then the additive errors associated with the authenticated sharing
[[x]]n−k are (f(δ′1) + δ′′1 , f(δ′2) + δ′′2).

In Step 4.(b), for each group of addition gates with input sharings [[x]]n−k and [[y]]n−k, S
simulates PACKED-ADD-MAL.

1. In Step 2, S computes the shares of [[z]]n−k held by corrupted parties. The vector of additive
errors associated with [[z]]n−k are the sum of the vectors of additive errors associated with
[[x]]n−k and [[y]]n−k. Suppose the vector of additive errors associated with [[z]]n−k is denoted
by (δ′1, δ

′
2).

2. In Step 3, S simulates TRAN-MAL as described above, and extracts the additive errors
δ′′1 , δ

′′
2 in the invocation of TRAN-MAL on [z]n−k and the invocation of TRAN-MAL on

[γ ∗ z]n−k. Then the additive errors associated with the authenticated sharing [[z‖pos]]n−k
are (δ′1 + δ′′1 , δ

′
2 + δ′′2).

For each group of multiplication gates with input sharings [[x]]n−k and [[y]]n−k, S simulates
PACKED-MULT-MAL.

1. In Step 2 of PACKED-MULT-MAL, S computes the shares of [x + a]n−1, [y + b]n−1 of
corrupted parties and sets the shares of [x + a]n−1, [y + b]n−1 of honest parties to be
uniform elements. Then S reconstructs the secrets x+ a and y + b.

2. In Step 3 of PACKED-MULT-MAL, since the whole sharings [x + a]n−1, [y + b]n−1 have
been generated, S honestly follows the protocol. At the end of Step 3 of PACKED-MULT-
MAL, S receives the shares of [x + a]k−1, [y + b]k−1, [(x + a) · (y + b)]k−1 of honest
parties from P1 (which is either honestly simulated by S or controlled by the adversary).
S checks whether the shares of [x + a]k−1, [y + b]k−1, [(x + a) · (y + b)]k−1 of honest
parties form valid degree-(k − 1) packed Shamir sharings.
• If true, S recovers the whole sharings [x+ a]k−1, [y + b]k−1, [(x+ a) · (y + b)]k−1

using the shares of honest parties and then reconstructs the secrets x+ a,y + b, and
(x+ a) · (y + b). Then S computes three vectors

η(1) = (x+ a)− (x+ a)

η(2) = (y + b)− (y + b)

η(3) = (x+ a) · (y + b)− (x+ a)) · (y + b)

• Otherwise, S sets the shares of [x + a]k−1, [y + b]k−1 of corrupted parties to be all
0. In this case, S will abort during the verification of degree-(k − 1) packed Shamir
sharings.

3. In Step 4 of PACKED-MULT-MAL, S computes the shares of [z]n−1, [γ∗z]n−1 of corrupted
parties.

4. In Step 5, S simulates TRAN-MAL as described above, and extracts the additive errors
δ1, δ2 in the invocation of TRAN-MAL on [z]n−1 and the invocation of TRAN-MAL on
[γ ∗ z]n−1. Then the additive errors associated with the authenticated sharing [[z‖pos]]n−k
are (δ1, δ2).
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Simulating the Output Phase. For every group of k output gates of Clienti, suppose x are
the inputs. S first simulates NETWORK-MAL as described above and compute the additive errors
associated with the authenticated degree-(n− k) Shamir sharing [[x]]n−k.

In Step 5.(a), S computes the shares of [x+ r]n−1 of corrupted parties and sets the shares of
[x+ r]n−1 of honest parties to be uniform elements. Then S reconstructs the secrets x+ r.

In Step 5.(b), S honestly follows the protocol and learns the shares of [x + r]2k−2 held by
honest parties. S recovers the whole sharings [x + r]2k−2 using the shares of honest parties and
then reconstructs the secrets x+ r. Then S computes η = x+ r − (x+ r).

Then S simulates the verification process. For CHECK-CONSISTENCY,

1. In Step 2, for each honest party Pi, S emulates Fcom by outputting (i, τλi) to all parties.
For each corrupted party Pi, S honestly emulates Fcom and learns λi.

2. In Step 3, without loss of generality, assume that Pn is an honest party. S samples a random
element as λ. For each honest party Pi 6= Pn, S samples a random element as λi. Then
λn is set to be λ −

∑n−1
i=1 λi. For each honest party Pi, S emulates Fcom by outputting

(λi, i, τλi). For each corrupted party Pi, S honestly emulates Fcom.
3. Recall that for all degree-(k − 1) packed Shamir sharings generated in PACKED-MULT-

MAL, S has already learnt the shares of honest parties. Therefore, S honestly follows the
rest of steps in CHECK-CONSISTENCY. If no party aborts at the end of PACKED-MULT-
MAL but there exists a degree-(k−1) packed Shamir sharing such that the shares of honest
parties do not form a valid degree-(k − 1) packed Shamir sharing, S aborts.

For CHECK-SECRET,

1. In Step 1, a pair of sharings ([u(i)]2k−2, [[u
(i)]]n−k) may come from three places:

• It may be ([x + a]k−1, [[x + a]]n−k) in PACKED-MULT-MAL. In this case, S has
computed the error η(1) which is the secret of [x + a]k−1 minus the secret of [[x +
a]]n−k. Note that, S learns the secrets of both sharings.

• It may be ([(x+a) ·(y+b)]k−1− [x+a]k−1 · [y+b]k−1, 0) in PACKED-MULT-MAL,
where the second sharing is all-0 sharing. In this case, S has computed the error η(3),
which is the secret of [(x+ a) · (y + b)]k−1 − [x+ a]k−1 · [y + b]k−1. Note that, S
learns the secrets of both sharings.

• It may be ([x + r]k−1, [[x + r]]n−k) in Step 5 of PACKED-MAIN-MAL. In this case,
S has computed the error η which is the secret of [x + r]k−1 minus the secret of
[[x+ r]]n−k. Note that, S learns the secrets of both sharings.

Thus, in any case, S learns the secrets of both sharings. S also learns the shares held by
corrupted parties, and the additive errors associated with [[u(i)]]n−k.

2. In Step 2 and Step 3, S emulates the ideal functionality Fcom in the same way as that in
CHECK-CONSISTENCY.

3. In Step 4,
• S computes the whole sharing [u]2k−2 and the secret u
• S computes the shares of [u]n−1 held by corrupted parties, and the secret u. Then S

randomly samples the shares of honest parties based on the secret u and the shares
of corrupted parties.
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• S samples a random element as γ and sets γ = (γ, γ, . . . , γ) ∈ Fk. Then S computes
the shares of [γ]n−k based on the secret γ and the shares of corrupted parties.

• S computes the shares of [γ ∗ u]n−1 held by corrupted parties. Recall that S has
computed a vector of additive errors for each [[u(i)]]n−k, denoted by (δ

(i)
1 , δ

(i)
2 ). S

computes the additive errors to ([u]n−1, [γ ∗ u]n−1), denoted by (δ1, δ2). Then S
computes the secret of [γ ∗ u]n−1 by γ ∗ u = γ ∗ u + δ2 − γ ∗ δ1. S randomly
samples the shares of [γ ∗ u]n−1 of honest parties based on the secret γ ∗ u and the
shares of corrupted parties.

4. In Step 5 and Step 6, since the whole sharings [u]2k−2, [u]n−1, [γ ∗u]n−1, [γ]n−k have been
generated, S honestly follows the protocol and honestly emulates Fcom. If no party aborts
at the end of CHECK-SECRET but the following case occurs, S aborts.
• There exists ([u(i)]2k−2, [[u

(i)]]n−k) such that their secrets do not satisfy

ū(i) = u(i) − δ(i)
1 .

After the verification, S simulates OUTPUT-MAL.

1. If Clienti is corrupted, S learns the output x from Fmain-mal. Recall that S learns the whole
sharing of [x + r]2k−2 and the secret x + r. S computes r = (x + r) − x. Then S
recovers the whole sharing [r]n−k using the secret r and the shares of corrupted parties. S
samples a random vector as ∆ and computes ∆ ∗ r. Then S recovers the whole sharings
[∆]n−k, [∆ ∗ r]n−k using the secrets ∆,∆ ∗ r and the shares of corrupted parties.
Since the whole sharings [x + r]2k−2, [r]n−k, [∆]n−k, [∆ ∗ r]n−k have been generated, S
honestly follows the protocol.

2. If Clienti is honest, S receives the shares of [x + r]2k−2, [r]n−k, [∆]n−k, [∆ ∗ r]n−k of
corrupted parties. For [x + r]2k−2, if the shares received from corrupted parties are not
equal to the shares that corrupted parties should hold, S aborts on behalf of Clienti.
For each sharing [p]n−k ∈ {[r]n−k, [∆]n−k, [∆ ∗ r]n−k}, S computes a sharing [δ(p)]n−k
which is defined as follows:

(a) The shares of all honest parties are set to be 0.
(b) For each corrupted party Pj , the j-th share is equal to the j-th share of [p]n−k received

from Pj minus the same share that Pj should hold.
S checks whether [δ(p)]n−k is a valid degree-(n − k) packed Shamir sharing of 0. If not,
S aborts on behalf of Clienti.

This completes the description of the simulator S.

Hybrid Argument. Now we show that S perfectly simulates the behaviors of honest parties
with overwhelming probability. Consider the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S simulates CHECK-CONSISTENCY. Compared with Hybrid0,

there are two changes:

• The functionality Fcom is emulated by S and the random element λ is chosen by S. Note
that in Hybrid0, corrupted parties only receive from Fcom (i, τλi) for each honest party in
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Step 2 of CHECK-CONSISTENCY. Therefore, for each corrupted party Pi, the value λi is
independent of the values of honest parties. It means that the element λ computed in Step
3 of CHECK-CONSISTENCY is uniformly random. In Hybrid1, S simply outputs (i, τλi)
on behalf of Fcom for each honest party in Step 2 of CHECK-CONSISTENCY. Then S
samples a random element λ and then samples the value λi for each honest party such that
the summation of all λi’s is λ. Therefore, the distribution of these two steps is identical to
that in Hybrid0.

• S will abort if no party aborts in CHECK-CONSISTENCY but there exists a degree-(k − 1)
packed Shamir sharing such that the shares of honest parties do not form a valid degree-
(k − 1) packed Shamir sharing. By Lemma 14.2, it happens with probability at most
m/|F|.

Recall that |F| ≥ 2κ, where κ is the security parameter. Therefore, the distribution of Hybrid1 is
statistically close to the distribution of Hybrid0.

Hybrid2: In this hybrid, S computes the shares that corrupted parties should hold as de-
scribed above. For each authenticated degree-(n− k) packed Shamir sharing, S also computes a
pair of vectors, which are the additive errors to the secret and its MAC. For each degree-(2k− 2)
(including degree-(k − 1)) packed Shamir sharing, S computes the whole sharing by using the
shares of honest parties. Note that we do not change the way that S simulates the behaviors of
honest parties. Therefore the distribution of Hybrid2 is identical to the distribution of Hybrid1.

Hybrid3: In this hybrid, S simulates CHECK-SECRET (including the simulation of the au-
thentication key). Compared with Hybrid2, there are three changes:

• The functionality Fcom is simulated by S and the random element λ is chosen by S. Fol-
lowing the same argument as that in Hybrid1, the distribution of these two steps is identical
to that in Hybrid2.

• S samples a random element as γ and sets γ = (γ, γ, . . . , γ). Then S computes the shares
of [γ]n−k of honest parties based on the secret and the shares of corrupted parties.
In Hybrid2, we argue that the messages that honest parties send to corrupted parties be-
fore CHECK-SECRET are independent of the shares of [γ]n−k held by honest parties. The
messages sent from honest parties to corrupted parties have 3 different kinds:

The shares of a random degree-(n − k) packed Shamir sharing of honest parties
directly learnt from Fprep-mal. This kind includes Step 2 of INPUT-MAL.
The shares of a random degree-(n−1) packed Shamir sharing of honest parties, which
are uniformly random field elements. This kind includes Step 3 of TRAN-MAL, the
first half of Step 3 of PACKED-MULT-MAL, and Step 5.(a) of PACKED-MAIN-MAL.
The degree-(2k−2) (including degree-(k−1)) packed Shamir sharings whose secrets
are uniformly random. This kind includes Step 4 of TRAN-MAL, Step 4 of INPUT-
MAL, the second half of Step 3 of PACKED-MULT-MAL, and Step 5.(b) of PACKED-
MAIN-MAL.
The linear combinations of shares of degree-(k − 1) packed Shamir sharings that are
directly received from other parties. This kind includes Step 5 of CHECK-CONSISTENCY.

One can verify that all above messages are independent of the shares of [γ]n−k held by
honest parties. Since γ is uniformly random given the shares of [γ]n−k held by corrupted
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parties, the distribution of the shares of [γ]n−k held by honest parties is identical in both
Hybrid2 and Hybrid3.

• For [u]2k−2, S has already computed the whole sharing. Let ū denote the secret of [u]2k−2.
For ([u]n−1, [γ ∗ u]n−1), the secrets can be computed from the secrets and the MACs
of {[[u(i)]]n−k}mi=1. For each [[u(i)]]n−k, S computes the secret by using the shares that
corrupted parties should hold and the shares of honest parties. Later on, we will show
that S can compute the secret u(i) without the shares of honest parties. Note that S also
computes a pair of vectors (δ

(i)
1 , δ

(i)
2 ) which are additive errors to the secret and its MAC of

[[u(i)]]n−k. Then, the secret of [γ∗u(i)]n−k is γ ∗ u(i) = γ∗u(i)+δ
(i)
2 −γ∗δ

(i)
1 . S computes

the secret of [γ ∗ u(i)]n−k. Now S can compute the secrets of ([u]n−1, [γ ∗ u]n−1). Given
the secrets of [u]n−1, [γ ∗ u]n−1 and the shares of corrupted parties, S randomly samples
the shares of honest parties.
In Hybrid2, for [u]n−1, [γ ∗ u]n−1, since all parties use random degree-(n − 1) packed
Shamir sharings of 0, [o(1)]n−1, [o

(2)]n−1, as random masks, they are random degree-(n−1)
packed Shamir sharings given the secretsu,γ ∗ u and the shares of corrupted parties. Note
that u is identical to that in Hybrid3, and γ ∗ u is determined by u and the pair of additive
errors. Therefore, u,γ ∗ u are identical to those in Hybrid3. The shares of [u]n−1, [γ ∗
u]n−1 of honest parties have the same distribution in both Hybrid2 and Hybrid3.

• If no party aborts at the end of CHECK-SECRET but the following case occurs, S aborts.
There exists ([u(i)]2k−2, [[u

(i)]]n−k) such that their secrets do not satisfy

ū(i) = u(i) − δ(i)
1 .

Let (δ1, δ2) be the pair of additive errors to [u]n−1, [γ∗u]n−1 computed from {(δ(i)
1 , δ

(i)
2 )}mi=1.

Note that
Following the same argument as that in Lemma 14.2, if there exists a pair ([u(i)]2k−2,

[[u(i)]]n−k) such that ū(i) 6= u(i) − δ(i)
1 , then with overwhelming probability, for the

final pair ([u]2k−2, [[u]]n−1), ū 6= u− δ1.
Corrupted parties cannot change their shares of [u]2k−2 without being detected since
the whole sharing is determined by the shares of honest parties.
While corrupted parties may change their shares of [u]n−1, [γ ∗ u]n−1, [γ]n−k, any
change of the shares of corrupted parties either will be detected or is equivalent
to additive errors to the secrets u,γ ∗ u,γ. To see this, for each of the sharing
[u]n−1, [γ ∗ u]n−1, [γ]n−k, we may compute the difference between the sharing that
uses the shares that corrupted parties commit and the sharing that uses the shares
that corrupted parties should hold. For [u]n−1 or [γ ∗ u]n−1, the difference corre-
sponds to a degree-(n − 1) packed Shamir sharing of the additive error. For [γ]n−k,
the difference is either not a valid degree-(n− k) packed Shamir sharing, which will
be detected when checking [γ]n−k, or a degree-(n − k) packed Shamir sharing of
the additive error. Note that the additive errors are independent of γ,γ ∗ u since the
adversary needs to decide the additive errors before reconstructing [γ ∗u]n−1, [γ]n−k.
When u 6= u − δ1, the only possibility that no party aborts at the end of CHECK-
SECRET is that the adversary adds ε0, ε1, ε2 to u,γ ∗ u,γ respectively such that (1)
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u = u+ ε0, and (2) (γ + ε2) ∗ (u+ ε0) = γ ∗ u+ ε1. Recall that γ ∗ u = γ ∗ u+
δ2−γ ∗δ1. From (1), ε0 6= −δ1. From (2), γ ∗ (ε0 +δ1) = δ2 +ε1−u∗ε2−ε0 ∗ε2.
Since γ is a random field element and γ = (γ, γ, . . . , γ) ∈ Fk, the probability that
the adversary can find ε0, ε1, ε2 that satisfy (1) and (2) is negligible.

In Summary, the distribution of Hybrid3 is statistically close to the distribution of Hybrid2. Note
that in Hybrid3, S will always abort if the computation is incorrect.

Hybrid4: In this hybrid, S extracts the input of corrupted parties as described above. Then S
invokes Fmain-mal and sends the input of corrupted parties to Fmain-mal. S simulates OUTPUT. We
first consider the case that the output gates belong to an honest client. Compared with Hybrid3,
the change is the following:

• In Hybrid4, after S receives the shares of [r]n−k, [∆]n−k, [∆ ∗ r]n−k of corrupted parties,
for each sharing, S computes the difference of the sharing that uses the shares that cor-
rupted send to S and the sharing that uses the shares that corrupted parties should hold. S
aborts if the difference is not a valid degree-(n− k) packed Shamir sharing of 0.

• In Hybrid3, Client reconstructs the secret of [r]n−k, [∆]n−k, [∆∗r]n−k and checks whether
the third secret is equal to the coordinate-wise multiplication of the first two secrets. Fol-
lowing the same argument as that in Hybrid3, the change of the shares of [r]n−k, [∆]n−k,
[∆∗r]n−k of corrupted parties either will lead to invalid degree-(n−k) packed Shamir shar-
ings or is equivalent to additive errors to the secrets r,∆,∆ ∗ r. If the adversary changes
the shares of corrupted parties but Client does not abort, the only possibility is that the ad-
versary adds ε0, ε1, ε2 to r,∆,∆∗r respectively such that (∆+ε1)∗(r+ε0) = ∆∗r+ε2.
It means that ∆ ∗ ε0 + ε1 ∗ r + ε1 ∗ ε0 = ε2. If ε0 = ε1 = ε2 = 0, then in both Hybrid3

and Hybrid4, Client (or S) accepts. If ε0 = 0 but ε1 6= 0 or ε2 6= 0, then ε1 and ε2 should
satisfy that ε1 ∗ r = ε2. Since r is a random vector, the probability that the adversary
can find such ε1 and ε2 is negligible. Similarly, if ε0 6= 0, since ∆ is a random vector,
the probability that the adversary can find ε0, ε1, ε2 that satisfy the above requirement is
negligible.

Thus, when the client is honest, the distribution of Hybrid4 is statistically close to Hybrid3.
Now we consider the case that the output gates belong to a corrupted client. Compared with

Hybrid3, the change is that S computes r from x+ r and x, and S samples a random vector as
∆. Then based on the secrets and the shares of corrupted parties, S recovers the whole sharings
[r]n−k, [∆]n−k, [∆∗r]n−k. Note that OUTPUT is only invoked after CHECK-CONSISTENCY and
CHECK-SECRET. Recall that we have changed these protocols by the simulation of S, which
will abort if the computation is incorrect. Thus, x received from Fmain-mal is the same as x in
Hybrid3. Therefore, the vector r,∆ computed by S have the same distribution as those in
Hybrid3. Since the sharings [r]n−k, [∆]n−k, [∆ ∗ r]n−k are determined by the secrets and the
shares of corrupted parties, the distribution of Hybrid4 is identical to Hybrid3 when the client is
corrupted.

In summary, the distribution of Hybrid4 is statistically close to the distribution of Hybrid3.
Hybrid5: In this hybrid, S simulates TRAN-MAL, PACKED-MULT-MAL, PACKED-ADD-

MAL, and Step 5.(a), 5.(b) of PACKED-MULT-MAL. The only difference is that when all parties
need to send a degree-(n − 1) packed Shamir sharing to P1, S samples random elements as the
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shares of honest parties. Recall that we either use a random degree-(n−1) packed Shamir sharing
[r]n−1, or use a pair of random sharings ([r]n−k, [o]n−1) where o = 0, as a random mask. Note
that [r]n−k + [o]n−1 has the same distribution as [r]n−1. Therefore, the sharings that P1 collects
from all parties are always random degree-(n − 1) packed Shamir sharings. Given the shares
of corrupted parties, the shares of a random degree-(n − 1) packed Shamir sharing of honest
parties are uniformly random. Thus, the distribution of Hybrid5 is identical to the distribution of
Hybrid4. Note that the shares generated for honest parties together with the shares of corrupted
parties can be used to compute the secret of [[u(i)]]n−k in CHECK-SECRET.

Hybrid6: In this hybrid, S simulates INPUT. We first consider the case that the input gates
belong to an honest client. Compared with Hybrid5, the difference is the following:

• In Hybrid6, after S receives the shares of [r]n−k, [∆]n−k, [∆ ∗ r]n−k of corrupted parties,
for each sharing, S computes the difference of the sharing that uses the shares that cor-
rupted parties send to S and the sharing that uses the shares that corrupted parties should
hold. If the difference is not a valid degree-(n− k) packed Shamir sharing of 0, S aborts.
Otherwise S generates a random vector as x + r and honestly follows the protocol by
generating a random degree-(k− 1) packed Shamir sharing [x+r]k−1 and distributing the
shares to corrupted parties.

• In Hybrid5, Client reconstructs the secret of [r]n−k, [∆]n−k, [∆∗r]n−k and checks whether
the third secret is equal to the coordinate-wise multiplication of the first two secrets. Fol-
lowing the same argument as that in Hybrid4, if corrupted parties change their shares of
an authenticated sharing (which causes the the change of the secret), with overwhelming
probability, the change will be detected and Client will abort. If Client accepts, Client will
generate and distribute a random degree-(k − 1) packed Shamir sharing of x+ r. Since r
is a random vector, x+ r is also a random vector.

Thus, when the client is honest, the distribution of Hybrid6 is statistically close to Hybrid5.
Now we consider the case that the input gates belong to a corrupted client. Compared with

Hybrid5, the change is that S samples two random vector as r,∆. Then based on the secrets and
the shares of corrupted parties, S recovers the whole sharings [r]n−k, [∆]n−k, [∆ ∗ r]n−k. Note
that r,∆ are indeed random vectors in Hybrid5. Since the sharings [r]n−k, [∆]n−k, [∆ ∗ r]n−k
are determined by the secrets and the shares of corrupted parties, the distribution of Hybrid6 is
identical to Hybrid5 when the client is corrupted.

In summary, the distribution of Hybrid6 is statistically close to the distribution of Hybrid5.
Note that Hybrid6 is the execution in the ideal world, and the distribution of Hybrid6 is

statistically close to the distribution of Hybrid0, the execution in the real world.

Theorem 14.1. In the client-server model, let c denote the number of clients, n denote the
number of parties (servers), and t denote the number of corrupted parties (servers). Let κ be
the security parameter and F be a finite field of size |F| ≥ 2κ. For an arithmetic circuit C
over F and for all n−1

3
≤ t ≤ n − 1, there exists an information-theoretic MPC protocol in

the circuit-independent preprocessing model which securely computes the arithmetic circuit C
in the presence of a fully malicious adversary controlling up to c clients and t parties. The
cost of the protocol is O(|C| · n2

k2
+ poly(Depth, c, n)) field elements of preprocessing data and
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O(|C| · n
k

+ poly(Depth, c, n)) field elements of communication, where k = n−t+1
2

and Depth is
the circuit depth.
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Chapter 15

Honest Majority MPC with Sublinear
Online Communication

In this chapter, we focus on the malicious security in the standard honest majority setting where
the number of corrupted parties t = (n−1)/2. Recall that in our setting, the number of corrupted
parties is n− 2k + 1. The honest majority setting corresponds to the case where k = (n+ 3)/4
(assuming that n ≡ 1 mod 4). Relying on our efficient multiplication protocol constructed
in Chapter 8.1 and efficient multiplication verification protocol constructed in Chapter 7, we
show how to efficiently realize Fprep-mal in the information-theoretical setting. Combining with
our protocol for the online phase, we obtain an information-theoretic n-party MPC protocol
which securely computes a single arithmetic circuit in the presence of a malicious adversary
controlling up to t = (n − 1)/2 parties with offline communication complexity O(|C|n) and
online communication complexityO(|C|) among all parties. Note that the online communication
is sublinear in the number of parties. To the best of our knowledge, this is the first work that
achieves sublinear online communication complexity in the number of parties in the information-
theoretic setting with honest majority.

We first review a protocol from [62] that efficiently prepares a batch of random sharings with
malicious security.

15.1 Preparing Random Sharings in Batch

For a general F-arithmetic secret sharing scheme Σ, let [[x]] denote a sharing in Σ of secret x.
We first introduce a tensoring-up lemma from [21].

A Tensoring-up Lemma. We follow the definition of interleaved arithmetic secret sharing
scheme: the m-fold interleaved arithmetic secret sharing scheme Σ×m is an n-party scheme
which corresponds to m Σ-sharings. We have the following proposition from [21]:
Proposition 15.1 ([21]). Let K be a degree-m extension field of F and let Σ be an F-arithmetic
secret sharing scheme. Then the m-fold interleaved F-arithmetic secret sharing scheme Σ×m is
naturally viewed as a K-arithmetic secret sharing scheme, compatible with its F-linearity.
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This proposition allows us to define λ : Σ×m → Σ×m for every λ ∈ K such that for all
[[x]] = ([[x1]], . . . , [[xm]]) ∈ Σ×m:
• for all λ ∈ F, λ · ([[x1]], . . . , [[xm]]) = (λ · [[x1]], . . . , λ · [[xm]]);
• for all λ1, λ2 ∈ K, λ1 · [[x]] + λ2 · [[x]] = (λ1 + λ2) · [[x]];
• for all λ1, λ2 ∈ K, λ1 · (λ2 · [[x]]) = (λ1 · λ2) · [[x]].

An Example of an Arithmetic Secret Sharing Scheme and Using the Tensoring-up Lemma.
We will use the standard Shamir secret sharing scheme as an example of an arithmetic secret
sharing scheme and show how to use the tensoring-up lemma. For a field F (of size |F| ≥ n+ 1),
we may define a secret sharing Σ which takes an input x ∈ F and outputs [x]t, i.e., a degree-t
Shamir sharing.

A sharing ([x1]t, [x2]t, . . . , [xm]t) ∈ Σ×m is a vector of m sharings in Σ. Let K be a degree-
m extension field of F. The tensoring-up lemma says that Σ×m is a K-arithmetic secret sharing
scheme. Therefore we can perform K-linear operations to the sharings in Σ×m.

A High-level Idea of the Construction. As [62], we will follow the idea in [10] of preparing
random degree-t Shamir sharings to prepare random sharings in Σ. At a high-level, each party
first deals a batch of random sharings in Σ. For each party, all parties together verify that the
sharings dealt by this party have the correct form. Then all parties locally convert the sharings
dealt by each party to random sharings such that the secrets are not known to any single party.

Recall that κ denotes the security parameter. Let K be an extension field of F such that
|K| ≥ 2κ. Let m = [K : F] denote the degree of the extension. Then m is bounded by κ. In
the following, instead of preparing random sharings in Σ, we choose to prepare random sharings
in Σ×m, where each sharing [[x]] in Σ×m is a vector of m sharings ([[x1]], [[x2]], . . . , [[xm]]) in Σ.
According to Proposition 15.1, Σ×m is an K-arithmetic secret sharing scheme.

15.1.1 Preparing Verified Sharings.
The first step is to let each party deal a batch of random sharings in Σ×m. The protocol VER-
SHARE(Pd, N ′) (Protocol 15.1) allows the dealer Pd to deal N ′ random sharings in Σ×m. Sup-
pose the share size of a sharing in Σ is ` field elements in F. Then the share size of a sharing in
Σ×m is m · ` field elements in F. Recall that the communication complexity of the instantiation
of Fcoin(K) (See Chapter 5.4) is O(n2) elements in K, which is O(n2 ·m) elements in K. The
communication complexity of VERSHARE(Pd, N ′) is O(N ′ · n ·m · `+ n2 ·m) elements in F.

For a nonempty set A, let

Σ(A, (ai)i∈A) := {[[x]]| [[x]] ∈ Σ and πA([[x]]) = (ai)i∈A}.

For a sharing [[s]], we say that πA([[s]]) is valid if Σ(A, πA([[s]])) is nonempty. For a sharing [[s]] and
a nonempty set A, we say πA([[s]]) is valid if Σ×m(A, πA([[s]])) (which can be similarly defined)
is nonempty.
Lemma 15.1. LetH ⊂ I denote the set of all honest parties. If all parties accept the verification
in the last step of VERSHARE(Pd, N ′), then the probability that there exists [[s?]] ∈ {[[s(`)]]}N ′

`=1

such that πH([[s?]]) is invalid is bounded by N ′/2κ.
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Figure 15.1: Protocol VERSHARE(Pd, N ′)

1. For ` = 1, 2, . . . , N ′, Pd randomly samples a sharing [[s(`)]] in Σ×m. Pd distributes the
shares of [[s(`)]] to all other parties.

2. Pd randomly samples a sharing [[s(0)]] in Σ×m. Pd distributes the shares of [[s(0)]] to
all other parties. This sharing is used as a random mask when verifying the random
sharings generated in Step 1.

3. All parties invokeFcoin(K) and receive a random field element α ∈ K. Then, all parties
locally compute

[[s]] := [[s(0)]] + α · [[s(1)]] + α2 · [[s(2)]] + . . .+ αN
′ · [[s(N ′)]].

4. Each party Pj sends the j-th share of [[s]] to all other parties. Then, each party Pj
verifies that [[s]] is a valid sharing in Σ×m. If not, Pj aborts. Otherwise, all parties take
{[[s(`)]]}N ′

`=1 as output.

Proof. Suppose that there exists [[s?]] ∈ {[[s(`)]]}N ′

`=1 such that πH([[s?]]) is invalid. Now we show
that the number of α ∈ K such that [[s]] passes the verification in the last step of VERSHARE(Pd,
N ′) is bounded by N ′. Then, the lemma follows from that α output by Fcoin is uniformly random
in K and |K| ≥ 2κ. Note that if [[s]] passes the verification, then πH([[s]]) is valid since [[s]] ∈
Σ×m(H, πH([[s]])).

Now assume that there are N ′ + 1 different values α0, α1, . . . , αN ′ such that for all i ∈
{0, 1, . . . N ′},

[[s′i]] := [[s(0)]] + αi · [[s(1)]] + α2
i · [[s(2)]] + . . .+ αN

′

i · [[s(N ′)]].

can pass the verification, which implies that for all i ∈ {0, 1, . . . , N ′}, πH([[s′i]]) is valid. Let M
be a matrix of size (N ′ + 1)× (N ′ + 1) in K such thatMij = αj−1

i−1 . Then we have

([[s′0]], [[s′1]], . . . , [[s′N ′ ]])T = M · ([[s(0)]], [[s(1)]], . . . , [[s(N ′)]])T.

Note thatM is a (N ′ + 1)× (N ′ + 1) Vandermonde matrix, which is invertible. Therefore,

([[s(0)]], [[s(1)]], . . . , [[s(N ′)]])T = M−1 · ([[s′0]], [[s′1]], . . . , [[s′N ′ ]])T.

Since Σ×m is K-linear, and πH([[s′i]]) is valid for all i ∈ {0, 1, . . . , N ′} by assumption, we have
that

πH([[s(0)]]), πH([[s(1)]]), . . . , πH([[s(N ′)]])

are all valid, which leads to a contradiction.

15.1.2 Converting to Random Sharings.
Let [[sd]] denote a sharing in Σ×m dealt by Pd in VERSHARE. Let t < n denote the number of
corrupted parties. We will convert these n sharings, one sharing dealt by each party, to (n − t)
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random sharings in Σ×m. As [10], this is achieved by making use of the fact that the transpose
of a Vandermonde matrix acts as a randomness extractor. The description of CONVERT appears
in Protocol 15.2.

Figure 15.2: Protocol CONVERT

1. For each party Pd, let [[sd]] denote a sharing in Σ×m dealt by Pd in VERSHARE. Let
MT be an n×(n−t) Vandermonde matrix in K. ThenM is a matrix of size (n−t)×n.

2. All parties compute

([[r1]], . . . , [[rn−t]])
T := M · ([[s1]], . . . , [[sn]])T.

3. All parties take [[r1]], . . . , [[rn−t]] as output.

Combining VERSHARE and CONVERT, we have BATCH-RAND(N ) (Protocol 15.3) which
securely computes N copies of Frand-sharing(Σ) (restated below). We show that this construction is
secure for any corruption threshold t < n. We will analyze the communication complexity after
the proof of Lemma 15.2.

Figure 11.1: Functionality Frand-sharing(Σ)

1. Frand-sharing receives the set of corrupted parties, denoted by Corr.
2. Frand-sharing receives from the adversary a set of shares {uj}j∈Corr where uj ∈ Ũ for all
j ∈ Corr.

3. Frand-sharing samples a random Σ-sharingX such that the shares ofX held by corrupted
parties are identical to those received from the adversary, i.e., πCorr(X) = (uj)j∈Corr.
If such a sharing does not exist, Frand-sharing sends abort to all honest parties and halts.

4. Otherwise, Frand-sharing distributes the shares ofX to honest parties.

Lemma 15.2. Let t < n be a positive integer. Protocol BATCH-RAND securely computes N
copies of Frand-sharing (Functionality 11.1) with abort in the Fcoin-hybrid model in the presence of
a malicious adversary who controls t parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors
of honest parties. Let Corr denote the set of corrupted parties and H denote the set of honest
parties.

Simulation for VERSHARE. We first consider the case where Pd is an honest party.

• In Step 1 and Step 2, Pd needs to distribute random sharings {[[s(`)]]}N ′

`=0 in Σ×m. For each
sharing [[s(`)]], S samples a random sharing [[s(`)]] ∈ Σ×m and sends the shares of corrupted
parties πCorr([[s(`)]]) to A.
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Figure 15.3: Protocol BATCH-RAND(N )

1. Let N ′ = N
m(n−t) . For each party Pd, all parties invoke VERSHARE(Pd, N ′). Let

{[[s(`)
d ]]}N ′

`=1 denote the output.

2. For each ` ∈ {1, . . . , N ′}, all parties invoke CONVERT on {[[s(`)
d ]]}nd=1. Let {[[r(`)

i ]]}n−ti=1

denote the output.

3. For each sharing [[r
(`)
i ]], all parties separate it into m sharings in Σ. Note that there are

in total N ′ · (n− t) ·m = N sharings in Σ.

• In Step 3, S emulates Fcoin and generates a random field element α ∈ K. Then, S com-
putes the shares of [[s]] held by corrupted parties, i.e., πCorr([[s]]). Based on πCorr([[s]]), S
randomly samples [[s]] ∈ Σ×m(Corr, πCorr([[s]])).

• In Step 4, S faithfully follows the protocol since the shares of [[s]] held by honest parties
have been explicitly generated.

When Pd is corrupted, S simply follows the protocol. If there exists some [[s(`)]] such that
πH([[s(`)]]) is invalid, S sends abort to Frand-sharing and aborts in Step 4 (even if the verifica-
tion passes). Otherwise, for each sharing [[s(`)]] dealt by Pd, S randomly samples [[s̃(`)]] ∈
Σ×m(H, πH([[s(`)]])), and views it as the sharing dealt by Pd.

If some party aborts at the end of VERSHARE, S sends abort to Frand-sharing and aborts.

Simulation for CONVERT. Recall that CONVERT only involves local computation. For each
sharing [[sd]], S has computed πCorr([[sd]]) in the simulation of VERSHARE. In CONVERT, S
computes πCorr([[ri]]) and sends them to Frand-sharing.

Hybrid Arguments. Now, we show that S perfectly simulates the behaviors of honest parties
with overwhelming probability. Consider the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S simulates VERSHARE for honest parties when the dealer Pd is

corrupted. Note that, S simply follows the protocol in this case and computes the shares held by
corrupted parties. The only difference is that S will abort if there exists some [[s(`)]] such that
πH([[s(`)]]) is invalid even if the verification in Step 4 passes. According to Lemma 15.1, this
happens with negligible probability. Therefore, the distribution of Hybrid1 is statistically close
to the distribution of Hybrid0.

Hybrid2: In this hybrid, S first simulates VERSHARE for honest parties when the dealer
Pd is honest. Then, for each ` ∈ {1, . . . , N ′}, S re-samples a new random sharing [[s̃(`)]] ∈
Σ×m(Corr, πCorr([[s(`)]])). S takes {[[s̃(`)]]}N ′

`=1 as the sharings dealt by Pd.
Note that in Step 1 and Step 2, A only receives πCorr([[s(`)]]). Therefore, [[s(`)]] is a random

sharing in Σ×m(Corr, πCorr([[s(`)]])). In Step 3, after receiving α ∈ K from Fcoin, all parties
compute

[[s]] := [[s(0)]] + α · [[s(1)]] + α2 · [[s(2)]] + . . .+ αN
′ · [[s(N ′)]].
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Therefore, [[s]] is a random sharing in Σ×m(Corr, πCorr([[s]])). Note that [[s]] is masked by a
random sharing [[s(0)]]. Thus, [[s]] is independent of {[[s(`)]]}N ′

`=1. Therefore, given the view of
A, each sharing [[s(`)]] is a random sharing in Σ×m(Corr, πCorr([[s(`)]])). This means that S can
re-sample and use a new random sharing [[s̃(`)]] ∈ Σ×m(Corr, πCorr([[s(`)]])) instead of using the
sharing [[s(`)]] generated in the beginning.

Thus, the distribution of Hybrid2 is the same as the distribution of Hybrid1.
Hybrid3: In this hybrid, S does not re-sample the sharings {[[s̃(`)]]}N ′

`=1. Instead, S simulates
CONVERT for honest parties, which does not need to generate the whole sharing [[s̃(`)]].

Let MCorr denote the sub-matrix of M containing columns with indices in Corr, and MH
denote the sub-matrix containing columns with indices inH. We have

([[r1]], . . . , [[rn−t]])
T = M · ([[s1]], . . . , [[sn]])T = MCorr · ([[sj]])T

j∈Corr +MH · ([[sj]])T
j∈H.

Let

([[r
(H)
1 ]], . . . , [[r

(H)
n−t]])

T := MH · ([[sj]])T
j∈H

([[r
(Corr)
1 ]], . . . , [[r

(Corr)
n−t ]])T := MCorr · ([[sj]])T

j∈Corr.

Then ([[r1]], . . . , [[rn−t]]) = ([[r
(Corr)
1 ]], . . . , [[r

(Corr)
n−t ]]) + ([[r

(H)
1 ]], . . . , [[r

(H)
n−t]]).

Recall that MT is a Vandermonde matrix of size n × (n − t). Therefore MT
H is a Van-

dermonde matrix of size (n − t) × (n − t), which is invertible. There is a one-to-one map
from ([[r

(H)
1 ]], . . . , [[r

(H)
n−t]]) to ([[sj]])j∈H. Given ([[sj]])j∈Corr, there is a one-to-one map from

([[r1]], . . . , [[rn−t]]) to ([[r
(H)
1 ]], . . . , [[r

(H)
n−t]]). Recall that for each sharing [[sd]] dealt by a cor-

rupted party Pd, S received the shares of honest parties πH([[sd]]) and sampled a random sharing
[[s̃d]] ∈ Σ×m(H, πH([[sd]])). Note that this may not be the sharing dealt by Pd since we do not
know the shares held by corrupted parties. However, we show that this does not affect the distri-
bution of the shares of honest parties generated by Frand.

To see this, note that for each valid ([[s̃j]])j∈Corr, S computes {πCorr([[rj]])}n−tj=1 and sends
them to Frand-sharing. Then for each j ∈ {1, . . . , n − t}, Frand-sharing samples a random sharing
[[r̃j]] ∈ Σ×m(Corr, πCorr([[rj]])). These random sharings {[[r̃j]]}n−tj=1 correspond to random shar-
ings ([[s̃j]])j∈H, which are independent of ([[s̃j]])j∈Corr. Thus, the distribution of Hybrid3 is the
same as the distribution of Hybrid2.

Note that Hybrid3 is the execution in the ideal world and Hybrid3 is statistically close to
Hybrid0, the execution in the real world.

Analysis of the Communication Complexity of BATCH-RAND(N ). In Step 1, we need to
invoke VERSHARE(Pd, N ′) for each party Pd. Therefore, the communication complexity of
Step 1 is O(N ′ · n2 · m · ` + n3 · m) elements in F. Step 2 and Step 3 do not require any
communication. Recall that N ′ = N

m(n−t) and m = [K : F] is bounded by the security parameter
κ. Therefore, the overall communication complexity of BATCH-RAND(N ) is

O(N ′ · n2 ·m · `+ n3 ·m) = O(N · n2/(n− t) · `+ n3 · κ)

elements in F.
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A Semi-Honest Version for Frand-sharing. We can obtain a semi-honest version for Frand-sharing

by only keeping the first step in VERSHARE(Pd,N ′). In this way, the cost of preparingN random
sharings in Σ is O(N · n2/(n− t) · `) elements in F.

15.2 Preprocessing for Honest Majority with Malicious Secu-
rity

We assume that the number of parties n ≡ 1 mod 4. In the honest majority setting, the number
of corrupted parties is t = (n−1)/2. Recall that in our protocol, the number k of secrets that can
be packed within a single sharing should satisfy that t = n− 2k + 1. Therefore, k = (n+ 3)/4.
Note that t+ k − 1 = n− k.

Recall that in Chapter 11.2, a degree-d (d ≥ k−1) packed Shamir sharing ofx = (x1, . . . , xk) ∈
Fk (with the default positions β) is a vector (w1, . . . , wn) for which there exists a polyno-
mial f(·) ∈ F[X] of degree at most d such that ∀i ∈ {1, 2, . . . , k}, f(βi) = xi and ∀i ∈
{1, 2, . . . , n}, f(αi) = wi, where α1, . . . , αn, β1, . . . , βk are n + k fixed and distinct elements in
F. For an element x ∈ F, we define a degree-t Shamir sharing [x|j]t to be a vector (w1, . . . , wn)
for which there exists a polynomial f(·) ∈ F [X] of degree at most t such that f(βj) = x and
∀i ∈ {1, 2, . . . , n}, f(αi) = wi. In other words, [x|j]t is a standard degree-t Shamir sharing
except that the secret is hidden at the evaluation point βj .

Let ej be a vector in Fk where all entries are 0 except the j-th entry is 1. Let [ej]k−1 denote
the degree-(k − 1) packed Shamir sharing that is fully determined by the secret ej . Consider
the multiplication [ej]k−1 · [x|j]t. Let f denote the polynomial that corresponds to the resulting
sharing. Since [ej]k−1 corresponds to a degree-(k − 1) polynomial, and [x|j]t corresponds to a
degree-t polynomial, the polynomial f is of degree t + k − 1 = n − k. For all j′ 6= j, since
the j′-th entry of ej is 0, the polynomial f satisfies that f(βj′) = 0. As for j, the polynomial f
satisfies that f(βj) = x. Thus, the resulting sharing of [ej]k−1 · [x|j]t is a degree-(n− k) packed
Shamir sharing where the secret vector satisfies that all entries are 0 except the j-th entry is x.

In general, let x = (x1, x2, . . . , xk) ∈ Fk. All parties can locally transform k degree-t Shamir
sharings {[xj|j]t}kj=1 to a degree-(n− k) packed Shamir sharing [x]n−k by computing

[x]n−k :=
k∑
j=1

[ej]k−1 · [xj|j]t.

This reduces the problem of preparing random degree-(n−k) packed Shamir sharings to prepar-
ing random degree-t Shamir sharings. In particular, we can use the DN multiplication protocol
to prepare multiplication tuples for degree-t Shamir sharings.

Prepare Random Packed Shamir Sharings. We can directly use the protocol BATCH-RAND

to prepare random degree-(n − k) packed Shamir sharings and random degree-(n − 1) packed
Shamir sharing of 0 ∈ Fk. These random sharings are used in Protocol TRAN-MAL. Recall that
k = (n− t+ 1)/2. The amortized communication complexity per sharing is n2

2k−1
elements.
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Realizing Fprep-mal. Our protocol will make use of the following two functionalities for multi-
plications between two degree-t Shamir sharings:
• The first functionality is Fmult-mal (See Chapter 7) which allows all parties to multiply two

degree-t Shamir sharings. We restate the functionality below.
• Since Fmult-mal does not guarantee the correctness of the multiplication, all parties need to

verify the the multiplications computed by Fmult-mal. The second functionality FmultVerify

(See Chapter 7) takes m multiplication tuples as input and outputs to all parties a single
bit b indicating whether all multiplication tuples are correct. We restate the functionality
below.

Recall that when using ATLAS-MULT (See Protocol 6.7 and Chapter 8.1) to instantiateFmult-mal,
the communication complexity per multiplication gate is 4n elements. When using MULTVER-
IFICATION (See Protocol 7.10 and Chapter 7) to instantiate FmultVerify, the communication com-
plexity is O(n2 · κ+ n · κ2) elements, where κ is the security parameter.

Figure 7.1: Functionality Fmult-mal

1. Let [x]t, [y]t denote the input sharings. Fmult-mal receives from honest parties their
shares of [x]t, [y]t. Then Fmult-mal reconstructs the secrets x, y. Fmult-mal further com-
putes the shares of [x]t, [y]t held by corrupted parties, and sends these shares to the
adversary.

2. Fmult-mal receives from the adversary a value d and a set of shares {zi}i∈Corr.
3. Fmult-mal computes x·y+d. Based on the secret z := x·y+d and the t shares {zi}i∈Corr,
Fmult-mal reconstructs the whole sharing [z]t and distributes the shares of [z]t to honest
parties.

For Fprep-mal:
1. In Step 1, to prepare [γ]n−k, where γ = (γ, γ, . . . , γ) ∈ Fk, all parties prepare ran-

dom degree-t Shamir sharings [γ|1]t, [γ|2]t, . . . , [γ|k]t by using BATCH-RAND. For all
j ∈ {1, 2, . . . , k}, let ej be a vector in Fk where all entries are 0 except the j-th entry
is 1. Let [ej]k−1 denote the degree-(k − 1) packed Shamir sharing that is fully determined
by the secret ej . All parties compute

[γ]n−k = [e1]k−1 · [γ|1]t + [e2]k−1 · [γ|2]t + . . .+ [ek]k−1 · [γ|k]t.

2. In Step 2, for every group of k input gates and output gates:

(a) All parties prepare a random degree-(n − k) packed Shamir sharing [r]n−k by first
preparing k random degree-t Shamir sharings [r1|1]t, [r2|2]t, . . . , [rk|k]t by using BATCH-
RAND and then locally computing

[r]n−k = [e1]k−1 · [r1|1]t + [e2]k−1 · [r2|2]t + . . .+ [ek]k−1 · [rk|k]t.
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Figure 7.2: Functionality FmultVerify

1. Let N denote the number of multiplication tuples. The multiplication tuples are de-
noted by

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(N)]t.[y
(N)]t, [z

(N)]t).

2. For all i ∈ [N ], FmultVerify receives from honest parties their shares of
[x(i)]t, [y

(i)]t, [z
(i)]t. Then FmultVerify reconstructs the secrets x(i), y(i), z(i). FmultVerify

further computes the shares of [x(i)]t, [y
(i)]t, [z

(i)]t held by corrupted parties and sends
these shares to the adversary.

3. For all i ∈ [N ],FmultVerify computes d(i) = z(i)−x(i) ·y(i) and sends d(i) to the adversary.

4. Finally, let b ∈ {abort, accept} denote whether there exists i ∈ [N ] such that d(i) 6=
0. FmultVerify sends b to the adversary and waits for its response.
• If the adversary replies continue, FmultVerify sends b to honest parties.
• If the adversary replies abort, FmultVerify sends abort to honest parties.

For all j ∈ {1, 2, . . . , k}, all parties invoke Fmult-mal on [rj|j]t, [γ|j]t and obtain [γ ·
rj|j]t. Finally, all parties compute [γ ∗ r]n−k by

[γ ∗ r]n−k =
k∑
j=1

[ej]k−1 · [γ · rj|j]t.

(b) All parties prepare [β]n−k, [β ∗ r]n−k in the same way as that for [r]n−k, [γ ∗ r]n−k in
Step 2.(a).

(c) For every group of k output gates, all parties prepare a random degree-(n−1) packed
Shamir sharing of 0 by using BATCH-RAND.

3. In Step 3, for every group of k multiplication gates:

(a) All parties first prepare [[a]]n−k, [[b]]n−k in the same way as that for [[r]]n−k in Step
2.(a). Note that all parties also hold {[aj|j]t}kj=1 and {[bj|j]t}kj=1. Then for all j ∈
{1, 2, . . . , k}, all parties invoke Fmult-mal on [aj|j]t, [bj|j]t and obtain [aj · bj|j]t. Next,
all parties compute [a ∗ b]n−k by

[a ∗ b]n−k =
k∑
j=1

[ej]k−1 · [aj · bj|j]t.

Finally, all parties compute [γ ∗ c]n−k in the same way as that for [γ ∗ r]n−k in Step
2.(a).

(b) All parties prepare three two degree-(n − 1) packed Shamir sharings of 0 by using
BATCH-RAND.
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4. In Step 4, all parties prepare three two degree-(n − 1) packed Shamir sharings of 0 by
using BATCH-RAND.

5. Finally, all parties verify the correctness of the multiplications by invoking FmultVerify. For
all j ∈ {1, 2, . . . , k}, all multiplication tuples where the secrets are hidden at the evaluation
point βj are verified together.

We note that, with honest majority, the functionality Fcom can be realized without any pre-
processing data. The committer simply generates a random degree-t Shamir sharing of the value
he wants to commit and distributes the shares to other parties. To open the commitment, all par-
ties exchange their shares, check whether the shares form a valid degree-t Shamir sharing, and
reconstruct the secret if the check passes. The secrecy follows from the following two facts:
• The shares of a degree-t Shamir sharing of honest parties fully determine the secret. There-

fore, the committer or corrupted parties cannot change the secret after the sharing is dis-
tributed.

• The shares of a degree-t Shamir sharing of corrupted parties are independent of the secret.
Therefore, from the shares they received, corrupted parties cannot learn any information
about the value committed by an honest party.

Theorem 15.1. In the client-server model, let c denote the number of clients, and n = 2t + 1
denote the number of parties (servers). Let κ be the security parameter and F be a finite field
of size |F| ≥ 2κ. For an arithmetic circuit C over F, there exists an information-theoretic MPC
protocol which securely computes the arithmetic circuit C in the presence of a fully malicious
adversary controlling up to c clients and t parties. The cost of the protocol is O(|C| · n +
poly(Depth, c, n)) elements of offline communication and O(|C| + poly(Depth, c, n)) elements
of online communication, where Depth is the circuit depth.

178



Bibliography
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[31] Ivan Damgård, Jesper Buus Nielsen, Antigoni Polychroniadou, and Michael Raskin. On
the communication required for unconditionally secure multiplication. In Matthew Rob-
shaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, pages 459–488,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. ISBN 978-3-662-53008-5. 4.3

[32] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - a framework for efficient
mixed-protocol secure two-party computation. NDSS, 2015. 9.2

[33] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl. Im-
proved primitives for mpc over mixed arithmetic-binary circuits. In Daniele Micciancio
and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, pages 823–852,
Cham, 2020. Springer International Publishing. ISBN 978-3-030-56880-1. 9.2

[34] Matthew Franklin and Moti Yung. Communication Complexity of Secure Computation
(Extended Abstract). In Proceedings of the Twenty-Fourth Annual ACM Symposium on
Theory of Computing, STOC ’92, page 699710, New York, NY, USA, 1992. Association for
Computing Machinery. ISBN 0897915119. doi: 10.1145/129712.129780. URL https:
//doi.org/10.1145/129712.129780. 1.3, 1.3, 9, 9, 10.1.2, 10.1.2, 11.2

[35] Jun Furukawa and Yehuda Lindell. Two-thirds honest-majority mpc for malicious adver-
saries at almost the cost of semi-honest. In Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’19, pages 1557–1571, New York,
NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367479. doi: 10.
1145/3319535.3339811. URL https://doi.org/10.1145/3319535.3339811.
3

[36] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure
three-party computation for malicious adversaries and an honest majority. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, pages
225–255. Springer, 2017. 3.2

[37] Juan Garay, Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. The price of low commu-
nication in secure multi-party computation. In Advances in Cryptology – CRYPTO 2017,
pages 420–446, Cham, 2017. Springer International Publishing. ISBN 978-3-319-63688-7.
9

[38] Daniel Genkin, Yuval Ishai, Manoj M. Prabhakaran, Amit Sahai, and Eran Tromer. Circuits
resilient to additive attacks with applications to secure computation. In Proceedings of the
Forty-sixth Annual ACM Symposium on Theory of Computing, STOC ’14, pages 495–504,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2710-7. doi: 10.1145/2591796.
2591861. URL http://doi.acm.org/10.1145/2591796.2591861. 1.2, 1.2, 3,
3.2, 4.4, 7, 7.1, 7.1, 9

[39] Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. Efficient multi-party compu-
tation: from passive to active security via secure simd circuits. In Annual Cryptology
Conference, pages 721–741. Springer, 2015. 1.3, 1.3, 9, 9, 9.2, 10

[40] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 218–
229. ACM, 1987. 1, 3, 3.2

182

https://doi.org/10.1145/129712.129780
https://doi.org/10.1145/129712.129780
https://doi.org/10.1145/3319535.3339811
http://doi.acm.org/10.1145/2591796.2591861


[41] S. Dov Gordon, Daniel Starin, and Arkady Yerukhimovich. The More the Merrier: Reduc-
ing the Cost of Large Scale MPC. In Advances in Cryptology – EUROCRYPT 2021, pages
694–723, Cham, 2021. Springer International Publishing. ISBN 978-3-030-77886-6. 1.3,
1.3, 9, 9, 9.2

[42] Vipul Goyal and Yifan Song. Malicious security comes free in honest-majority mpc. Cryp-
tology ePrint Archive, Report 2020/134, 2020. https://eprint.iacr.org/2020/134. 6.3.2

[43] Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient unconditional mpc with
guaranteed output delivery. In Advances in Cryptology – CRYPTO 2019, pages 85–114,
Cham, 2019. Springer International Publishing. ISBN 978-3-030-26951-7. 3.2

[44] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery comes free in
honest majority mpc. In Advances in Cryptology – CRYPTO 2020, pages 618–646, Cham,
2020. Springer International Publishing. ISBN 978-3-030-56880-1. 1.2, 1.2, 3, 3.2, 6.2,
6.2.2, 9

[45] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and Yifan Song. At-
las: Efficient and scalable mpc inthe honest majority setting. In Advances in Cryptology
– CRYPTO 2021, pages 244–274, Cham, 2021. Springer International Publishing. ISBN
978-3-030-84245-1. 1.2, 3.2, 9

[46] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Unconditional Communication-
Efficient MPC via Hall’s Marriage Theorem. In Advances in Cryptology – CRYPTO 2021,
pages 275–304, Cham, 2021. Springer International Publishing. ISBN 978-3-030-84245-1.
1.3, 9.2

[47] Brett Hemenway, Steve Lu, Rafail Ostrovsky, and William Welser IV. High-precision
secure computation of satellite collision probabilities. In Vassilis Zikas and Roberto
De Prisco, editors, Security and Cryptography for Networks, pages 169–187, Cham, 2016.
Springer International Publishing. ISBN 978-3-319-44618-9. 9.2

[48] Martin Hirt and Ueli Maurer. Robustness for free in unconditional multi-party computation.
In Annual International Cryptology Conference, pages 101–118. Springer, 2001. 3.2

[49] Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure multi-party computation.
In International Conference on the Theory and Application of Cryptology and Information
Security, pages 143–161. Springer, 2000. 3.2

[50] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivi-
ous transfer - efficiently. In Advances in Cryptology - CRYPTO 2008, 28th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008. Pro-
ceedings, volume 5157 of Lecture Notes in Computer Science, pages 572–591. Springer,
2008. doi: 10.1007/978-3-540-85174-5\ 32. URL https://doi.org/10.1007/
978-3-540-85174-5_32. 1.3

[51] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat Paskin-
Cherniavsky. On the power of correlated randomness in secure computation. In
Proceedings of the 10th Theory of Cryptography Conference on Theory of Cryp-
tography, TCC’13, page 600620, Berlin, Heidelberg, 2013. Springer-Verlag. ISBN
9783642365935. doi: 10.1007/978-3-642-36594-2 34. URL https://doi.org/10.

183

https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34


1007/978-3-642-36594-2_34. 9.2

[52] Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and Ching-Hua Yu. Secure
protocol transformations. In Advances in Cryptology – CRYPTO 2016, pages 430–458,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. ISBN 978-3-662-53008-5. 1.2, 9.2

[53] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: Faster malicious arithmetic
secure computation with oblivious transfer. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, page 830842, New York,
NY, USA, 2016. Association for Computing Machinery. ISBN 9781450341394. doi: 10.
1145/2976749.2978357. URL https://doi.org/10.1145/2976749.2978357.
9.2

[54] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making spdz great again. In
Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT
2018, pages 158–189, Cham, 2018. Springer International Publishing. ISBN 978-3-319-
78372-7. 9.2

[55] Joe Kilian. Founding crytpography on oblivious transfer. In Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing, STOC ’88, page 2031, New York, NY,
USA, 1988. Association for Computing Machinery. ISBN 0897912640. doi: 10.1145/
62212.62215. URL https://doi.org/10.1145/62212.62215. 1.3

[56] Yehuda Lindell and Ariel Nof. A framework for constructing fast mpc over arithmetic
circuits with malicious adversaries and an honest-majority. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pages 259–276.
ACM, 2017. 1.2, 3.2

[57] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose obliv-
ious transfer. Journal of cryptology, 25(4):680–722, 2012. 3.2

[58] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine
learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’18, page 3552, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450356930. doi: 10.1145/3243734.3243760. URL
https://doi.org/10.1145/3243734.3243760. 9.2

[59] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Advances
in Cryptology–CRYPTO 2012, pages 681–700. Springer, 2012. 3.2

[60] Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in honest-
majority mpc by batchwise multiplication verification. In Applied Cryptography and Net-
work Security, pages 321–339, Cham, 2018. Springer International Publishing. ISBN 978-
3-319-93387-0. 1.2, 1.2, 3, 3.1, 3.2, 4.4, 4.4.1, 4.4.2, 4.4.2, 4.4.3, 4.1, 4.4.3, 7.2, 7.2,
9

[61] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. ABY2.0: Im-
proved Mixed-Protocol secure Two-Party computation. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2165–2182. USENIX Association, August
2021. ISBN 978-1-939133-24-3. URL https://www.usenix.org/conference/

184

https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/62212.62215
https://doi.org/10.1145/3243734.3243760
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://www.usenix.org/conference/usenixsecurity21/presentation/patra


usenixsecurity21/presentation/patra. 9.2

[62] Antigoni Polychroniadou and Yifan Song. Constant-Overhead Unconditionally Secure
Multiparty Computation Over Binary Fields. In Advances in Cryptology – EUROCRYPT
2021, pages 812–841, Cham, 2021. Springer International Publishing. ISBN 978-3-030-
77886-6. 9, 10, 11.4, 15, 15.1

[63] Dragos Rotaru and Tim Wood. Marbled circuits: Mixing arithmetic and boolean circuits
with active security. In Feng Hao, Sushmita Ruj, and Sourav Sen Gupta, editors, Progress
in Cryptology – INDOCRYPT 2019, pages 227–249, Cham, 2019. Springer International
Publishing. ISBN 978-3-030-35423-7. 9.2

[64] Adi Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, November 1979.
ISSN 0001-0782. doi: 10.1145/359168.359176. URL http://doi.acm.org/10.
1145/359168.359176. 3, 4, 5.1, 10.1.2, 11.2

[65] Andrew C Yao. Protocols for secure computations. In Foundations of Computer Science,
1982. SFCS’08. 23rd Annual Symposium on, pages 160–164. IEEE, 1982. 1, 3, 3.2

185

https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176

	1 Introduction
	1.1 Setting
	1.2 Part I: Efficient Information-Theoretic MPC with Honest Majority
	1.3 Part II: Sharing Transformation and Applications to Dishonest Majority MPC with Packed Secret Sharing

	2 The Model: Secure Multiparty Computation
	2.1 Security Definition
	2.2 Hybrid Model and Preprocessing Model
	2.3 Client-server Model

	I Efficient Information-Theoretic MPC with Honest Majority
	3 Introduction for Part I
	3.1 Our Contributions
	3.2 Related Works

	4 Technical Overview
	4.1 Review: The Semi-Honest DN Protocol DN07
	4.2 Reducing the Communication Complexity via t-wise Independence
	4.3 Reducing the Number of Rounds via Beaver Triples
	4.4 Achieving Malicious Security
	4.4.1 Review: Batch-wise Multiplication Verification
	4.4.2 Extensions
	4.4.3 Fast Verification for a Batch of Multiplication Tuples
	4.4.4 Achieving Malicious Security for Our Two Semi-honest Protocols


	5 Preliminaries
	5.1 Shamir Secret Sharing Scheme
	5.2 Generating Random Sharings
	5.3 Generating Random Double Sharings
	5.4 Generating Random Coins

	6 Efficient Semi-Honest MPC Protocols
	6.1 Review of the Semi-Honest DN Protocol in DN07
	6.2 Reducing the Communication Complexity via t-wise Independence
	6.2.1 Our Observation
	6.2.2 ATLAS Multiplication Protocol
	6.2.3 Using Fmult' in the Semi-Honest DN protocol in DN07

	6.3 Reducing the Number of Rounds via Beaver Triples
	6.3.1 An Overview of Our Approach
	6.3.2 Improving the Original Multiplication Protocol in DN07
	6.3.3 Evaluating a Two-Layer Circuit
	6.3.4 Main Protocol


	7 Fast Verification for a Batch of Multiplication Tuples
	7.1 Extension of the DN Multiplication Protocol
	7.2 Extension of the Batch-wise Multiplication Verification Technique
	7.3 Our Verification Protocol
	7.3.1 Step One: De-Linearization
	7.3.2 Step Two: Dimension-Reduction
	7.3.3 Step Three: Randomization
	7.3.4 Summary

	7.4 Compiling the Semi-Honest DN Protocol with Malicious Security

	8 Achieving Malicious Security
	8.1 Achieving Malicious Security for the t-wise Variant
	8.2 Achieving Malicious Security for the round-compression Variant


	II Sharing Transformation and Applications to Dishonest Majority MPC with Packed Secret Sharing
	9 Introduction for Part II
	9.1 Our Contributions
	9.2 Related Works

	10 Technical Overview
	10.1 Preparing Random Sharings for Different Linear Secret Sharing Schemes
	10.1.1 Starting Point - Preparing a Random Sharing for a Single Linear Secret Sharing Scheme
	10.1.2 Preparing Random Sharings for a Batch of Different Linear Secret Sharing Schemes

	10.2 Application: MPC via Packed Shamir Secret Sharing Schemes
	10.2.1 Network Routing
	10.2.2 Evaluating Multiplication Gates Using Packed Beaver Triples
	10.2.3 Summary
	10.2.4 An Alternative Approach for Network Routing
	10.2.5 Other Results


	11 Preparing Random Sharings for Different Arithmetic Secret Sharing Schemes
	11.1 Arithmetic Secret Sharing Schemes
	11.2 Packed Shamir Secret Sharing Scheme
	11.3 Preparing Random Sharings for Different Arithmetic Secret Sharing Schemes
	11.4 Instantiating Protocol Rand-Sharing via Packed Shamir Secret Sharing Scheme
	11.5 Application of Frand-sharing

	12 Semi-Honest Protocol
	12.1 Circuit-Independent Preprocessing Phase
	12.2 Online Computation Phase
	12.2.1 Input Layer
	12.2.2 Network Routing
	12.2.3 Evaluating Addition Gates and Multiplication Gates
	12.2.4 Output Layer
	12.2.5 Main Protocol


	13 An Alternative Approach for Network Routing
	13.1 Preliminaries: Hall's Marriage Theorem
	13.2 Network Routing using Hall's Marriage Theorem

	14 Maliciously Secure Protocol
	14.1 Performing Sharing Transformation with Malicious Security
	14.1.1 Preparing Random Sharings for Sharing Transformations
	14.1.2 Performing Sharing Transformation

	14.2 Circuit-Independent Preprocessing Phase
	14.3 Online Computation Phase
	14.3.1 Input Layer
	14.3.2 Network Routing
	14.3.3 Evaluating Addition Gates and Multiplication Gates
	14.3.4 Output Layer

	14.4 Main Protocol

	15 Honest Majority MPC with Sublinear Online Communication
	15.1 Preparing Random Sharings in Batch
	15.1.1 Preparing Verified Sharings.
	15.1.2 Converting to Random Sharings.

	15.2 Preprocessing for Honest Majority with Malicious Security

	Bibliography


