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Abstract

Algorithms from diverse domains often have tunable parameters that have a
significant impact on performance metrics such as solution quality, runtime, and
memory usage. Typically, the optimal setting depends intimately on the application
domain at hand. Hand-tuning parameters is often tedious, time-consuming, and
error-prone, so a burgeoning line of research has studied automated algorithm con-
figuration via machine learning, where a training set of typical problem instances
from the application at hand is used to find high-performing parameter settings.

In this thesis, we help develop the theory and practice of automated algorithm
configuration. We investigate both statistical and algorithmic questions. For ex-
ample, how large should the training set be to ensure that an algorithm’s average
performance over the training set is indicative of its future performance on unseen
instances? How can we algorithmically find provably high-performing configura-
tions? As we answer these questions, we analyze parameterized algorithms from a
variety of domains, including:

1. Integer programming. We study branch-and-bound algorithms for integer linear
programming, the most widely-used tools for solving combinatorial and non-
convex problems. Beyond answering the algorithmic and statistical questions
above, we provide experiments demonstrating that no one parameter setting is
optimal across all application domains, and that tuning parameters using our
approach can have a significant impact on algorithmic performance. We also
analyze integer quadratic programming approximation algorithms, which can
be used to find nearly-optimal solutions to a variety of combinatorial problems.

2. Mechanism design. A mechanism is a special type of algorithm that plays a cru-
cial role in economics and political science. A mechanism’s purpose is to help a
set of agents come to a collective decision. In economics, for example, a mech-
anism might dictate how a set of items should be split among the agents, given
their values for those items. Mechanisms often have tunable parameters that
impact, for example, their revenue. No one setting is optimal across all mech-
anism design scenarios. In this thesis, we analyze sales mechanisms, where
the goal is to maximize revenue, and voting mechanisms, where the goal is to
maximize the agents’ total value for the outcome the mechanism selects.

3. Computational biology. Algorithms from computational biology are often highly
parameterized, and understanding which parameter settings are optimal in
which scenarios is an active area of research. We analyze parameterized algo-
rithms for several fundamental problems from computational biology, includ-
ing sequence alignment, RNA folding, and predicting topologically associating
domains in DNA sequences.

The key challenge from both an algorithmic and statistical perspective is that across
these three diverse domains, an algorithm’s performance is an erratic function of its
parameters. This is because a small tweak to the parameters can cause a cascade
of changes in the algorithm’s performance. We develop tools for analyzing and
optimizing these volatile performance functions, which we use to provide parameter
tuning procedures and strong statistical guarantees.
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10.1 Illustration of Example 10.4.6. The lines in Figure 10.1a depict the average of
four utility functions corresponding to the first-price auction. The maximum of
this average falls at the top of the blue region. We evaluate the function in Fig-
ure 10.1a on the grid
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0, 1

4 , 1
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Chapter 1

Introduction

An important property of those algorithms that are typically used in practice is broad applicabil-
ity—the ability to solve problems across diverse domains. For example, integer programming
solvers, which are the most widely-used tools for solving combinatorial problems, have a huge
array of applications, including routing, manufacturing, scheduling, planning, and many oth-
ers. However, broadly applicable algorithms can have unsatisfactory default, out-of-the-box
performance: they can have slow runtime or return poor-quality solutions, among other pit-
falls.

One key challenge is that these broadly-applicable algorithms often come with many tun-
able parameters. This is true, for example, of integer programming solvers like CPLEX and
Gurobi: CPLEX comes with a 170-page manual describing 172 tunable parameters [IBM ILOG
Inc, 2017], which can have a significant impact on the time it takes CPLEX to find an opti-
mal solution. Tuning these parameters by hand is a notoriously time-consuming, tedious, and
error-prone process. This raises the question: how should one find the best configuration of
these parameters for the specific application domain at hand? Whichever configuration is best
for solving the routing problems a shipping company must solve day after day is likely not
well-suited for the scheduling problems an airline must solve.

In practice, we often have ample data about the specific application domain in which we will
use the algorithm, data we could potentially harness in the process of algorithm configuration.
For example, a shipping company has access to all of the routing problems it had to solve over
the course of a year, and an airline has access to all of the scheduling problems it has to solve
day after day. If we could use this data together with machine learning to automate the process
of algorithm configuration, then we could shift the burden of parameter tuning from human to
machine, which would allow us to solve more problems faster, and in conjunction, these would
provide significant boons in both profit and welfare.

Our goal is to provide practical procedures that come with rigorous theoretical guarantees
for integrating machine learning and optimization into the process of algorithm design, and in
particular, algorithm configuration. Since the early 2000s, researchers have proposed myriad
ways in which machine learning can aid algorithm design, leading to breakthroughs in con-
straint satisfaction programming and integer programming [e.g., Horvitz et al., 2001, Hutter
et al., 2009, 2011, Kadioglu et al., 2010, Sandholm, 2013, Xu et al., 2008, 2011], among many
other fields. Starting in the mid-2010s, there has been a surge of interest in this topic from a
theoretical perspective, with research on automated algorithm configuration and selection [Bal-
can, 2020, Balcan et al., 2017, 2018a,b,c, 2020a,b,c,e, 2021a,c, Blum et al., 2021, Cohen-Addad and
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Kanade, 2017, Garg and Kalai, 2018, Gupta and Roughgarden, 2017, Kleinberg et al., 2017, 2019,
Weisz et al., 2018, 2019]—the focus of this thesis—as well as learning-augmented algorithms,
where worst-case algorithms are endowed with machine-learned hints about the input distri-
bution [Hsu et al., 2019, Kraska et al., 2018, Lykouris and Vassilvitskii, 2018, Mitzenmacher,
2018, Purohit et al., 2018].

This thesis covers the use of machine learning in the context of algorithm design in a vari-
ety of different settings, including integer programming algorithms, algorithms for economic
contexts (or mechanisms), and computational biology algorithms. It also exposes overarching
structure linking these seemingly disparate domains which has allowed us to provide very gen-
eral procedures for using machine learning in the context of algorithm design, together with
unifying theoretical guarantees.

1.1 A machine learning approach to automated configuration

The majority of the results in this thesis apply to a well-studied approach to automated algo-
rithm configuration based on a classic machine learning paradigm called batch learning. First,
we fix an algorithm with parameters we aim to optimize, such as an integer programming
solver. The configuration procedure receives as input a batch of typical problem instances from
the specific application domain at hand, referred to as the training set. This set could consist
of, for example, all of the routing integer programs that a shipping company in Pittsburgh had
to solve over the course of a year. Demand changes every day, so the shipping company will
have to solve new routing integer programs daily. Though different, these routing integer pro-
grams share similar underlying structure—for example, the underlying road network remains
the same. Therefore, we can hope that if we find a configuration that works well on data from
the past—our training set—it will also have strong performance on problems from the same
application that we will encounter in the future. Performance can be measured, for example,
in terms of the algorithm’s runtime, its solution quality, or its memory usage, among other
metrics.

There are several important questions we need to answer about this approach to algorithm
configuration:

1. How should we find a configuration with strong average empirical performance over the
training set? An extensive line of research has studied this question from an applied per-
spective [e.g., Hutter et al., 2009, 2011, Kadioglu et al., 2010, Sandholm, 2013, Xu et al.,
2008, 2011], but only recently has it been investigated from a theoretical perspective. In
Part II of this thesis, we provide a procedure that provably finds nearly-optimal configu-
rations.

2. No matter what procedure we use to optimize the parameters—automated or manual, optimal
or suboptimal—can we guarantee that any configuration’s average empirical performance
over the training set is indicative of its future performance on problems from the same
application domain but which are not already in our training set? Learning theory warns
us that if the parameterized algorithm is highly complex and the training set is too small,
a parameter setting may lead to strong average empirical performance over the training
set but poor future performance on unseen instances. In other words, the configuration
procedure may overfit to the training set. This raises the question: how large should the
training set be to ensure that for any parameter setting, its average empirical performance
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over the training set is close to its expected, future performance? This type of bound is
known as a sample complexity guarantee. In Part I of this thesis, we thoroughly investigate
this question of sample complexity.

One of the key challenges we face in providing these types of provable guarantees for
algorithm configuration is that in these combinatorial domains, an algorithm’s performance—
measured, for example, in terms of its runtime or solution quality—is a notoriously volatile
function of its parameters, with many jump discontinuities. Intuitively, this is because an in-
finitesimal change in the algorithm’s parameters can cause a cascade of changes in its behavior,
triggering large jumps in its performance. This is unlike functions we understand well from a
theoretical perspective in machine learning, where there is typically a close connection between
a function’s parameters and its value on any given input. Since we don’t have this predictable
behavior in combinatorial algorithm configuration, we must understand: what structure is
there which will allow us to provide provable guarantees? In this thesis, we uncover this struc-
ture for a diverse array of algorithm configuration problems, with the chapters organized as
follows.

Chapter 2: Background and related research. We frame the algorithm configuration problem
formally, using a learning-theoretic model of algorithm configuration studied first by
Gupta and Roughgarden [2017] and by many subsequent papers [Balcan, 2020, Balcan
et al., 2017, 2018a,b,c, 2020a,e, 2021a,c, Blum et al., 2021, Garg and Kalai, 2018]. We then
introduce classic tools from theoretical machine learning that we will use throughout
this thesis, including pseudo-dimension and Rademacher complexity. These tools allow us to
quantify the intrinsic complexity of a parameterized algorithm, which then allows us to
derive sample complexity guarantees. To help put the results in this thesis into a broader
context, we describe related research on the use of machine learning in the context of
algorithm design, focusing on theoretical research.

Chapter 3: Integer quadratic programming algorithms. We begin by analyzing approximation
algorithms for finding nearly-optimal solutions to integer quadratic programs (IQPs).
These algorithms can be used to find approximate solutions to, for example, the canoni-
cal max-cut and max 2SAT problems.

Chapter 4: Integer linear programming algorithms. We next analyze branch-and-bound algo-
rithms for solving integer linear programs. Branch-and-bound algorithms are used under
the hood by popular commercial solvers such as CPLEX and Gurobi. These algorithms
have many tunable parameters that can have an enormous effect on the size of the search
tree the algorithm builds before it finds an optimal solution. Along with sample complex-
ity guarantees, we present experiments demonstrating that no one parameter setting is
optimal across all application domains, so a machine learning approach can significantly
improve tree size.

Chapter 5: Mechanism design. In this chapter, we study a specific type of algorithm—called
a mechanism—used to help rational agents come to collective decisions. For example,
mechanisms can be used to help a seller decide how to split a set of items for sale among
a set of buyers, and what those buyers should pay. We analyze mechanisms for selling
items as well as mechanisms for voting. Mechanisms typically come with a variety of
tunable parameters which impact, for example, the mechanism’s revenue. We provide
sample complexity bounds for tuning these mechanism parameters.
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Chapter 6: Computational biology algorithms. We study algorithm configuration for a vari-
ety of computational biology algorithms. We begin by analyzing sequence alignment
algorithms, which are used, for example, to uncover similarities between multiple DNA,
RNA, or protein sequences. We also analyze RNA folding algorithms, which predict
how an input RNA strand would naturally fold, offering insight into the RNA molecule’s
function. Finally, we study algorithms for predicting topologically associating domains
in DNA sequences, which shed light on how the input DNA sequence wraps into three-
dimensional structures that influence genome function.

Chapter 7: Pseudo-dimension bounds for piecewise-structured performance functions. In our
analysis of the diverse algorithm and mechanism families in Chapters 3-6, we notice a
key structure that links all of them and is at the root of our sample complexity analyses:
for any fixed problem instance, the algorithm’s performance—for example, its runtime
or solution quality—is a piecewise-structured function of its parameters (for example,
the function is piecewise-constant or -linear). This structure has also been observed in
contexts beyond those studied in this thesis, including clustering and greedy algorithm
configuration [Balcan et al., 2017, 2018c, 2020a, Gupta and Roughgarden, 2017]. In this
chapter, we provide a broadly-applicable theorem that recovers these prior sample com-
plexity bounds. We also describe the relationship to general structure used for no-regret
online algorithm configuration [Balcan et al., 2018b, 2020b,c] in Sections 2.2 and 7.1.

Chapter 8: Data-dependent guarantees. In this chapter, we provide data-dependent sample
guarantees (as opposed to the results in the previous chapters, which hold for worst-case
distributions over problem instances). We instantiate our guarantees in the context of
integer linear programming algorithm configuration, the focus of Chapter 4.

Chapter 9: Portfolio-based algorithm selection. Chapters 3-8 focused on the problem of learn-
ing a single parameter configuration with strong future, expected performance. A more
flexible approach is to learn a portfolio of multiple parameter configurations and then at
runtime, use the configuration with the strongest predicted performance. This approach
has seen enormous success in practice. In this chapter, we provide end-to-end, provable
guarantees for learning a portfolio in conjunction with an algorithm selector, which dictates
which configuration in the portfolio should be used at runtime.

Chapter 10: Estimating approximate incentive compatibility. We conclude Part I by provid-
ing additional tools that can be used in the context of economic mechanism design via
machine learning (the focus of Chapter 5). Namely, we show how to estimate to what
extent an agent is incentivized to behave strategically under a variety of mechanisms, and
provide sample complexity guarantees.

Part I of this thesis studied statistical challenges that arise when using machine learning in
the context of algorithm design. Next, Part II studies algorithmic challenges. We analyze how to
find provably high-performing configurations over a training set of typical problem instances
and other means of integrating machine learning into algorithm design.

Chapter 11: Frugal training with generalization guarantees. A recent line of research provides
algorithms that return nearly-optimal parameter settings from within a finite set [Klein-
berg et al., 2017, 2019, Weisz et al., 2018, 2019, 2020]. These algorithms can be used when
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the parameter space is infinite by providing as input a random sample of parameter
settings. This data-independent discretization, however, might miss pockets of nearly-
optimal parameter settings. We provide an algorithm that learns a finite set of promising
parameter settings from within an infinite set. Our algorithm can help compile a configu-
ration portfolio, or it can be used to select the input to a configuration algorithm for finite
parameter spaces.

Chapter 12: Learning to prune: Speeding up repeated computations. In the final chapter of
this thesis, we analyze an online algorithm design model. In this model, the algorithm
encounters a sequence of computational problems that are similar but not necessarily
drawn from a fixed distribution (unlike the previous chapters). Running a standard algo-
rithm with worst-case runtime guarantees on each instance would fail to take advantage
of valuable structure shared across the problem instances. For example, when a com-
muter drives from work to home, there are typically only a handful of routes that will
ever be the shortest path. A naı̈ve algorithm that does not exploit this common structure
may spend most of its time checking roads that will never be in the shortest path. More
generally, we can often ignore large swaths of the search space that will likely never con-
tain an optimal solution. We present an algorithm that learns to prune the search space on
repeated computations, thereby reducing runtime while provably outputting the correct
solution each period with high probability.
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Part I

Sample complexity guarantees

7





Chapter 2

Background and related research

2.1 Notation and learning theory background

In Part I of this thesis, we provide sample complexity guarantees for algorithm configura-
tion. Here we summarize the general problem statement together with notation and learning-
theoretic tools that we will use throughout. We use a learning-theoretic model of algorithm
configuration studied first by Gupta and Roughgarden [2017] and by many subsequent pa-
pers [Balcan, 2020, Balcan et al., 2017, 2018a,b,c, 2020a,e, 2021a,c, Blum et al., 2021, Garg and
Kalai, 2018]. Throughout the thesis, we adopt notation used in a paper by Balcan et al. [2018b].
Each chapter will also include its own domain-dependent background.

Throughout the thesis, we will analyze algorithms parameterized by some set P ⊆ Rd of
vectors. We use the notation Z to denote the set of problem instances the algorithm may take
as input. For example, Z might consist of integer programs if we are configuring an integer
programming solver. For every parameter vector ρ ∈ P , there is a utility function uρ : Z → R

that measures, abstractly, the performance of the algorithm parameterized by ρ given an input
z ∈ Z . For example, uρ might measure runtime, the quality of the algorithm’s output, and so
on. Depending on the context, we may wish to minimize this performance metric (for example,
when it measures runtime) or maximize it (for example, when it measures solution quality).
We use the notation U =

{
uρ : ρ ∈ P

}
to denote the set of all utility functions.

We assume there is an unknown distribution D over problem instances in Z . For example,
D might represent the integer programs an airline must solve on a day-to-day basis. The
configuration procedure does not know D, but it can sample from D.

Throughout Part I, we bound the number of samples sufficient to learn a parameter vector
with high expected utility over D. A sample complexity guarantee for the function class U
bounds the number of samples sufficient to ensure that for any function in U , its expected value
over an arbitrary distribution is close to its average value over a set of points sampled from that
distribution. More formally, a sample complexity bound is a function NU : R>0 × (0, 1) → N

together with a guarantee that for any δ ∈ (0, 1) and ε > 0, with probability 1− δ over the
draw of N ≥ NU (ε, δ) samples z1, . . . , zN ∼ D, for all parameter vectors ρ ∈ P ,∣∣∣∣∣ 1

N

N

∑
i=1

uρ (zi)− E
z∼D

[
uρ(z)

]∣∣∣∣∣ ≤ ε. (2.1)

This is also known as a uniform convergence bound because Equation (2.1) holds uniformly
across all parameter vectors ρ ∈ P .
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If uniform convergence holds, it is well-known that the empirically optimal parameter vec-
tor is nearly optimal in expectation as well. Specifically, given a set of samples S ∼ DN , let
ρ̂ = argmaxρ∈P ∑z∈S uρ(z). With probability at least 1− δ over the draw of N ≥ NU (ε, δ) sam-
ples, maxρ∈P Ez∼D

[
uρ(z)

]
−Ez∼D

[
uρ̂(z)

]
≤ 2ε. A symmetric argument holds if our goal is to

find a parameter vector ρ that minimizes uρ(z) as opposed to maximizes it.
At a high level, the specific form of NU (ε, δ) depends on the intrinsic complexity of the

class U . There are a variety of well-studied tools for quantifying a class’s intrinsic complexity,
including pseudo-dimension and Rademacher complexity, which we define below, adapting
the notation from our setting. Generally speaking, these tools measure how well functions in U
are able to fit complex patterns over many domain elements in Z . Classic results from learning
theory provide sample complexity bounds in terms of pseudo-dimension and Rademacher
complexity.

2.1.1 Pseudo-dimension

Pseudo-dimension [Pollard, 1984] is a well-studied learning-theoretic tool used to measure the
complexity of a function class. To formally define pseudo-dimension, we first introduce the
notion of shattering, which is a fundamental concept in machine learning theory.

Definition 2.1.1 (Shattering). Let U be a set of functions mapping Z to R. Let S = {z1, . . . , zN}
be a subset of Z and let t1, . . . , tN ∈ R be a set of targets. We say that t1, . . . , tN witness the
shattering of S by U if for all subsets T ⊆ S , there exists some parameter vector ρ ∈ P such
that for all elements zi ∈ T, uρ (zi) ≤ ti and for all zi 6∈ T, uρ (zi) > ti.

Definition 2.1.2 (Pseudo-dimension [Pollard, 1984]). Let U be a set of functions mapping Z to
R. Let S ⊆ Z be a largest set that can be shattered by U . Then Pdim(U ) = |S|.

When U is a set of binary-valued functions mapping Z to {0, 1}, the pseudo-dimension of U
is more commonly referred to as the VC-dimension of U , which we denote as VCdim(U ) [Vapnik
and Chervonenkis, 1971].

Theorem 2.1.3 provides generalization bounds in terms of pseudo-dimension.

Theorem 2.1.3 (Pollard [1984]). Let U be a set of functions mapping Z to an interval [−H, H] and let
dU be the pseudo-dimension of U . For any δ ∈ (0, 1) and any distribution D over Z , with probability at
least 1− δ over the draw of N samples z1, . . . , zN ∼ D, for any parameter vector ρ ∈ P , the difference
between the average value of uρ over the samples and the expected value of uρ is bounded as follows:∣∣∣∣∣ 1

N

N

∑
i=1

uρ(zi)− E
z∼D

[
uρ(z)

]∣∣∣∣∣ = O

(
H

√
1
N

(
dU + ln

1
δ

))
.

Said another way, for any ε > 0, let NU (ε, δ) := Θ
(

H2

ε2

(
dU + ln 1

δ

))
. With probability 1 −

δ over the draw of N ≥ NU (ε, δ) samples z1, . . . , zN ∼ D, for all parameter vectors ρ ∈ P , the
difference between the average value of uρ over the samples and the expected value of uρ is at most ε:∣∣∣ 1

N ∑N
i=1 uρ(zi)−Ez∼D

[
uρ(z)

]∣∣∣ ≤ ε.

Pseudo-dimension is a tool for providing worst-case sample complexity bounds: the defini-
tion of pseudo-dimension does not depend on the underlying distribution, and Theorem 2.1.3
holds for any worst-case distribution over the domain.

We will often use the following lemma to derive pseudo-dimension bounds.
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Lemma 2.1.4 (Shalev-Shwartz and Ben-David [2014]). Let a ≥ 1 and b > 0. Then x < a log x + b
implies that x < 4a log(2a) + 2b.

2.1.2 Rademacher complexity

Rademacher complexity [Bartlett and Mendelson, 2002, Koltchinskii, 2001] is another learning-
theoretic tool used to measure the complexity of a function class. Unlike pseudo-dimension,
Rademacher complexity is a data-dependent quantity: it is a measurement that depends on
both the function class U and the set S ⊆ Z of samples. Rademacher complexity intuitively
measures the extent to which functions in a class U match random noise vectors σ ∈ {−1, 1}N .

Definition 2.1.5 (Rademacher complexity). The empirical Rademacher complexity of the function
class U given a set S = {z1, . . . , zN} ⊆ Z is

R̂S (U ) =
1
N E

σ∼{−1,1}N

[
sup
ρ∈P

N

∑
i=1

σ[i]uρ (zi)

]
,

where each σ[i] equals −1 or 1 with equal probability.

Classic learning-theoretic results provide guarantees based on Rademacher complexity,
such as the following.

Theorem 2.1.6 (e.g., Mohri et al. [2012]). Let U be a set of functions mapping Z to [−H, H]. For
any δ ∈ (0, 1), with probability 1− δ over the draw of N samples S = {z1, . . . , zN} ∼ DN , for all

parameter vectors ρ ∈ P ,
∣∣∣ 1

N ∑N
i=1 uρ (zi)−Ez∼D

[
uρ(z)

]∣∣∣ = O
(

R̂S (U ) + H
√

1
N ln 1

δ

)
.

Pseudo-dimension can be used to provide a worst-case upper bound on a class’s Rademacher
complexity.

Theorem 2.1.7 (Pollard [1984]). Let U be a set of functions mapping Z to [−H, H]. For any set of

samples S ∼ DN , R̂S (U ) = O
(

H
√

Pdim(U )
N

)
.

Massart [2000] proved the following result which we use several times in this thesis.

Lemma 2.1.8 (Massart [2000]). Let A ⊆ [0, 1]N be a finite set of vectors. Then

1
N E

σ∼{−1,1}N

[
sup
a∈A

N

∑
i=1

σ[i]a[i]

]
≤
√

2 ln |A|
N

.

2.2 Related research

To help put the results in this thesis into a broader context, we describe related research on the
use of machine learning in the context of algorithm design, focusing on theoretical research. In
each chapter, we describe additional research related to the chapter’s content.
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Online algorithm configuration. A related line of research studies theoretical guarantees for
algorithm configuration in the online learning model [Balcan et al., 2018b, 2020b,c, Cohen-Addad
and Kanade, 2017, Gupta and Roughgarden, 2017], in contrast to the batch learning model de-
scribed in Sections 1.1 and 2.1. As in the batch learning model, there is a fixed algorithm whose
parameters we aim to configure. In the online learning model, problem instances (for exam-
ple, integer programs) arrive one-by-one over a series of timesteps. These problem instances
need not be drawn i.i.d. from any distribution—they may even be adversarially selected. At
each time step, the learner chooses a configuration of the algorithm, receives a problem in-
stance, and receives a reward (or penalty) which equals the performance of the algorithm (for
example, its runtime or solution quality) with the learner’s chosen configuration given that
timestep’s problem instance as input. The goal is to minimize regret, which is the difference
between the learner’s cumulative reward (or penalty) and that of the optimal configuration in
hindsight.

Regret minimization is impossible in the worst case [Gupta and Roughgarden, 2017], but
prior research shows that under some conditions, it is possible. For several algorithm config-
uration problems defined by a single tunable parameter, Gupta and Roughgarden [2017] and
Cohen-Addad and Kanade [2017] prove positive results (small constant per-round regret or
even no regret) in cases where instances are “smoothed,” a la smoothed analysis [Spielman and
Teng, 2004]. Balcan et al. [2018b, 2020b,c] show that no-regret online algorithm configuration is
possible when the algorithm’s performance is a piecewise-Lipschitz function of its parameters
and the boundaries between pieces do not concentrate. These papers prove that across many
parameterized algorithms, the algorithm’s performance is indeed piecewise-Lipschitz, and un-
der mild assumptions, the boundaries do not concentrate. Balcan, Dick, and Vitercik [2018b]
also provide sample complexity bounds for the batch learning setting under the same assump-
tions. This piecewise-Lipschitz property is even more general than the structure we formalize
and exploit in Chapter 7 to provide batch learning guarantees—namely, that the algorithm’s
performance is a “piecewise-structured” function of its parameters. However, the online and
batch learning guarantees from prior research [Balcan et al., 2018b, 2020b,c] require the addi-
tional structure that the boundaries between pieces are dispersed—an assumption that is not
needed for the batch learning sample complexity bounds in Chapter 7. Chapter 7, however,
only applies to batch learning, not online learning. We expand on this distinction in Section 7.1.

Clustering algorithm configuration. Several papers provide configuration procedures and
sample complexity guarantees for clustering algorithms, an area not covered in this thesis.
Balcan et al. [2017] provide generalization bounds for parameterized agglomerative clustering
algorithms, where the parameters define the merge function used to build the agglomerative
clustering hierarchy. Balcan et al. [2020a] study how to learn both a distance metric and a merge
function. They provide an efficient configuration algorithm that learns near-optimal distance
and merge functions from within several infinite classes, with extensive experiments. Balcan
et al. [2018c] study a parameterized clustering algorithm that generalizes Lloyd’s method, and
includes the k-means++ algorithm as a special case. Finally, Garg and Kalai [2018] provide
batch learning sample complexity guarantees for clustering algorithm configuration, using bit-
representation arguments to bound the sample complexity of optimizing the parameters of
several clustering algorithms.
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Mechanism configuration. A long line of research studies how machine learning can be used
to design and analyze mechanisms, beginning with research by Likhodedov and Sandholm
[2004, 2005] and Balcan et al. [2005, 2008]. We provide many more references and a detailed
comparison of our research with prior research in Section 5.1.

Algorithm scheduling. A related theoretical direction studies a learning-theoretic model for
algorithm scheduling [Sayag et al., 2006, Streeter and Golovin, 2009, Streeter et al., 2007], which
is a similar but distinct problem from algorithm configuration. In their setup, there are multiple
algorithms capable of computing a correct solution to a given problem, but with different costs.
The user can run multiple algorithms until one terminates with the correct solution. Given
a training set of problem instances, these papers show how to learn a schedule with nearly
minimum expected cost.

Algorithm configuration procedures with guarantees on frugality of training. A line of re-
search by Kleinberg et al. [2017, 2019] and Weisz et al. [2018, 2019] provides learning-based
algorithm configuration procedures with provable guarantees. Their algorithms return nearly-
optimal parameter settings from within a finite set, where the parameterized algorithm’s per-
formance is measured in terms of runtime. In that finite setting, the primary challenge is
to find a nearly-optimal configuration as quickly as possible. Those algorithms can also be
used when the parameter space is infinite by first sampling Ω̃(1/γ) configurations for some
γ ∈ (0, 1) and then running the algorithm over this finite set. The authors guarantee that
the output configuration will be within the top γ-quantile. If there is only a small region of
high-performing parameters, however, the uniform sample might completely miss all good
parameters. Algorithm configuration problems with only tiny pockets of high-performing pa-
rameters do indeed exist, as we prove in Chapter 4. In Chapter 11, we work towards marrying
the results presented in Part I on sample complexity guarantees for infinite parameter spaces
with this line of research by Kleinberg et al. [2017, 2019] and Weisz et al. [2018, 2019]. Subse-
quent research by Weisz et al. [2020] extends the configuration procedure by Weisz et al. [2019],
enabling it to quickly discard suboptimal configurations without running the risk of discarding
nearly-optimal configurations. It can thus operate with a better choice of γ compared to prior
research [Kleinberg et al., 2017, 2019, Weisz et al., 2018, 2019].

Algorithms aided by machine learned advice. A related line of research designs algorithms
that are aided by “machine learned advice” [e.g., Hsu et al., 2019, Lykouris and Vassilvitskii,
2018, Mitzenmacher, 2018, Purohit et al., 2018]. In essence, these algorithms use machine learn-
ing to make predictions about structural aspects of the input. If the prediction is accurate,
the algorithm’s performance (for example, its error or runtime) is superior to the best-known
worst-case algorithm, and if the prediction is incorrect, the algorithm performs as well as that
worst-case algorithm.
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Chapter 3

Integer quadratic programming
algorithms

In this chapter, we study algorithm configuration for a class of integer quadratic programming
approximation algorithms. The results in this chapter are joint work with Nina Balcan, Vaish-
navh Nagarajan, and Colin White and they appeared in COLT 2017 [Balcan et al., 2017]. Many
NP-hard problems, such as max-cut, max-2SAT, and correlation clustering, can be represented
as an integer quadratic program (IQP). IQPs appear frequently in machine learning applica-
tions, such as MAP inference [Frostig et al., 2014, Huang et al., 2014, Zhong et al., 2014] and
image segmentation and correspondence problems in computer vision [Brendel and Todorovic,
2010, Cour et al., 2006]. Max-cut is an important problem that can be formulated as an IQP and
its applications in machine learning include community detection [Bandeira et al., 2016], varia-
tional methods for graphical models [Risteski and Li, 2016], and graph-based semi-supervised
learning [Wang et al., 2013]. The seminal Goemans-Williamson max-cut algorithm is now a text-
book example of semidefinite programming [Goemans and Williamson, 1995, Vazirani, 2013,
Williamson and Shmoys, 2011]. Max-cut also arises in many other scientific domains, such as
circuit design [Yoshimura et al., 2015] and computational biology [Snir and Rao, 2006].

We focus on IQPs of the form ∑i,j∈[n] aijxixj, where the goal is to find an assignment of the bi-
nary variables X = {x1, . . . , xn} maximizing this sum for a given matrix A = (aij)i,j∈[n]. Specifi-
cally, each variable in X is set to either −1 or 1. This problem is also known as MaxQP Charikar
and Wirth [2004].

Most algorithms with the best approximation guarantees use a semi-definite programming
(SDP) relaxation. The class of algorithms that we study consists of SDP rounding algorithms
and is a generalization of the seminal Goemans-Williamson (GW) max-cut algorithm Goemans
and Williamson [1995]. The SDP relaxation has the form

maximize ∑
i,j∈[n]

aij〈wi, wj〉 subject to wi ∈ Sn−1. (3.1)

Given the set of vectors {w1, . . . , wn}, we must decide how they represent an assignment of the
binary variables in X. In the GW algorithm, the vectors are projected onto a random vector Z
drawn from the n-dimensional Gaussian distributionN . If the directed distance of the resulting
projection is greater than 0, then the corresponding binary variable is set to 1, and otherwise it
is set to −1.

In some cases, the GW algorithm can be improved upon by probabilistically assigning each

15



Algorithm 1 SDP rounding algorithm with rounding function r

Input: Matrix A ∈ Rn×n.
1: Draw a random vector Z from N , the n-dimensional Gaussian distribution.
2: Solve the SDP (3.1) for the optimal embedding U = {w1, . . . , wn}.
3: Compute set of fractional assignments r(〈Z, w1〉), . . . , r(〈Z, wn〉).
4: For all i ∈ [n], set xi to 1 with probability 1

2 + 1
2 · r (〈Z, wi〉) and −1 with probability

1
2 −

1
2 · r (〈Z, wi〉).

Output: x1, . . . , xn.

binary variable to 1 or −1. In the final rounding step, any rounding function r : R → [−1, 1]
can be used to specify that a variable xi is set to 1 with probability 1

2 + 1
2 · r (〈Z, wi〉) and −1

with probability 1
2 −

1
2 · r (〈Z, wi〉). See Algorithm 1 for the pseudocode. Algorithm 1 is known

as a Random Projection, Randomized Rounding (RPR2) algorithm, so named by the seminal work
of Feige and Langberg [2006].

We focus on the class of s-linear rounding functions in this section. For the max-cut prob-
lem, Feige and Langberg [2006] prove that when the maximium cut in the graph is not very
large, a worst-case approximation ratio above the GW ratio is possible using an s-linear round-
ing function. An s-linear rounding function φs : R → [−1, 1] is parameterized by a real-value
s > 0. The function φs is defined as follows:

φs(y) =


−1 if y < −s
y/s if − s ≤ y ≤ s
1 if y > s.

Figure 3.1: A graph of the 2-linear function φ2.

Our goal is to design an algorithm Lslin that learns a nearly-optimal s-linear rounding func-
tion. In other words, we want to find a parameter s such that the expected objective value
∑i,j∈[n] aijxixj is maximized, where the expectation is over three sources of randomness: the
matrix A, the vector Z, and the final assignment of the variables x1, . . . , xn, which depends on
A, Z, and the choice of a parameter s. This expected value is thus over distributions that are
both external and internal to Algorithm 1: the unknown distribution over matrices is external
and defines the algorithm’s input, whereas the distribution over vectors and the distribution
defining the final assignment of the variables x1, . . . , xn are internal to Algorithm 1. We call this
expected value the true utility of the parameter s.

Since the distribution D over matrices is unknown, we cannot evaluate the true utility
of any parameter, so we use samples to find a nearly optimal parameter. We draw samples
from the first two sources of randomness: the distribution over matrices and the distribution
over vectors. Thus, our set of samples has the form S =

{(
A(1), Z(1)

)
, . . . ,

(
A(N), Z(N)

)}
∼

(D ×N )N . In this way, to ease our analysis, we sample the distribution over Gaussians —
an internal source of randomness — rather than analyzing its expected value directly. Given
these samples, we define the empirical utility of a parameter s to be the expected value of
the solution returned by Algorithm 1 given A as input when it uses the hyperplane Z and
the s-linear rounding function φs in Step 3, averaged over all (A, Z) ∈ S . At a high level,
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upon sampling from the first two sources of randomness, we have isolated the third source of
randomness, whose expectation is simple to analyze. In the following analysis, we show that
every parameter’s empirical utility converges to its true utility as the sample size increases, and
thus the parameter with the highest empirical utility has a nearly optimal true utility.

Since the distribution over vectors is known to be Gaussian, an alternative route would
be to only sample the external source of randomness D over the matrices. We would then
define the empirical utility of a parameter s to be the expected value of the solution returned
by Algorithm 1 given A as input when it uses the s-linear rounding function φs in Step 3,
averaged over all A ∈ S . This would require us to incorporate the density function of a
multi-dimensional Gaussian in our analysis. We abstract out this complication by sampling the
Gaussian vectors and including them as a part of the learning algorithm’s training set, thus
simplifying the analysis significantly.

We now define the true and empirical utility of a parameter more formally. Let p(i,Z,A,s) be
the distribution from which the value of xi is drawn when Algorithm 1, given A as input, uses
the hyperplane Z and the rounding function r = φs in Step 3. The true utility of the parameter
s is EA,Z∼D×N

[
Exi∼p(i,Z,A,s)

[
∑i,j aijxixj

]]
.1 Our goal is to find a parameter whose true utility

is (nearly) optimal. Said another way, we want to find the value of s leading to the highest
expected objective value over all sources of randomness.

We do not know the distribution D over matrices, so we also need to define the empirical
utility of the parameter s given a set of samples. We will then show that this empirical utility ap-
proaches the true utility as the number of samples grows. Thus, a parameter which is nearly op-
timal on average over the samples will be nearly optimal in expectation as well. The definition
of a parameter’s empirical utility depends on a function us: let us(A, Z) denote the expected
value of the solution returned by Algorithm 1 given A as input when it uses the hyperplane
Z and the rounding function r = φs in Step 3. The expectation is over the randomness in the
assignment of each variable xi to either 1 or -1. Explicitly, us(A, Z) = Exi∼p(i,Z,A,s)

[
∑i,j aijxixj

]
.

By definition, the true utility of the parameter s equals EA,Z∼D×N [us(A, Z)].
We now define the empirical utility of a parameter s as follows. Given a set of samples(

A(1), Z(1)
)

, . . . ,
(

A(N), Z(N)
)
∼ D × N , we define the empirical utility of the parameter s

to be 1
N ∑N

i=1 us

(
A(i), Z(i)

)
. Bounding the pseudo-dimension2 of the class of functions U =

{us : s > 0}, we bound the number of samples sufficient to ensure that with high probability,
for all parameters s, the true utility of s nearly matches its expected utility. In other words,
1
N ∑N

i=1 us

(
A(i), Z(i)

)
nearly matches EA,Z∼D×N [us(A, Z)]. Thus, if we find the parameter ŝ that

maximizes 1
N ∑N

i=1 us

(
A(i), Z(i)

)
, then the true utility of ŝ is nearly optimal. In Theorem 3.0.4,

we provide a sample efficient and computationally efficient algorithm for finding ŝ.

1We use the abbreviated notation

E
A,Z∼D×N

 E
xi∼p(i,Z,A,s)

∑
i,j

aijxixj

 = E
A,Z∼D×N

 E
x1∼p(1,Z,A,s) ,...,xn∼p(n,Z,A,s)

∑
i,j

aijxixj

 .

2Since pseudo-dimension bounds imply uniform convergence guarantees for worst-case distributions, the dis-
tribution N over vectors need not be Gaussian, although this is the classic distribution of choice in the works by
Goemans and Williamson [1995] and Feige and Langberg [2006]. Indeed, our results hold when N is any arbitrary
distribution over Rn.
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We begin by characterizing the analytic form of us, which allows us to bound the pseudo-
dimension of U .

Lemma 3.0.1. Given a matrix A and a vector Z, let us(A, Z) denote the expected value of the solution
returned by Algorithm 1 given A as input when it uses the hyperplane Z and the rounding function
r = φs in Step 3. The expectation is over the randomness in the assignment of each variable xi to either
1 or -1. Then

us(A, Z) =
n

∑
i=1

a2
ii + ∑

i 6=j
aijφs(〈Z, wi〉) · φs(〈Z, wj〉).

Proof. The expected value of the solution returned by Algorithm 1 given A as input when it
uses the hyperplane Z and the rounding function r = φs in Step 3 is

E
xi∼p(i,Z,A,s)

 ∑
i,j∈[n]

aijxixj

 = ∑
i,j∈[n]

E
xi ,xj

[
aijxixj

]
=

n

∑
i=1

a2
ii E

xi
[x2

i ] + ∑
i 6=j

aij E
xi ,xj

[
xixj

]
.

Since the support of p(i,Z,A,s) is {−1, 1}, we know that

n

∑
i=1

a2
ii E

xi
[x2

i ] + ∑
i 6=j

aij E
xi ,xj

[
xixj

]
=

n

∑
i=1

a2
ii + ∑

i 6=j
aij E

xi ,xj

[
xixj

]
.

The draw xi ∼ p(i,Z,A,s) is independent from the draw xj ∼ p(j,Z,A,s), so

n

∑
i=1

a2
ii + ∑

i 6=j
aij E

xi ,xj

[
xixj

]
=

n

∑
i=1

a2
ii + ∑

i 6=j
aij E

xi∼p(i,Z,A,s)

[xi] E
xj∼p(j,Z,A,s)

[
xj
]

.

Since

E
xi∼p(i,Z,A,s)

[xi] =
1
2

+
1
2
· φs (〈Z, wi〉)−

(
1
2
− 1

2
· φs (〈Z, wi〉)

)
= φs (〈Z, wi〉) ,

this means that

us(A, Z) =
n

∑
i=1

a2
ii + ∑

i 6=j
aij E

xi
[xi] E

xj

[
xj
]

=
n

∑
i=1

a2
ii + ∑

i 6=j
aijφs(〈Z, wi〉) · φs(〈Z, wj〉).

Putting all of these equalities together, the lemma statement holds.

Using this lemma, we prove that the functions in U have a particularly simple form, which
facilitates our pseudo-dimension analysis. Roughly speaking, for a fixed matrix A and vector
Z, each function in U is a piecewise inverse-quadratic function of the parameter s.

Lemma 3.0.2. For any matrix A and vector Z, let uA,Z : R>0 → R denote the function uA,Z(s) =
us(A, Z). Each function uA,Z is made up of n + 1 piecewise components of the form a

s2 + b
s + c for some

a, b, c ∈ R. Moreover, if the border between two components falls at some s ∈ R>0, then it must be that
s = |〈wi, Z〉| for some wi in the optimal SDP embedding of A.
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Algorithm 2 An algorithm for finding an empirical value maximizing s-linear rounding func-
tion

Input: Set of samples (A(1), Z(1)), . . . , (A(N), Z(N))

1: For all i ∈ [N], solve for the SDP embedding U(i) of A(i), where U(i) =
{

w(i)
1 , . . . , w(i)

n

}
.

2: Let T =
{

s1, . . . , s|T|
}

be the set of all values s > 0 such that there exists a pair of indices

j ∈ [n], i ∈ [N] with
∣∣∣〈Z(i), w(i)

j

〉∣∣∣ = s.

3: For i ∈ [|T| − 1], let ŝi be the value in [si, si+1] which maximizes 1
N ∑N

i=1 uA(i),Z(i)(s).
4: Let ŝ be the value in {ŝ1, . . . , ŝ|T|−1} that maximizes 1

N ∑N
i=1 uA(i),Z(i)(s).

Output: ŝ

Proof. Let X = {w1, . . . , wn} ⊂ Sn−1 be the optimal embedding of A. We may write uA,Z(s) =

∑n
i=1 a2

ii + ∑i 6=j aijφs (vi) · φs
(
vj
)

, where vi = 〈wi, Z〉 and vj = 〈wj, Z〉. For any i ∈ [n], the
specific form of φs (vi) depends solely on whether |vi| ≤ s or |vi| > s (recall that s > 0, by
definition). So long as |vi| > s, we know φs (vi) = ±1, where the sign depends on the sign
of vi. Otherwise, when |vi| < s, φs(vi) = vi/s. Therefore, if we order the set of real values
{|vi| , . . . , |vn|}, then so long as s falls between two consecutive elements of this ordering, the
form of uA,Z(s) is fixed. In particular, each summand is either a constant, a constant multiplied
by 1

s , or a constant multiplied by 1
s2 . This means that we may partition the positive real line

into n + 1 intervals where the form of uA,Z(s) is a fixed quadratic function, as claimed.

This fact implies the following pseudo-dimension bound.

Theorem 3.0.3. The pseudo-dimension of U = {us : s > 0} is O(ln n).

Proof. We prove this upper bound by showing that if a set S of size N is shatterable, then
N = O(log n). This means that the largest shatterable set must be of size O(log n), so the
pseudo-dimension of U is O(log n). We arrive at this bound by fixing a tuple

(
A(i), Z(i)

)
∈ S

and analyzing uA,Z(s). In particular, we make use of Lemma 3.0.2, from which we know that
uA,Z(s) is composed of n + 1 piecewise quadratic components. Therefore, if ti is the target
corresponding to the element

(
A(i), Z(i)

)
, we can partition the positive real line into at most

3(n + 1) intervals where uA,Z(s) is always either less than its target ti or greater than ti as
s varies over one fixed interval. The constant 3 term comes from the fact that for a single,
continuous quadratic component of uA,Z(s), the function may equal ti at most twice, so there
are at most three subintervals where the function is less than or greater than ti.

The set S consists of N tuples
(

A(i), Z(i)
)

, each of which corresponds to its own partition
of the positive real line. If we merge these partitions, we are left with at most (3n + 2)N + 1
intervals such that for all i ∈ [N], uA(i),Z(i)(s) is always either less than its target ti or greater
than ti as s varies over one fixed interval. In other words, in one interval, the binary labeling of
S , defined by whether each sample is less than or greater than its target, is fixed. This means
that if S is shatterable, the 2N values of s which induce all 2N binary labelings of S must come
from distinct intervals. Therefore 2N ≤ (3n + 2)N + 1, so N = O(log n).

Lemma 3.0.2 also suggests a learning algorithm, Algorithm 2, that is computationally and
sample efficient.
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Theorem 3.0.4. Let H = supA∈supp(D) ||A||c, where || · ||c is the cut norm and supp(D) denotes the

support of D.3 Given a set of N = Θ
((H

ε

)2
log n

δ

)
samples drawn from D ×N , let ŝ be the output of

Algorithm 2. With probability at least 1− δ, the true utility of ŝ is ε-close optimal:

max
s>0

E
A∼D,Z∼N

[us(A, Z)]− E
A∼D,Z∼N

[uŝ(A, Z)] ≤ ε.

Proof. Let S =
{(

A(1), Z(1)
)

, . . . ,
(

A(N), Z(N)
)}

be a sample of size N. First, we prove that Al-

gorithm 2 on input S returns the value ŝ which maximizes 1
N ∑N

i=1 us

(
A(i), Z(i)

)
in polynomial

time. In Lemma 3.0.2, we prove that each function uA(i),Z(i)(s) is made up of at most n + 1 piece-

wise components of the form a
s2 + b

s + c for some a, b, c ∈ R. Therefore, 1
N ∑N

i=1 us

(
A(i), Z(i)

)
is

made up of at most Nn + 1 piecewise components of the form a
s2 + b

s + c as well. Moreover, by
Lemma 3.0.2, if the border between two components falls at some s ∈ R>0, then it must be that∣∣∣〈Z(i), w(i)

j

〉∣∣∣ = s for some w(i)
j in the optimal max-cut SDP embedding of A(i). These are the

thresholds which are computed in Step 2 of Algorithm 2. Therefore, as we increase s starting
at 0, s will be a fixed inverse-quadratic function between the thresholds, so it is simple to find
the optimal value of s between any pair of consecutive thresholds (Step 3), and then the value
maximizing 1

N ∑N
i=1 us

(
A(i), Z(i)

)
(Step 4), which is the global optimum.

Next, from Theorem 3.0.3, we have that with N = O
((H

ε

)2 (
log n + log 1

δ

))
samples, with

probability at least 1− δ, for all s > 0,∣∣∣∣∣ 1
N

N

∑
i=1

us

(
A(i), Z(i)

)
− E

(A,Z)∼D×N
[us (A, Z)]

∣∣∣∣∣ < ε

2
.

Since this is true for the parameter ŝ returned by Algorithm 2 and for the optimal parameter
s∗ = argmaxs>0 EA∼D,Z∼N [us(A, Z)], we know that with probability at least 1− δ,

E
A∼D,Z∼N

[us∗(A, Z)]− E
A∼D,Z∼N

[uŝ(A, Z)] ≤ ε,

as claimed.

3H is an upper bound on the value of us(A, Z) for any s > 0 and any (A, Z) in the support of D ×N .
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Chapter 4

Integer linear programming algorithms

In this chapter, we study the configuration of tree search algorithms. These algorithms are the
most widely used tools for solving combinatorial and nonconvex problems throughout artificial
intelligence, operations research, and beyond (e.g., [Russell and Norvig, 2010, Williams, 2013]).
For example, branch-and-bound (B&B) algorithms [Land and Doig, 1960] solve mixed integer
linear programs (MILPs), and thus have diverse applications.

A tree search algorithm systematically partitions the search space to find an optimal solu-
tion. The algorithm organizes this partition via a tree: the original problem is at the root and
the children of a given node represent the subproblems formed by partitioning the feasible set
of the parent node. A branch is pruned if it is infeasible or it cannot produce a better solution
than the best one found so far by the algorithm. Typically the search space is partitioned by
adding an additional constraint on some variable. For example, suppose the feasible set is
defined by the constraint Ax ≤ b, with x ∈ {0, 1}n. A tree search algorithm might partition this
feasible set into two sets, one where Ax ≤ b, x[1] = 0, and x[2], . . . , x[n] ∈ {0, 1}, and another
where Ax ≤ b, x[1] = 1, and x[2], . . . , x[n] ∈ {0, 1}, in which case the algorithm has branched
on x[1]. A crucial question in tree search algorithm design is determining which variable to
branch on at each step. An effective variable selection policy can have a tremendous effect on
the size of the tree. Currently, there is no known optimal strategy and the vast majority of
existing techniques are backed only by empirical comparisons. In the worst-case, finding an
approximately optimal branching variable, even at the root of the tree alone, is NP-hard. This
is true even in the case of satisfiability, which is a special case of constraint satisfaction and of
MILP [Liberatore, 2000].

In this chapter, rather than attempt to characterize a branching strategy that is universally
optimal, we show empirically and theoretically that it is possible to learn high-performing
branching strategies for a given application domain. We model an application domain as a
distribution over problem instances, such as a distribution over scheduling problems that an
airline solves on a day-to-day basis. The algorithm designer does not know the underlying
distribution over problem instances, but has sample access to the distribution. We show how
to use samples from the distribution to learn a variable selection policy that will result in as
small a search tree as possible in expectation over the underlying distribution.

Our learning algorithm adaptively partitions the parameter space of the variable selection
policy into regions where for any parameter in a given region, the resulting tree sizes across
the training set are invariant. The learning algorithm returns the empirically optimal parame-
ter over the training set, and thus performs empirical risk minimization (ERM). We prove that
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the adaptive nature of our algorithm is necessary: performing ERM over a data-independent
discretization of the parameter space can yield terrible results. In particular, for any discretiza-
tion of the parameter space, we provide an infinite family of distributions over MILP instances
such that every point in the discretization results in a B&B tree with exponential size in expec-
tation, but there exist infinitely-many parameters outside of the discretized points that result
in a tree with constant size with probability 1. A small change in parameters can thus cause
a drastic change in the algorithm’s behavior. This fact contradicts conventional wisdom. For
example, SCIP, the best open-source MILP solver, sets one of the parameters we investigate to
5/6, regardless of the input MILP’s structure. Achterberg [2009] wrote that 5/6 was empirically
optimal when compared against four other data-independent values. In contrast, our analysis
shows that a data-driven approach to parameter tuning can have an enormous benefit.

We present the first sample complexity guarantees for automated configuration of tree
search algorithms. We provide worst-case bounds proving that a surprisingly small number of
samples are sufficient for strong learnability guarantees: the sample complexity bound grows
quadratically in the size of the problem instance, despite the complexity of the algorithms we
study.

In our experiments section, we show that on many datasets based on real-world NP-hard
problems, different parameters can result in B&B trees of vastly different sizes. Using an
optimal parameter setting for one distribution on problems from a different distribution can
lead to a dramatic tree size blowup.

The results in this section are joint work with Nina Balcan, Travis Dick, and Tuomas Sand-
holm, and the majority appeared in ICML 2018 [Balcan et al., 2018a].

4.1 Related research

Algorithm selection and configuration have been studied for decades, dating back to a seminal
paper by Rice [1976]. In this section, we highlight related research in the context of algorithm
configuration for tree search.

4.1.1 Industrial uses

Automated algorithm configuration has had success in industry already. Sandholm [2013] used
it to configure integer programming approaches for winner determination in $60 billion of com-
binatorial auctions from 2001 to 2010. He used automated configuration approaches both to
select among modeling choices and choices within the integer programming algorithms them-
selves. Since then, all the major commercial integer programming solvers have started to ship
with algorithm configuration tools that allow customers to automatically tune the solver’s pa-
rameters to their specific problems. For example, CPLEX introduced an automated parameter
tuning tool in 2007 [IBM ILOG Inc, 2007].

4.1.2 Algorithm configuration procedures for tree search

A high-level distinction among automated algorithm configuration approaches is whether one
is trying to find one configuration that performs well for the entire application-specific distri-
bution over problem instances, or one is trying to select different configurations for different
problems instances based on problem instance features. In this chapter we focus on the former

22



problem. The latter approach has also been used Kadioglu et al. [2010], Leyton-Brown et al.
[2009], Sandholm [2013], Xu et al. [2008, 2011]. That work, too, has been empirical and has not
offered generalization guarantees.

General algorithm configuration procedures. Hutter et al. [2009] provide an algorithm called
ParamILS which uses iterated local search to find high-performing parameter settings, em-
ploying a careful adaptive capping procedure to make sure time is not wasted evaluating bad
configurations. Ansótegui et al. [2009] propose an algorithm called GGA which relies on ge-
netic algorithms to find high-performing configurations. ISAC [Kadioglu et al., 2010] (short
for “instance specific algorithm configuration”) uses GGA to learn a mapping from problem
instances to high-performing parameter settings, in contrast with ParamILS and GGA, which
learn a single parameter setting with strong expected performance.

Whereas ParamILS and GGA are model-free approaches, the next generation of algorithm
configuration procedures, such as SMAC [Hutter et al., 2011], are model-based approaches.
SMAC iterates between fitting models that predict algorithmic performance and using those
models to select promising parameter settings to further investigate.

Configuring variable-selection policies. As in the present chapter, Khalil et al. [2016] study
variable-selection policies. Their goal is to find a variable-selection strategy that mimics the
behavior of the classic branching strategy known as strong branching while running faster than
strong branching. Alvarez et al. [2017] study a similar problem, although in their paper, the
feature vectors in the training set describe nodes from multiple MILP instances. Neither of
these papers come with theoretical guarantees, unlike the present chapter.

Several other papers also study data-driven variable selection from a purely experimental
perspective. Di Liberto et al. [2016] devise an algorithm that learns how to dynamically switch
between different branching heuristics in the tree. Karzan et al. [2009] propose techniques
for choosing instance-specific branching rules based on first running a small partial search on
the instance. In the context of CSP and SAT solving, several papers use a multi-armed ban-
dit [Liang et al., 2016, Xia and Yap, 2018] or reinforcement learning [Lagoudakis and Littman,
2001] approach to optimize variable-selection policies.

From a theoretical perspective, Le Bodic and Nemhauser [2017] present a variable-selection
model based on an abstraction to a simpler setting in which it is possible to analytically evaluate
the dual bound improvement of choosing a given variable. Based on that model, they present
a new variable selection policy which has strong performance on many MIPLIB instances.

Configuring additional aspects of tree search. Researchers have explored the use of machine
learning techniques in the context of other aspects of B&B beyond variable selection, such as
Sandholm [2013], who studies, for example, how to learn which MIP modeling techniques and
cutting planes to use, Sabharwal et al. [2012] and He et al. [2014a], who study how to learn
node selection policies, Kruber et al. [2017], who study how to detect decomposable model
structure, and Khalil et al. [2017], who study how to determine when to run primal heuristics.
Machine learning has also been used in a variety of ways to automate CSP solver configuration.
The vast majority of the papers in that literature are empirical, whereas we provide theoretical
guarantees also. More information about many of those papers can be found in the recent
survey by Lodi and Zarpellon [2017].
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Beyond algorithm configuration. Researchers have also studied many problems closely re-
lated to algorithm configuration, such as runtime prediction [Fischetti et al., 2019, Horvitz et al.,
2001, Hutter et al., 2014], as well as the compilation and utilization of algorithm portfolios [Xu
et al., 2008, 2010].

4.2 Tree search

Tree search is a broad family of algorithms with diverse applications. To exemplify the specifics
of tree search, we present a vast family of NP-hard problems — (mixed) integer linear programs
— and describe how tree search finds optimal solutions to problems from this family. Later on
in Section 4.6, we provide another example of tree search for constraint satisfaction problems.
We study mixed integer linear programs (MILPs) where the objective is to maximize c>x subject
to Ax ≤ b and where some of the entries of x are constrained to be in {0, 1}. Given a MILP z,
we denote an optimal solution to the LP relaxation of z as x̆z = (x̆z[1], . . . x̆z[n]). Throughout
this chapter, given a vector a, we use the notation a[i] to denote the ith component of a. We
also use the notation c̆z to denote the optimal objective value of the LP relaxation of z. In other
words, c̆z = c> x̆z.

Example 4.2.1 (Winner determination). Suppose there is a set {1, . . . , m} of items for sale and
a set {1, . . . , n} of buyers. In a combinatorial auction, each buyer i submits bids vi(b) for any
number of bundles b ⊆ {1, . . . , m}. The goal of the winner determination problem is to allocate
the goods among the bidders so as to maximize social welfare, which is the sum of the buyers’
values for the bundles they are allocated. We can model this problem as a MILP by assigning
a binary variable xi,b for every buyer i and every bundle b they submit a bid vi(b) on. The
variable xi,b is equal to 1 if and only if buyer i receives the bundle b. Let Bi be the set of all
bundles b that buyer i submits a bid on. An allocation is feasible if it allocates no item more
than once (∑n

i=1 ∑b∈Bi ,j3b xi,b ≤ 1 for all j ∈ {1, . . . , m}) and if each bidder receives at most one
bundle (∑b∈Bi

xi,b ≤ 1 for all i ∈ {1, . . . , n}). Therefore, the MILP is:

maximize ∑n
i=1 ∑b∈Bi

vi(b)xi,b
s.t. ∑n

i=1 ∑b∈Bi ,j3b xi,b ≤ 1 ∀j ∈ [m]

∑b∈Bi
xi,b ≤ 1 ∀i ∈ [n]

xi,b ∈ {0, 1} ∀i ∈ [n], b ∈ Bi.

MILP tree search

MILPs are typically solved using a tree search algorithm called branch-and-bound (B&B). Given
a MILP problem instance, B&B relies on two subroutines that efficiently compute upper and
lower bounds on the optimal value within a given region of the search space. The lower bound
can be found by choosing any feasible point in the region. An upper bound can be found
via a linear programming relaxation. The basic idea of B&B is to partition the search space
into convex sets and find upper and lower bounds on the optimal solution within each. The
algorithm uses these bounds to form global upper and lower bounds, and if these are equal,
the algorithm terminates, since the feasible solution corresponding to the global lower bound
must be optimal. If the global upper and lower bounds are not equal, the algorithm refines the
partition and repeats.
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Algorithm 3 Branch and bound

Input: A MILP instance z′.
1: Let T be a tree that consists of a single node containing the MILP z′.
2: Let c∗ = −∞ be the objective value of the best-known feasible solution.
3: while there remains an unfathomed leaf in T do
4: Use a node selection policy to select a leaf of the tree T , which corresponds to a MILP z.
5: Use a variable selection policy to choose a variable x[i] of the MILP z to branch on.
6: Let z+

i (resp., z−i ) be the MILP z except with the constraint that x[i] = 1 (resp., x[i] = 0).
7: Set the right (resp., left) child of z in T to be a node containing the MILP z+

i (resp., z−i ).
8: for z̃ ∈

{
z+

i , z−i
}

do
9: if the LP relaxation of z̃ is feasible then

10: Let x̆z̃ be an optimal solution to the LP and let c̆z̃ be its objective value.
11: if the vector x̆z̃ satisfies the constraints of the original MILP z′ then
12: Fathom the leaf containing z̃.
13: if c∗ < c̆z̃ then
14: Set c∗ = c̆z̃.
15: else if x̆z̃ is no better than the best known feasible solution, i.e., c∗ ≥ c̆z̃ then
16: Fathom the leaf containing z̃.
17: else
18: Fathom the leaf containing z̃.

In more detail, suppose we want to use B&B to solve a MILP z′. B&B iteratively builds
a search tree T with the original MILP z′ at the root. In the first iteration, T consists of a
single node containing the MILP z′. At each iteration, B&B uses a node selection policy (which
we expand on later) to select a leaf node of the tree T , which corresponds to a MILP z. B&B
then uses a variable selection policy (which we expand on in Section 4.2) to choose a variable
x[i] of the MILP z to branch on. Specifically, let z+

i (resp., z−i ) be the MILP z except with the
additional constraint that x[i] = 1 (resp., x[i] = 0). B&B sets the right (resp., left) child of z in
T to be a node containing the MILP z+

i (resp., z−i ). B&B then tries to “fathom” these leafs: the
leaf containing z+

i (resp., z−i ) is fathomed if:

1. The optimal solution to the LP relaxation of z+
i (resp., z−i ) satisfies the constraints of the

original MILP z′.

2. The relaxation of z+
i (resp., z−i ) is infeasible, so z+

i (resp., z−i ) must be infeasible as well.

3. The objective value of the LP relaxation of z+
i (resp., z−i ) is smaller than the objective value

of the best known feasible solution, so the optimal solution to z+
i (resp., z−i ) is no better

than the best known feasible solution.

B&B terminates when every leaf has been fathomed. It returns the best known feasible solution,
which is optimal. See Algorithm 3 for the pseudocode.

The most common node selection policy is the best bound policy. Given a B&B tree, it selects
the unfathomed leaf containing the MILP z with the maximum LP relaxation objective value.
Another common policy is the depth-first policy, which selects the next unfathomed leaf in the
tree in depth-first order.
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Figure 4.1: Illustration of Example 4.2.2.

Example 4.2.2. In Figure 4.1, we show the search tree built by B&B given as input the following
MILP [Kolesar, 1967]:

maximize 40x[1] + 60x[2] + 10x[3] + 10x[4] + 3x[5] + 20x[6] + 60x[7]
subject to 40x[1] + 50x[2] + 30x[3] + 10x[4] + 10x[5] + 40x[6] + 30x[7] ≤ 100

x[1], . . . , x[7] ∈ {0, 1}.
(4.1)

Each rectangle denotes a node in the B&B tree. Given a node z, the top portion of its rectangle
displays the optimal solution x̆z to the LP relaxation of z, which is the MILP (4.1) with the
additional constraints labeling the edges from the root to z. The bottom portion of the rectangle
corresponding to z displays the objective value c̆z of the optimal solution to this LP relaxation,
i.e., c̆z = (40, 60, 10, 10, 3, 20, 60) · x̆z. In this example, the node selection policy is the best bound
policy and the variable selection policy selects the “most fractional” variable: the variable x[i]
such that x̆z[i] is closest to 1

2 , i.e., i = argmax {min {1− x̆z[i], x̆z[i]}}.
In Figure 4.1, the algorithm first explores the root. At this point, it has the option of

exploring either the left or the right child. Since the optimal objective value of the right child
(136) is greater than the optimal objective value of the left child (135), B&B will next explore the
pink node (marked 1 ). Next, B&B can either explore either of the pink node’s children or the
orange node (marked 2 ). Since the optimal objective value of the orange node (135) is greater
than the optimal objective values of the pink node’s children (120), B&B will next explore the
orange node. After that B&B can explore either of the orange node’s children or either of the
pink node’s children. The optimal objective value of the green node (marked 3 ) is higher than
the optimal objective values of the orange node’s right child (116) and the pink node’s children
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(120), so B&B will next explore the green node. At this point, it finds an integral solution,
which satisfies all of the constraints of the original MILP (4.1). This integral solution has an
objective value of 133. Since all of the other leafs have smaller objective values, the algorithm
cannot find a better solution by exploring those leafs. Therefore, the algorithm fathoms all of
the leafs and terminates.

Variable selection in MILP tree search

Variable selection policies typically depend on a real-valued score per variable x[i].

Definition 4.2.3 (Score-based variable selection policy). Let score be a deterministic function
that takes as input a partial search tree T , a leaf z of that tree, and an index i and returns a real
value (score(T , z, i) ∈ R). For a leaf z of a tree T , let NT ,z be the set of variables that have not
yet been branched on along the path from the root of T to z. A score-based variable selection
policy selects the variable argmaxx[j]∈NT ,z

{score(T , z, j)} to branch on at the node z.

We list several common definitions of the function score below. Recall that for a MILP
z with objective function c · x, we denote an optimal solution to the LP relaxation of z as
x̆z = (x̆z[1], . . . x̆z[n]). We also use the notation c̆z to denote the objective value of the optimal
solution to the LP relaxation of z, i.e., c̆z = c> x̆z. Finally, we use the notation z+

i (resp., z−i ) to
denote the MILP z with the additional constraint that x[i] = 1 (resp., x[i] = 0). If z+

i (resp., z−i )
is infeasible, then we set c̆z − c̆z+

i
(resp., c̆z − c̆z−i

) to be some large number greater than ||c||1.

Most fractional. In this case, score(T , z, i) = min {1− x̆z[i], x̆z[i]} . The variable that maxi-
mizes score(T , z, i) is the “most fractional” variable, since it is the variable such that x̆z[i] is
closest to 1

2 .

Linear scoring rule [Linderoth and Savelsbergh, 1999]. In this case, score(T , z, i) = (1− ρ) ·
min

{
c̆z − c̆z+

i
, c̆z − c̆z−i

}
+ ρ ·max

{
c̆z − c̆z+

i
, c̆z − c̆z−i

}
where ρ ∈ [0, 1] is a user-specified param-

eter. This parameter balances an “optimistic” and a “pessimistic” approach to branching: An
optimistic approach would choose the variable that maximizes max

{
c̆z − c̆z+

i
, c̆z − c̆z−i

}
, which

corresponds to ρ = 1, and a pessimistic approach would choose the variable that maximizes
min

{
c̆z − c̆z+

i
, c̆z − c̆z−i

}
, which corresponds to ρ = 0.

Product scoring rule [Achterberg, 2009]. In this case, score(T , z, i) = max
{

c̆z − c̆z−i
, γ
}
·

max
{

c̆z − c̆z+
i

, γ
}

where γ = 10−6. Comparing c̆z − c̆z−i
and c̆z − c̆z+

i
to γ allows the algo-

rithm to compare two variables even if c̆z − c̆z−i
= 0 or c̆z − c̆z+

i
= 0. After all, suppose the

scoring rule simply calculated the product
(

c̆z − c̆z−i

)
·
(

c̆z − c̆z+
i

)
without comparing to γ. If

c̆z − c̆z−i
= 0, then the score equals 0, canceling out the value of c̆z − c̆z+

i
and thus losing the

information encoded by this difference.
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Entropic lookahead scoring rule [Gilpin and Sandholm, 2011]. Let

e(x) =

{
−x log2(x)− (1− x) log2(1− x) if x ∈ (0, 1)

0 if x ∈ {0, 1}.

Set score(T , z, i) = −∑n
j=1 (1− x̆z[i]) · e

(
x̆z−i

[j]
)

+ x̆z[i] · e
(

x̆z+
i
[j]
)

.

Alternative definitions of the linear and product scoring rules. In practice, it is often too
slow to compute the differences c̆z− c̆z−i

and c̆z− c̆z+
i

for every variable, since it requires solving
as many as 2n LPs. A faster option is to partially solve the LP relaxations of z−i and z+

i ,
starting at x̆z and running a small number of simplex iterations. Denoting the new objective
values as c̃z−i

and c̃z+
i

, we can revise the linear scoring rule to be score(T , z, i) = (1 − ρ) ·

min
{

c̆z − c̃z+
i

, c̆z − c̃z−i

}
+ ρ ·max

{
c̆z − c̃z+

i
, c̆z − c̃z−i

}
and we can revise the product scoring

rule to be score(T , z, i) = max
{

c̆z − c̃z−i
, γ
}
·max

{
c̆z − c̃z+

i
, γ
}

. Other popular alternatives to
computing c̆z−i

and c̆z+
i

that fit within our framework are pseudo-cost branching [Bénichou et al.,
1971, Gauthier and Ribière, 1977, Linderoth and Savelsbergh, 1999] and reliability branching
[Achterberg et al., 2005].

Pseudo-cost branching. In practice, it is often too slow to compute the differences c̆z− c̆z−i
and

c̆z − c̆z+
i

for every variable, since it requires solving as many as 2n LPs. Pseudo-cost branching
is alternative to computing these values [Bénichou et al., 1971, Gauthier and Ribière, 1977,
Linderoth and Savelsbergh, 1999]. To introduce pseudo-cost branching, we first define some
notation, as presented in Achterberg’s thesis [Achterberg, 2007]. At a node z, let f−z,i = x̆z[i]−
bx̆z[i]c and f +

z,i = dx̆z[i]e− x̆z[i] denote how far the ith component of the LP relaxation’s solution
is from being integral. Let ς−z,i and ς+

z,i be the objective gains per unit change in variable x[i] at
node z after branching in each direction. More formally,

ς−z,i =
c̆z − c̆z−i

f−z,i
and ς+

z,i =
c̆z − c̆z+

i

f +
z,i

.

Let σ−i be the sum of ς−z,i over all nodes z where x[i] was chosen as the branching variable and
the LP relaxation of the node z−i has already been solved. Let η−i be the number of such nodes.
Let σ+

i and η+
i be the corresponding values for the upwards branches. The pseudo-costs of

variable x[i] are defined as

Ψ−i =
σ−i
η−i

and Ψ+
i =

σ+
i

η+
i

.

We initialize the pseudo-costs using strong branching: if η−i = 0 when we are choosing which
variable to branch on at a node z, we set

Ψ−i =
c̆z − c̆z−i

f−z,i
(4.2)

and similarly for Ψ+
i .
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In pseudo-cost branching, we estimate c̆z − c̆z−i
using the value Ψ−i f−z,i and we estimate

c̆z − c̆z+
i

using the value Ψ+
i f +

z,i. For example, the linear scoring rule with parameter µ ∈ [0, 1]

using pseudo-cost branching is defined as

score(T , z, i) = (1− µ) min
{

Ψ−i f−z,i, Ψ+
i f +

z,i

}
+ µ max

{
Ψ−i f−z,i, Ψ+

i f +
z,i

}
.

Reliability branching. Reliability branching [Achterberg et al., 2005] as a variation on pseudo-
cost branching. Variable i’s pseudo-costs are said to be unreliable if min

{
η−i , η+

i

}
< ηrel, where

ηrel ∈ Z is a tunable parameter. We set the pseudo-costs of unreliable variables as in Equa-
tion (4.2). We refer the reader to Achterberg’s thesis [Achterberg, 2007] for guidance about how
to tune the parameter ηrel.

4.3 Guarantees for data-driven learning to branch

In this section, we begin with our formal problem statement. We then present worst-case
distributions over MILP instances demonstrating that learning over any data-independent dis-
cretization of the parameter space can be inadequate. Finally, we present sample complexity
guarantees and a learning algorithm. Throughout the remainder of this chapter, we assume
that all aspects of the tree search algorithm except the variable selection policy, such as the
node selection policy, are fixed.

4.3.1 Problem statement

Let D be a distribution over MILPs z. For example, D could be a distribution over clustering
problems a biology lab solves day to day, formulated as MILPs. Let score1, . . . , scored be a
set of variable-selection scoring rules, such as those in Section 4.2. Our high-level goal is
to provide sample complexity guarantees for learning nearly-optimal convex combinations
∑d

i=1 ρ[i]scorei of the scoring rules. More formally, let uρ be an abstract utility function that
takes as input a problem instance z and returns some measure of the quality of B&B using the
scoring rule ρ[1]score1 + · · ·+ ρ[d]scored on input z. For example, uρ(z) might be the size of
the tree B&B builds. In the special case where we tune the tradeoff between two scoring rules
ρscore1 + (1− ρ)score2, we use the notation uρ(z). Our goal is to bound the pseudo-dimension
of U =

{
uρ : ρ ∈ [0, 1]d}. We also generalize our analysis to cover non-linear combinations of

the form
d

∏
i=1

score
ρ[i]
i (4.3)

.
Following prior work [e.g., Hutter et al., 2009, Kleinberg et al., 2017], we assume that there

is some cap κ on the range of the cost function cost. For example, if cost is the size of the search
tree, we may choose to terminate the algorithm when the tree size grows beyond some bound
κ. We also assume that the problem instances in the support of D are over n variables for some
n ∈N.

Our results hold for utility functions that are tree-constant, which means that for any prob-
lem instance z, so long as the parameter vectors ρ and ρ′ result in the same search tree,
uρ(z) = uρ′(z). For example, the size of the search tree is tree-constant.
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Prior research on combining scoring rules. For decades, convex combinations of scoring
rules ∑d

i=1 ρ[i]scorei have been used in B&B. For example, suppose

score1(T , z, i) = min
{

c̆z − c̆z+
i

, c̆z − c̆z−i

}
and score2(T , z, i) = max

{
c̆z − c̆z+

i
, c̆z − c̆z−i

}
,

so by employing the scoring rule (1− ρ)score1 + ρscore2, we balance an “optimistic” and “pes-
simistic” approach to branching. Over time, researchers have proposed many different can-
didates for the parameter setting ρ. Gauthier and Ribière [1977] proposed setting ρ = 1/2.
Bénichou et al. [1971] and Beale [1979] suggested setting ρ = 1. Linderoth and Savelsbergh
[1999] found that ρ = 2/3 performs well. Achterberg [2009] found that experimentally, ρ = 1/6
performed best when comparing among ρ ∈ {0, 1/6, 1/3, 1/2, 1}. In our experiments, we find
that the best choice of a parameter setting depends on the specific application domain at hand;
no one parameter setting is optimal overall. In Section 4.3.2, we also prove that no one param-
eter setting is always optimal, and in fact we prove something significantly stronger: searching
over any data-independent discretization of parameter values can lead to extremely bad algo-
rithm configurations.

Non-linear combinations of scoring rules are also popular in B&B. SCIP [Achterberg, 2009],
the best open-source solver, uses the product scoring rule score = score1score2 where

score1(T , z, i) = max
{

c̆z − c̆z−i
, 10−6

}
and score2(T , z, i) = max

{
c̆z − c̆z+

i
, 10−6

}
. This is equivalent to Equation (4.3) with ρ[1] =

ρ[2] = 1
2 . In our experiments, we show that alternative parameter choices can outperform this

baseline.

4.3.2 Impossibility results for data-independent approaches

In this section, we focus on MILP tree search and prove that it is impossible to find a nearly opti-
mal B&B configuration using a data-independent discretization of the parameters. Specifically,
suppose score1(T , z, i) = min

{
c̆z − c̆z+

i
, c̆z − c̆z−i

}
and score2(T , z, i) = max

{
c̆z − c̆z+

i
, c̆z − c̆z−i

}
and suppose the utility function uρ(z) equals zero minus the size of the tree produced by B&B
when using a fixed but arbitrary node selection policy. We would like to learn a nearly opti-
mal convex combination ρscore1 + (1− ρ)score2 of these two rules with respect to this utility
function. Gauthier and Ribière [1977] proposed setting ρ = 1/2, Bénichou et al. [1971] and
Beale [1979] suggested setting ρ = 1, and Linderoth and Savelsbergh [1999] found that ρ = 2/3
performs well. Achterberg [2009] found that experimentally, ρ = 5/6 performed best when
comparing among ρ ∈ {0, 1/2, 2/3, 5/6, 1}.

We show that for any discretization of the parameter space [0, 1], there exists an infinite
family of distributions over MILP problem instances such that for any parameter in the dis-
cretization, the expected tree size is exponential in n. Yet, there exists an infinite number of
parameters such that the tree size is just a constant (with probability 1).

Theorem 4.3.1. Let

score1(T , z, i) = min
{

c̆z − c̆z+
i

, c̆z − c̆z−i

}
, score2(T , z, i) = max

{
c̆z − c̆z+

i
, c̆z − c̆z−i

}
,
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(a) The tree size plot for the in-
stance za as a function of ρ.

(b) The tree size plot for the in-
stance zb as a function of ρ.

(c) The expected tree size plot
under the distribution D as a
function of ρ.

Figure 4.2: Illustrations of the proof of Theorem 4.3.1.

and uρ(z) be the size of the tree produced by B&B using the scoring rule ρscore1 + (1− ρ)score2. For
every a, b such that 1

3 < a < b < 1
2 and for all even n ≥ 6, there exists an infinite family of distributions

D over MILP instances with n variables such that if ρ ∈ [0, 1] \ (a, b), then

E
z∼D

[
uρ(z)

]
= Ω

(
2(n−9)/4

)
and if ρ ∈ (a, b), then with probability 1, uρ(z) = O(1). This holds no matter which node selection
policy B&B uses.

Proof. We populate the support of the distribution D by relying on two helpful theorems:
Theorem 4.3.3 and 4.3.8. In Theorem 4.3.3, we prove that for all ρ∗ ∈

( 1
3 , 2

3

)
, there exists an

infinite family Fn,ρ∗ of MILP instances such that for any z ∈ Fn,ρ∗ , if ρ ∈ [0, ρ∗), then the
scoring rule ρscore1 + (1− ρ)score2 results in a B&B tree with O(1) nodes and if ρ ∈ (ρ∗, 1],
the scoring rule results a tree with 2(n−4)/2 nodes. Conversely, in Theorem 4.3.8, we prove that
there exists an infinite family Gn,ρ∗ of MILP instances such that for any z ∈ Gn,ρ∗ , if ρ ∈ [0, ρ∗),
then the scoring rule ρscore1 + (1− ρ)score2 results in a B&B tree with 2(n−5)/4 nodes and if
ρ ∈ (ρ∗, 1], the scoring rule results a tree with O(1) nodes.

Now, let za be an arbitrary instance in Gn,a and let zb be an arbitrary instance in Fn,b. The
theorem follows by letting D be a distribution such that Prz∼D [z = za] = Prz∼D [z = zb] = 1/2.
See Figure 4.2 for an illustration. We know that if ρ ∈ [0, 1] \ (a, b), then the expected value of
uρ(z) is 1

2

(
O(1) + 2(n−5)/4

)
≥ 2(n−9)/4. Meanwhile, if ρ ∈ (a, b), then with probability 1,

uρ(z) = O(1).

Throughout the proof of this theorem, we assume the node-selection policy is depth-first
search. We then prove that for any infeasible MILP, if NSP and NSP’ are two node-selection
policies and score = ρscore1 + (1− ρ)score2 for any ρ ∈ [0, 1], then tree T B&B builds using
NSP and score equals the tree T ′ it builds using NSP’ and score, as we prove in the following
claim.

Claim 4.3.2. Let z be an infeasible MILP, let NSP and NSP’ be two node-selection policies, and let score
be a path-wise scoring rule. The tree T B&B builds using NSP and score equals the tree T ′ it builds
using NSP’ and score.

Proof of Claim 4.3.2. For a contradiction, suppose T 6= T ′. There must be a node z0 in T where
if Tz0 is the path from the root of T to z0, then Tz0 is a rooted subtree of T ′, but either:
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1. In T , the node z0 is fathomed but in T ′, z0 is not fathomed, or

2. In T , the node z0 is not fathomed, but for all children z0
′ of z0 in T , if Tz0 ′ is the path

from the root of T to z0
′, Tz0 ′ is not a rooted subtree of T ′.

We will show that neither case is possible, thus arriving at a contradiction. First, we know
that since z is infeasible, B&B will only fathom a node if it is infeasible. Therefore, the first
case is impossible: if z0 is fathomed in T , it must be infeasible, so it will also be fathomed
in T ′, and vice versa. Therefore, we know that B&B must branch on z0 in both T and T ′.
Let T̄ be the state of the tree B&B has built using NSP and score by the time it branches
on z0 and let T̄ ′ be the state of the tree B&B has built using NSP’ and score by the time it
branches on z0. Since Tz0 is a rooted subtree of both T̄ and T̄ ′, we know that for all variables
x[i], score(T̄ , z0, i) = score(Tz, z0, i) = score(T̄ ′, z0, i). Therefore, B&B will branch on the same
variable in both T and T ′, which is a contradiction, since this means that for all children z0

′ of
z0 in T , if Tz0 ′ is the path from the root of T to z0

′, Tz0 ′ is a rooted subtree of T ′.

Thus, the theorem holds for any node-selection policy.

We now provide a proof sketch of Theorem 4.3.3, which helps us populate the support of
the worst-case distributions in Theorem 4.3.1.

Theorem 4.3.3. Let

score1(T , z, i) = min
{

c̆z − c̆z+
i

, c̆z − c̆z−i

}
, score2(T , z, i) = max

{
c̆z − c̆z+

i
, c̆z − c̆z−i

}
,

and uρ(z) be the size of the tree produced by B&B using the scoring rule ρscore1 + (1− ρ)score2. For
all even n ≥ 6 and all ρ∗ ∈

( 1
3 , 1

2

)
, there exists an infinite family Fn,ρ∗ of MILP instances such that for

any z ∈ Fn,ρ∗ , if ρ ∈ [0, ρ∗), then the scoring rule ρscore1 + (1− ρ)score2 results in a B&B tree with
O(1) nodes and if ρ ∈ (ρ∗, 1], the scoring rule results a tree with 2(n−4)/2 nodes.

For intuition, we begin with a proof sketch of Theorem 4.3.3, and then provide the full
proof.

Proof sketch. The MILP instances in Fn,ρ∗ are inspired by a worst-case B&B instance introduced
by Jeroslow [1974]. He proved that for any odd n′, every B&B algorithm will build a tree with
2(n′−1)/2 nodes before it determines that for any c ∈ Rn′ , the following MILP is infeasible:

maximize c · x
subject to 2 ∑n′

i=1 x[i] = n′

x ∈ {0, 1}n′ .

We build off of this MILP to create the infinite family Fn,ρ∗ . Each MILP in Fn,ρ∗ combines a
hard version of Jeroslow’s instance on n− 3 variables {x[1], . . . , x[n− 3]} and an easy version
on 3 variables {x[n− 2], x[n− 1], x[n]}. Branch-and-bound only needs to determine that one
of these problems is infeasible in order to terminate. The key idea of this proof is that if B&B
branches on all variables in {x[n− 2], x[n− 1], x[n]} first, it will terminate upon making a small
tree. However, if B&B branches on all variables in {x[1], . . . , x[n− 3]} first, it will create a tree
with exponential size before it terminates. The challenge is to design an objective function that
enforces the first behavior when ρ < ρ∗ and the second behavior when ρ > ρ∗. Proving this is
the bulk of the work.
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(a) A big version of Jeroslow’s instance on five
variables.

(b) A small version of Jeroslow’s instance on
three variables.

Figure 4.3: Illustrations of the construction from Theorem 4.3.3.

In a bit more detail, every instance in Fn,ρ∗ is defined as follows. For any constant γ ≥ 1, let

c1 = γ(1, 2, . . . , n− 3) and let c2 = γ
(

0, 3
2 , 3− 1

2ρ∗

)
. Let c = (c1, c2) ∈ Rn be the concatenation

of c1 and c2. Let zγ,n be the MILP

maximize c · x
subject to 2 ∑n−3

i=1 x[i] = n− 3
2 (x[n− 2] + x[n− 1] + x[n]) = 3
x ∈ {0, 1}n.

We define Fn,ρ∗ = {zn,γ : γ ≥ 1} .
For example, if γ = 1 and n = 8, then zγ,n is

maximize
(

1, 2, 3, 4, 5, 0, 3
2 , 3− 1

2ρ∗

)
· x

subject to
(

2 2 2 2 2 0 0 0
0 0 0 0 0 2 2 2

)
x =

(
5
3

)
x ∈ {0, 1}8.

As is illustrated in Figure 4.3, we have essentially “glued together” two disjoint versions of
Jeroslow’s instance: the first five variables of z1,8 correspond to a “big” version of Jeroslow’s
instance and the last three variables correspond to a small version. Since the goal is maximiza-
tion, the solution to the LP relaxation of z1,8 will try to obtain as much value from the first five
variables {x[1], . . . , x[5]} as it can, but it is constrained to ensure that 2(x[1] + · · ·+ x[5]) = 5.
Therefore, the first five variables will be set to

(
0, 0, 1

2 , 1, 1
)
. Similarly, the solution to the LP

relaxation of z1,8 will set (x[6], x[7], x[8]) =
(
0, 1

2 , 1
)

because 3
2 < 3− 1

2ρ∗ under our assumption

that ρ∗ > 1
3 . Thus, the solution to the LP relaxation of z1,8 is

(
0, 0, 1

2 , 1, 1, 0, 1
2 , 1
)
. There are only

two fractional variables that B&B might branch on: x[3] and x[7]. Straightforward calculations
show that if T is the B&B tree so far, which just consists of the root node, ρscore1 (T , zγ,n, 3) +

(1− ρ)score2 (T , zγ,n, 3) = γ
2 and ρscore1 (T , zγ,n, 7) + (1− ρ)score2 (T , zγ,n, 7) = 3γ

4 −
ργ
4ρ∗ . This

means that B&B will branch first on variable x[7], which corresponds to the small version of
Jeroslow’s instance (see Figure 4.3b) if and only if γ

2 < 3γ
4 −

ργ
4ρ∗ , which occurs if and only if

ρ < ρ∗. We show that this first branch sets off a cascade: if B&B branches first on variable
x[7], then it will proceed to branch on all variables in {x[6], x[7], x[8]}, thus terminating upon
making a small tree. Meanwhile, if it branches on variable x[3] first, it will then only branch on
variables in {x[1], . . . , x[5]}, creating a larger tree.

In the full proof, we generalize beyond eight variables to n, and expand the large version
of Jeroslow’s instance (as depicted in Figure 4.3a) from five variables to n− 3. When ρ < ρ∗,
we simply track B&B’s progress to make sure it only branches on variables from the small
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version of Jeroslow’s instance (x[n− 2], x[n− 1], x[n]) before figuring out the MILP is infeasible.
Therefore, the tree will have constant size. When ρ > ρ∗, we prove by induction that if B&B
has only branched on variables from the big version of Jeroslow’s instance (x[1], . . . , x[n− 3]),
it will continue to only branch on those variables. We also prove it will branch on about half of
these variables along each path of the B&B tree. The tree will thus have exponential size.

Building off of this intuition, we now provide the full proof of Theorem 4.3.3, in which
we will use the following notation. Given a MILP z, suppose that we branch on x[i] and x[j],
setting x[i] = 0 and x[j] = 1. We use the notation z−,+

i,j to denote the resulting MILP. Similar, if
we set x[i] = 1 and x[j] = 0, we denote the resulting MILP as z+,−

i,j .

Proof of Theorem 4.3.3. For ease of notation in this proof, we will drop T from the input of the
functions score1 and score2 since the scoring rules do not depend on T , they only depend on
the input MILP instance and variable.

For any constant γ ≥ 1, let c1 = γ(1, 2, . . . , n − 3) and let c2 = γ
(

0, 1.5, 3− 1
2ρ∗

)
. Let

c = (c1, c2) ∈ Rn be the concatenation of c1 and c2. Next, define the n-dimensional vectors
a1 = 2 ∑n−3

i=1 ei and a2 = 2 ∑3
i=1 en−3+i, and let A be a matrix whose first row is a1 and second

row is a2. Let zγ,n be the MILP

maximize c · x
subject to Ax = (n− 3, 3)>

x ∈ {0, 1}n.

We define Fn,ρ∗ = {zn,γ : γ ≥ 1} .

Example 4.3.4. If γ = 1 and n = 8, then zγ,n is

maximize
(

1, 2, 3, 4, 5, 0, 1.5, 3− 1
2ρ∗

)
· x

subject to
(

2 2 2 2 2 0 0 0
0 0 0 0 0 2 2 2

)
x =

(
5
3

)
x ∈ {0, 1}8.

For every even n ≥ 6, both of the constraints a1 · x = 2 ∑n−3
i=1 x[i] = n − 3 and a2 · x =

2 ∑3
i=1 x[n − 3 + i] = 3 are infeasible for x ∈ {0, 1}n since 2 ∑n−3

i=1 x[i] and 2 ∑3
i=1 x[n − 3 + i]

are even numbers but 3 and n − 3 are odd numbers. The key idea of this proof is that if
B&B branches on all variables in {x[n− 2], x[n− 1], x[n]} first, it will terminate upon making
a tree of size at most 23 = 8, since at most three branches are necessary to determine that
a1 · x = 2 ∑3

i=1 x[n − 3 + i] = 3 is infeasible. However, if B&B branches on all variables in
{x[1], . . . , x[n− 3]} first, it will create a tree with exponential size before it terminates.

Lemma 4.3.5. Suppose ρ < ρ∗. Then for any MILP zγ,n ∈ Fn,ρ∗ , ρscore1 + (1− ρ)score2 branches on
all variables in {x[n− 2], x[n− 1], x[n]} before branching on variables in {x[1], . . . , x[n− 3]}.

Proof of Lemma 4.3.5. For ease of notation, for the remainder of this proof, we drop the subscript
(γ, n) from zγ,n and denote this MILP as z. We first need to determine the form of x̆z, which
is the optimal solution to the LP relaxation of z. It is easiest to see how the LP relaxation
will set the variables x[n − 2], x[n − 1], and x[n]. The only constraints on these variables
are that 2(x[n − 2] + x[n − 1] + x[n]) = 3 and that x[n − 2], x[n − 1], x[n] ∈ [0, 1]. Recall that
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c =
(

1, 2, . . . , n− 3, 0, 1.5, 3− 1
2ρ∗

)
is the vector defining the objective value of z. Since ρ∗ > 1/3,

we know that 1.5 < 3− 1
2ρ∗ , which means that c[n− 2] < c[n− 1] < c[n]. Since the goal is to

maximize c · x, the LP relaxation will set x[n− 2] = 0, x[n− 1] = 1
2 , and x[n] = 1. The logic for

the first n− 3 variables is similar. In this case, c[1] < c[2] < · · · < c[n− 3], so the LP relaxation’s
solution will put as much weight as possible on the variable x[n− 3], then as much weight as
possible on the variable x[n− 4], and so on, putting as little weight as possible on the variable
x[1] since it has the smallest corresponding objective coefficient c[1]. Since the only constraints
on these variables are that 2 ∑n−3

i=1 x[i] = n − 3 and x[1], . . . , x[n − 3] ∈ [0, 1], the LP objective
value can set

⌊ n−3
2

⌋
of the variables to 1, it can set one variable to 1

2 , and it has to set the rest
of the variables to 0. Letting i =

⌈ n−3
2

⌉
, this means the LP relaxation will set the first i − 1

variables x[1], · · · x[i− 1] to zero, it will set x[i] = 1
2 , and it will set x[i + 1], . . . , x[n− 3] to 1. In

other words,

x̆z[j] =


0 if j ≤ b(n− 3)/2c or j = n− 2
1
2 if j = d(n− 3)/2e or j = n− 1
1 if d(n− 3)/2e ≤ j ≤ n− 3 or j = n.

For example, if n = 8, then x̆z =
(
0, 0, 1

2 , 1, 1, 0, 1
2 , 1
)
. (See Figure 4.4a.) Therefore, the only

candidate variables to branch on are x[n− 1] and x[i] where again, i = d(n− 3)/2e.
To determine when variable B&B will branch on, we need to calculate x̆z−i

which is the
solution to the LP relaxation of z with the additional constraint that x[i] = 0, as well as xz+

i

which is the solution to the LP relaxation of z with the additional constraint that x[i] = 1, and
xz−n−1

and xz+
n−1

. First, we will determine the form of the vectors x̆z−n−1
and x̆z+

n−1
. Suppose we set

x[n− 1] = 0. We now need to ensure that 2(x[n− 2] + 0 + x[n]) = 3 and that x[n− 2], x[n] ∈
[0, 1]. Since c[n − 2] = 0 < 3− 1

2ρ∗ = c[n], the solution to the LP relaxation of z−n−1 will set

x[n− 2] = 1
2 and x[n] = 1. (See Figure 4.4b.) Similarly, if we set x[n− 1] = 1, we now need to

ensure that 2(x[n− 2] + 1 + x[n]) = 3 and that x[n− 2], x[n] ∈ [0, 1]. Therefore, the solution to
the LP relaxation of z−n−1 will set x[n− 2] = 0 and x[n] = 1

2 . (See Figure 4.4c.) In other words,
x̆z−n−1

= x̆z − 1
2 en−1 + 1

2 en−2 and x̆z+
n−1

= x̆z + 1
2 en−1 − 1

2 en.
The argument for x̆z−i

and x̆z−i
is similar. Recall that in x̆z, the solution to the LP relaxation of

the original MIP z, we have that x̆z[i] = 1
2 since it is the median of the variables x[1], . . . , x[n− 3].

For all j > i, we have that x̆z[j] = 1 and for all j < i, we have that x̆z[j] = 0. Suppose we set
x[i] = 0. As before, the LP relaxation’s solution will put as much weight as possible on the
variable x[n− 3], then as much weight as possible on the variable x[n− 4], and so on, putting
as little weight as possible on the variable x[1] since it has the smallest corresponding objective
coefficient c[1]. Since it cannot set x[i] = 1

2 , it will set the next-best variable to 1
2 , which is

x[i − 1]. (See Figure 4.4d.) In other words, x̆z−i
= x̆z − 1

2 ei + 1
2 ei−1. If we set x[i] = 1, the LP

relaxation’s solution will have to take some weight away from the variables x[i + 1], . . . , x[n− 3]
since it needs to ensure that 2 ∑n−3

i=1 x[i] = n− 3. Therefore, it will set x[i + 1] to 1
2 and x[j] to 1

for all j > i + 1. (See Figure 4.4e.) In other words, x̆z+
i

= x̆z + 1
2 ei − 1

2 ei+1.
Therefore,

c̆z−i
= c̆z −

1
2

⌈
n− 3

2

⌉
+

1
2

⌊
n− 3

2

⌋
= c̆z −

γ

2
,

c̆z+
i

= c̆z +
1
2

⌈
n− 3

2

⌉
− 1

2

(⌈
n− 3

2

⌉
+ 1
)

= c̆z −
γ

2
,
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(a) (b)

(c) (d)

(e)

Figure 4.4: Illustrations to accompany the proof of Lemma 4.3.5 when n = 8. For each j on
the x-axis, the histogram gives the value of either x̆z[j] (Figure 4.4a), x̆z−7

[j] (Figure 4.4b), x̆z+
7
[j]

(Figure 4.4c), x̆z−3
[j] (Figure 4.4d), or x̆z+

3
[j] (Figure 4.4e). In this case, i = 3.

c̆z−n−1
= c̆z −

3γ

4
, and

c̆z+
n−1

= c̆z +
3
4
− 1

2

(
3− 1

2ρ∗

)
= c̆z −

γ

4

(
3− 1

ρ∗

)
.

This means that c̆z − c̆z−i
= c̆z − c̆z+

i
= γ/2, c̆z − c̆z−n−1

= 3γ/4, and c̆z − c̆z+
n−1

= γ
4

(
3− 1

ρ∗

)
.

Therefore, ρscore1(z, i) + (1− ρ)score2(z, i) = γ/2 and ρscore1(z, n− 1) + (1− ρ)score2(z, n−
1) = ργ

4

(
3− 1

ρ∗

)
+ 3γ(1−ρ)

4 = 3γ
4 −

ργ
4ρ∗ . This means that ρscore1(z, i) + (1 − ρ)score2(z, i) =

γ/2 < 3γ
4 −

ργ
4ρ∗ = ρscore1(z, n− 1) + (1− ρ)score2(z, n− 1) so long as ρ < ρ∗.

The next node B&B will explore is z−n−1. The vector x̆z−n−1
has fractional values only in

positions i and n − 2. Branching on i, we again have that c̆z−n−1
− c̆z−,−

n−1,i
= c̆z−n−1

− c̆z−,+
n−1,i

=

γ/2. Branching on n − 2, z−,−
n−1,n−2 is infeasible, so c̆z−n−1

− c̆z−,−
n−1,n−2

equals some large number

B ≥ ||c||1. Next, x̆z−,+
n−1,n−2

= x̆z−n−1
+ 1

2 en−2 − 1
2 en, so c̆z−,+

n−1,n−2
= c̆z−n−1

− γ
2

(
3− 1

2ρ∗

)
. Therefore,

ρscore1
(
z−n−1, i

)
+ (1− ρ)score2

(
z−n−1, i

)
= γ/2 and

ρscore1
(
z−n−1, n− 2

)
+ (1− ρ)score2

(
z−n−1, n− 2

)
=

ργ

2

(
3− 1

2ρ∗

)
+ (1− ρ)B
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= B + ρ

(
3γ

2
− γ

4ρ∗
− B

)
≥ B + ρ∗

(
3γ

2
− γ

4ρ∗
− B

)
= B− γ

4
+ ρ∗

(
3γ

2
− B

)
> B− γ

4
+

3γ/4− B
3γ/2− B

(
3γ

2
− B

)
= B− γ

4
+

3γ

4
− B

=
γ

2
,

where the final inequality holds because ρ∗ < 1 < B−3γ/4
B−3γ/2 . Therefore, x[n− 2] will be branched

on next.
Since z−,−

n−1,n−2 is infeasible, the next node B&B will explore is z−,+
n−1,n−2. The vector x̆z−,+

n−1,n−2

has fractional values only in positions i and n. Both MILP instances z−,+,−
n−1,n−2,n and z−,+,+

n−1,n−2,n

are infeasible, so ρscore1

(
z−,+

n−1,n−2, n
)

+ (1− ρ)score2

(
z−,+

n−1,n−2, n
)

= B whereas

ρscore1

(
z−,+

n−1,n−2, i
)

+ (1− ρ)score2

(
z−,+

n−1,n−2, i
)

=
γ

2
,

as before. Therefore, B&B will branch on x[n] and fathom both children.
The next node B&B will explore is z+

n−1. The vector x̆z+
n−1

has fractional values only in
positions i and n. Branching on i, we again have that c̆z+

n−1
− c̆z+,−

n−1,i
= c̆z+

n−1
− c̆z+,+

n−1,i
= γ/2.

Branching on x[n], x̆z+,−
n−1,n

= x̆z+
n−1
− 1

2 en + 1
2 en−2, so c̆z+,−

n−1,n
= c̆z+

n−1
− γ

2

(
3− 1

2ρ∗

)
. Meanwhile,

z+,+
n−1,n is infeasible, so c̆z+

n−1
− c̆z+,+

n−1,n−2
= B. Therefore, ρscore1

(
z+

n−1, i
)

+ (1− ρ)score2
(
z+

n−1, i
)

=

γ/2 and ρscore1
(
z+

n−1, n
)

+ (1− ρ)score2
(
z+

n−1, n
)

= ργ
2

(
3− 1

2ρ∗

)
+ (1− ρ)B > γ/2. Therefore,

x[n] will be branched on next.
The next node B&B will explore is z+,−

n−1,n. The vector x̆z+,−
n−1,n

has fractional values only in

positions i and n− 2. Both MILP instances z+,−,−
n−1,n,n−2 and z+,−,−

n−1,n,n−2 are infeasible, so

ρscore1

(
z−,+

n−1,n, n− 2
)

+ (1− ρ)score2

(
z−,+

n−1,n, n− 2
)

= B

whereas ρscore1

(
z−,+

n−1,n−2, i
)

+ (1− ρ)score2

(
z−,+

n−1,n−2, i
)

= γ/2, as before. Therefore, B&B will
branch on x[n− 2] and fathom both children.

At this point, all children have been fathomed, so B&B will terminate.

Lemma 4.3.6. Suppose ρ > ρ∗. Then for any MILP zγ,n ∈ Fn,ρ∗ , B&B with the scoring rule ρscore1 +

(1− ρ)score2 will create a tree of depth at least 2(n−5)/4.

Proof of Lemma 4.3.6. To prove this lemma, we use induction to show that on any path from
the root of the B&B tree to a node of depth i = b(n− 3)/2c, if J are the set of indices
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branched on along that path, then J ⊆ {x[1], . . . , x[n − 3]}. Even after branching on i nodes
from {x[1], . . . , x[n− 3]}, the MILP will still be feasible, so the branch will not yet have been
fathomed (since the original MILP is infeasible, a node will be fathomed only when it is infea-
sible). Therefore, B&B will continue down every branch to depth b(n− 3)/2c, thus creating a
tree with 2(n−4)/2 nodes.

Claim 4.3.7. On any path from the root of the B&B tree to a node of depth i = b(n− 3)/2c, if J are the
set of indices branched on along that path, then J ⊆ {x[1], . . . , x[n− 3]}.

Proof of Claim 4.3.7. We prove this claim by induction.

Inductive hypothesis. For j ≤ b(n− 3)/2c, let J be the set of indices branched on along an
arbitrary path of the B&B tree from the root to a node of depth j. Then J ⊆ {x[1], . . . , x[n− 3]}.

Base case (j = 0). As we saw in the proof of Lemma 4.3.5, if ρ > ρ∗, then B&B will first branch
on x[i] where i = d(n− 3)/2e.

Inductive step. Let j be an arbitrary index such that 0 ≤ j ≤ i− 1. Let J be the set of indices
branched on along an arbitrary path of the B&B tree from the root to a node of depth j. We
know from the inductive hypothesis that J ⊆ {x[1], . . . , x[n− 3]}. Let z′ be the MILP at that
node. Since j ≤ b(n− 3)/2c − 1, we know that the LP relaxation of z′ is feasible. Let z be
the number of variables set to zero in J and let x[p1], x[p2], . . . , x[pt] be {x[1], . . . , x[n− 3]} \ J
ordered such that pk < pk′ for k < k′. We know that the solution to the LP relaxation of z′

will have the first i′ := b(n− 3)/2c − z variables x[p1], . . . , x[pi′ ] set to 0, it will set x[pi′+1] to
1/2, and it will set the remaining variables in {x[1], . . . , x[n− 3]} \ J to 1. Thus, the fractional
variables are x[pi′+1] and x[n− 1]. Note that since z ≤ |J| ≤ b(n− 3)/2c− 1, i′ = b(n− 3)/2c−
z ≥ 1.

Suppose we branch on x[pi′+1]. If we set x[pi′+1] = 0, then the LP relaxation of (z′)−pi′+1

will set x[pi′ ] to be 1/2 and otherwise the optimal solution will remain unchanged. Thus,

c̆z′ − c̆(z′)−pi′+1
= c̆z′ − (c̆z′ − γpi′+1/2 + γpi′/2) =

γ(pi′+1−pi′)
2 . Meanwhile, if we set x[pi′+1] = 1,

then the LP relaxation of (z′)−pi′+1
will set x[pi′+2] to be 0 and otherwise the optimal solution

will remain unchanged. Thus, c̆z′ − c̆(z′)+
pi′+1

= c̆z′ − (c̆z′ + γpi′+1/2− γpi′+2/2) =
γ(pi′+2−pi′+1)

2 .

Suppose that c̆z′ − c̆(z′)+
pi′+1

> c̆z′ − c̆(z′)−pi′+1
. Then

ρscore1
(
z′, pi′+1

)
+ (1− ρ)score2

(
z′, pi′+1

)
=

γ

2
(ρ (pi′+1 − pi′) + (1− ρ) (pi′+2 − pi′+1))

≥ γ

2
(ρ + (1− ρ))

=
γ

2
.

Meanwhile, suppose that c̆z′ − c̆(z′)+
pi′+1
≤ c̆z′ − c̆(z′)−pi′+1

. Then

ρscore1
(
z′, pi′+1

)
+ (1− ρ)score2

(
z′, pi′+1

)
=

γ

2
(ρ (pi′+2 − pi′+1) + (1− ρ) (pi′+1 − pi′))

≥ γ

2
(ρ + (1− ρ))

=
γ

2
.
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Meanwhile, as in the proof of Lemma 4.3.5, ρscore1(z′, n− 1) + (1− ρ)score2(z′, n− 1) = 3γ
4 −

ργ
4ρ∗ <

γ
2 so long as ρ > ρ∗. Thus, B&B will branch next on x[pi′ ].

Theorem 4.3.8. Let

score1(z, i) = min
{

c̆z − c̆z+
i

, c̆z − c̆z−i

}
and score2(z, i) = max

{
c̆z − c̆z+

i
, c̆z − c̆z−i

}
.

For all even n ≥ 6 and all ρ∗ ∈
( 1

3 , 2
3

)
, there exists an infinite family Gn,ρ∗ of MILP instances such that

for any z ∈ Gn,ρ∗ , if ρ ∈ [0, ρ∗), then the scoring rule ρscore1 + (1− ρ)score2 results in a B&B tree

with Ω
(

2(n−5)/4
)

nodes and if ρ ∈ (ρ∗, 1], the scoring rule results a tree with O(1) nodes.

Proof. For any constant γ ≥ 1, let c1 ∈ Rn−3 be a vector such that

c1[i] =


0 if i < (n− 3)/2
1.5 if i = d(n− 3)/2e
3− 1

2ρ∗ if i > (n− 3)/2 + 1

and let c2 = (1, 2, 3). Let c = γ (c1, c2) ∈ Rn be the concatenation of c1 and c2 multiplied with
γ. For example, if γ = 1 and n = 8, then c =

(
0, 0, 1.5, 3− 1

2ρ∗ , 3− 1
2ρ∗ , 1, 2, 3

)
Next, define the

n-dimensional vectors a1 = 2 ∑n−3
i=1 ei and a2 = 2 ∑3

i=1 en−3+i, and let A be a matrix whose first
row is a1 and second row is a2. Let zγ,n be the MILP

maximize c · x
subject to Ax = (n− 3, 3)>

x ∈ {0, 1}n.

We define Gn,ρ∗ = {zn,γ : γ ≥ 1} .
For every even n ≥ 6, zγ,n, both of the constraints a1 · x = 2 ∑n−3

i=1 x[i] = n− 3 and a2 · x =

2 ∑3
i=1 x[n − 3 + i] = 3 are infeasible for x ∈ {0, 1}n since 2 ∑n−3

i=1 x[i] and 2 ∑3
i=1 x[n − 3 + i]

are even numbers but 3 and n − 3 are odd numbers. The key idea of this proof is that if
B&B branches on all variables in {x[n− 2], x[n− 1], x[n]} first, it will terminate upon making
a tree of size at most 23 = 8, since at most three branches are necessary to determine that
a1 · x = 2 ∑3

i=1 x[n − 3 + i] = 3 is infeasible. However, if B&B branches on all variables in
{x[1], . . . , x[n− 3]} first, it will create a tree with exponential size before it terminates.

Lemma 4.3.9. Suppose ρ > ρ∗. Then for any MILP zγ,n ∈ Gn,ρ∗ , ρscore1 + (1− ρ)score2 branches on
all variables in {x[n− 2], x[n− 1], x[n]} before branching on variables in {x[1], . . . , x[n− 3]}.

Proof of Lemma 4.3.9. For ease of notation, for the remainder of this proof, we drop the subscript
(γ, n) from zγ,n and denote this MILP as z. The optimal solution to the LP relaxation of z has
the following form:

x̆z[j] =


0 if j ≤ b(n− 3)/2c or j = n− 2
1
2 if j = d(n− 3)/2e or j = n− 1
1 if d(n− 3)/2e ≤ j ≤ n− 3 or j = n.
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For example, if n = 8, then x̆z =
(
0, 0, 1

2 , 1, 1, 0, 1
2 , 1
)
. Therefore, the only candidate variables

to branch on are x[n− 1] and x[i] where i = d(n− 3)/2e. Branching on x[i], we have x̆z−i
=

x̆z− 1
2 ei + 1

2 ei−1 and x̆z+
i

= x̆z + 1
2 ei− 1

2 ei+1. Branching on x[n− 1], we have x̆z−n−1
= x̆z− 1

2 en−1 +
1
2 en−2 and x̆z+

n−1
= x̆z + 1

2 en−1 − 1
2 en. Therefore,

c̆z−i
= c̆z −

3γ

4
,

c̆z+
i

= c̆z +
3γ

4
− γ

2

(
3− 1

2ρ∗

)
= c̆z −

3γ

4

(
1− 1

ρ∗

)
,

c̆z−n−1
= c̆z − γ +

γ

2
= c̆z −

γ

2
, and

c̆z+
n−1

= c̆z + γ− 3γ

2
= c̆z −

γ

2
.

This means that c̆z − c̆z−i
= 3γ/4, c̆z − c̆z+

i
= γ

4

(
3− 1

ρ∗

)
, and c̆z − c̆z−n−1

= c̆z − c̆z+
n−1

= γ/2.

Therefore, ρscore1(z, i) + (1− ρ)score2(z, i) = ργ
4

(
3− 1

ρ∗

)
+ 3γ(1−ρ)

4 = 3γ
4 −

ργ
4ρ∗ and ρscore1(z, n−

1) + (1− ρ)score2(z, n − 1) = γ/2. This means that ρscore1(z, i) + (1− ρ)score2(z, i) = 3γ
4 −

ργ
4ρ∗ < γ/2 = ρscore1(z, n− 1) + (1− ρ)score2(z, n− 1) so long as ρ > ρ∗.

The next node B&B will explore is z−n−1. The vector x̆z−n−1
has fractional values only in

positions i and n − 2. Branching on i, we again have that c̆z−n−1
− c̆z−,−

n−1,i
= 3γ/4 and c̆z−n−1

−

c̆z−,+
n−1,i

= γ
4

(
3− 1

ρ∗

)
. Branching on n− 2, z−,−

n−1,n−2 is infeasible, so c̆z−n−1
− c̆z−,−

n−1,n−2
equals some

large number B ≥ ||c||1. Next, x̆z−,+
n−1,n−2

= x̆z−n−1
+ 1

2 en−2 − 1
2 en, so c̆z−,+

n−1,n−2
= c̆z−n−1

− γ. Therefore,

ρscore1
(
z−n−1, i

)
+ (1− ρ)score2

(
z−n−1, i

)
= 3γ

4 −
ργ
4ρ∗ and

ρscore1
(
z−n−1, n− 2

)
+ (1− ρ)score2

(
z−n−1, n− 2

)
= ργ + (1− ρ)B

= B + ρ (γ− B)

= B− ργ

4ρ∗
+ ρ

(
γ +

γ

4ρ∗
− B

)
> B− ργ

4ρ∗
+

3γ/4− B
γ + γ

4ρ∗ − B

(
γ +

γ

4ρ∗
− B

)
= B− ργ

4ρ∗
+ 3γ/4− B

=
3γ

4
− ργ

4ρ∗
,

where the final inequality holds because ρ < 1 < B−3γ/4
B−(γ+γ/(4ρ∗)) . Therefore, x[n − 2] will be

branched on next.
Since z−,−

n−1,n−2 is infeasible, the next node B&B will explore is z−,+
n−1,n−2. The vector x̆z−,+

n−1,n−2

has fractional values only in positions i and n. Since both MILP instances z−,+,−
n−1,n−2,n and

z−,+,+
n−1,n−2,n are infeasible, so ρscore1

(
z−,+

n−1,n−2, n
)

+ (1 − ρ)score2

(
z−,+

n−1,n−2, n
)

= B whereas
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ρscore1

(
z−,+

n−1,n−2, i
)

+ (1− ρ)score2

(
z−,+

n−1,n−2, i
)

= 3γ
4 −

ργ
4ρ∗ < B. Therefore, B&B will branch

on x[n] and fathom both children.
The next node B&B will explore is z+

n−1. The vector x̆z+
n−1

has fractional values only in po-
sitions i and n. Branching on i, we again have that c̆z−n−1

− c̆z−,−
n−1,i

= 3γ/4 and c̆z−n−1
− c̆z−,+

n−1,i
=

γ
4

(
3− 1

ρ∗

)
. Branching on x[n], x̆z+,−

n−1,n
= x̆z+

n−1
− 1

2 en + 1
2 en−2, so c̆z+,−

n−1,n
= c̆z+

n−1
− γ. Mean-

while, z+,+
n−1,n is infeasible, so c̆z+

n−1
− c̆z+,+

n−1,n−2
equals some large number B ≥ ||c||1. Therefore,

ρscore1
(
z+

n−1, i
)

+ (1− ρ)score2
(
z+

n−1, i
)

= 3γ
4 −

ργ
4ρ∗ and

ρscore1
(
z+

n−1, n
)

+ (1− ρ)score2
(
z+

n−1, n
)

= ργ + (1− ρ)B >
3γ

4
− ργ

4ρ∗
.

Therefore, x[n] will be branched on next.
The next node B&B will explore is z+,−

n−1,n. The vector x̆z+,−
n−1,n

has fractional values only in

positions i and n − 2. Since both MILP instances z+,−,−
n−1,n,n−2 and z+,−,−

n−1,n,n−2 are infeasible, so

ρscore1

(
z−,+

n−1,n, n− 2
)

+ (1− ρ)score2

(
z−,+

n−1,n, n− 2
)

= B whereas ρscore1

(
z−,+

n−1,n−2, i
)

+ (1−

ρ)score2

(
z−,+

n−1,n−2, i
)

= 3γ
4 −

ργ
4ρ∗ < B, as before. Therefore, B&B will branch on x[n− 2] and

fathom both children.
At this point, all children have been fathomed, so B&B will terminate.

Lemma 4.3.10. Suppose ρ < ρ∗. Then for any MILP zγ,n ∈ Gn,ρ∗ , B&B with the scoring rule ρscore1 +

(1− ρ)score2 will create a tree of depth at least 2(n−5)/4.

Proof. Let i = d(n− 3)/2e. We first prove two useful claims.

Claim 4.3.11. Let j be an even number such that 2 ≤ j ≤ i − 2 and let J = {x[i − j/2], . . . , x[i +
j/2− 1]}. Suppose that B&B has branched on exactly the variables in J and suppose that the number
of variables set to 1 equals the number of variables set to 0. Then B&B will next branch on the variable
x[i + j/2]. Similarly, suppose J = {x[i− j/2 + 1], x[i− j/2 + 2], . . . , x[i + j/2]}. Suppose that B&B
has branched on exactly the variables in J and suppose that the number of variables set to 1 equals the
number of variables set to 0. Then B&B will next branch on the variable x[i− j/2].

Proof. Let z be the MILP contained in the node at the end of the path. This proof has two cases.

Case 1: J = {x[i− j/2], x[i− j/2 + 1], . . . , x[i + j/2− 1]}. In this case, there is a set

J< = {x[1], . . . , x[i− j/2− 1]}

of i − j
2 − 1 variables smaller than x[i] that have not yet been branched on and there is a set

J> = {x[i + j/2], . . . , x[n− 3]} of n− 3−
(

i + j
2 − 1

)
= 2i− 1−

(
i + j

2 − 1
)

= i− j
2 variables

in {x[i + 1], . . . , x[n− 3]} that have not yet been branched on. Since the number of variables
set to 1 in J equals the number of variables set to 0, the LP relaxation will set the i − j

2 − 1
variables in J< to 0, the i− j

2 − 1 variables in J> \ {x[i + j/2]} to 1, and x[i + j/2] to 1
2 . It will

also set x[n− 2] = 0, x[n− 1] = 1
2 , and x[n] = 1. Therefore, the two fractional variables are

x[i + j/2] and x[n− 1]. Branching on x[i + j/2], we have x̆z−i+j/2
= x̆z − 1

2 ei+j/2 + 1
2 ei−j/2−1 and
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x̆z+
i+j/2

= x̆z + 1
2 ei+j/2− 1

2 ei+j/2+1. Branching on x[n− 1], we have that x̆z−n−1
= x̆z− 1

2 en−1 + 1
2 en−2

and x̆z+
n−1

= x̆z + 1
2 en−1 − 1

2 en. Therefore,

c̆z−i+j/2
= c̆z −

γ

2

(
3− 1

2ρ∗

)
c̆z+

i+j/2
= c̆z

c̆z−n−1
= c̆z − 1 +

1
2

= c̆z −
γ

2

c̆z+
n−1

= c̆z + 1− 3
2

= c̆z −
γ

2

This means that c̆z − c̆z−i+j/2
= γ

2

(
3− 1

2ρ∗

)
, c̆z − c̆z+

i+j/2
= 0, and c̆z − c̆z−n−1

= c̆z − c̆z+
n−1

= γ
2 .

Therefore, ρscore1(z, i + j/2) + (1− ρ)score2(z, i + j/2) = γ(1−ρ)
2

(
3− 1

2ρ∗

)
and ρscore1(z, n −

1) + (1− ρ)score2(z, n− 1) = γ
2 . Since ρ < ρ∗ and ρ∗ ∈

( 1
3 , 1

2

)
, we have that

ρscore1(z, i + j/2) + (1− ρ)score2(z, i + j/2) =
γ(1− ρ)

2

(
3− 1

2ρ∗

)
≥ γ (1− ρ∗)

2

(
3− 1

2ρ∗

)
≥ γ

2
.

Therefore, x[i + j/2] will be branched on next.

Case 2: J = {x[i− j/2 + 1], x[i− j/2 + 2], . . . , x[i + j/2]}. In this case, there is a set

J< = {x[1], . . . , x[i− j/2]}

of i − j
2 variables smaller than x[i] that have not yet been branched on and a set J> = {x[i +

j/2 + 1], . . . , x[n − 3]} of n − 3−
(

i + j
2

)
= 2i − 1−

(
i + j

2

)
= i − j

2 − 1 variables in {x[i +

1], . . . , x[n− 3]} that have not yet been branched on. Since the number of variables set to 1 in
J equals the number of variables set to 0, the LP relaxation will set the i − j

2 − 1 variables in
J< \ {x[i− j/2]} to 0, the i− j

2 − 1 variables in J> \ {x[i + j/2]} to 1, and x[i− j/2] to 1
2 . It will

also set x[n− 2] = 0, x[n− 1] = 1
2 , and x[n] = 1. Therefore, the two fractional variables are

x[i− j/2] and x[n− 1]. Branching on x[i− j/2], we have x̆z−i−j/2
= x̆z − 1

2 ei−j/2 + 1
2 ei−j/2−1 and

x̆z+
i−j/2

= x̆z + 1
2 ei−j/2− 1

2 ei+j/2+1. Branching on x[n− 1], we have that x̆z−n−1
= x̆z− 1

2 en−1 + 1
2 en−2

and x̆z+
n−1

= x̆z + 1
2 en−1 − 1

2 en. Therefore,

c̆z−i−j/2
= c̆z

c̆z+
i−j/2

= c̆z −
γ

2

(
3− 1

2ρ∗

)
c̆z−n−1

= c̆z − γ +
γ

2
= c̆z −

γ

2
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c̆z+
n−1

= c̆z + γ− 3γ

2
= c̆z −

γ

2

This means that c̆z − c̆z−i−j/2
= γ

2

(
3− 1

2ρ∗

)
, c̆z − c̆z+

i−j/2
= 0, and c̆z − c̆z−n−1

= c̆z − c̆z+
n−1

= γ
2 as

in the previous case, so x[i− j/2] will be branched on next.

Claim 4.3.12. Suppose that J is the set of variables branched on along a path of depth 2 ≤ j ≤ i − 2
where j is odd and let j′ = bj/2c. Suppose that J = {x[i− j′], x[i− j′ + 1], . . . , x[i + j′]}. Moreover,
suppose that the number of variables set to 1 in J equals the number of variables set to 0, plus or minus
1. Then B&B will either branch on x[i− j′ − 1] or x[i + j′ + 1].

Proof. Let z be the MILP contained a the end of the path. There are i − j′ − 1 variables J< =
{x[1], . . . , x[i− j′ − 1]} that are smaller than x[i] that have not yet been branched on, and n−
3− (i + j′) = 2i− 1− (i + j′) = i− j′ − 1 variables

J> =
{

x[i + j′ + 1], . . . , x[n− 3]
}

in {x[i + 1], . . . , x[n− 3]} that have not yet been branched on. Let z be the number of variables
in J set to 0 and let o be the number of variables set to 1. This proof has two cases:

Case 1: z = o + 1. Since z + o = j, we know that z = j′ + 1 and o = j′. Therefore, the LP
relaxation will set the variables in J< \ {x[i− j′ − 1]} to zero for a total of |J< \ {x[i− j′ − 1]}|+
z = i− j′− 2 + j′+ 1 = i− 1 zeros, it will set the variables in J> to one for a total of |J>|+ o = i−
j′− 1 + j′ = i− 1 ones, and it will set x[i− j′− 1] to 1

2 . It will also set x[n− 2] = 0, x[n− 1] = 1
2 ,

and x[n] = 1. Therefore, the two fractional variables are x[i− j′ − 1] and x[n− 1]. Branching
on x[i− j′ − 1], we have x̆z−i−j′−1

= x̆z − 1
2 ei−j′−1 + 1

2 ei−j′−2 and x̆z+
i−j′−1

= x̆z + 1
2 ei−j′−1 − 1

2 ei+j′+1.

Branching on x[n− 1], we have that x̆z−n−1
= x̆z − 1

2 en−1 + 1
2 en−2 and x̆z+

n−1
= x̆z + 1

2 en−1 − 1
2 en.

Therefore,

c̆z−i−j′−1
= c̆z

c̆z+
i−j′−1

= x̆z −
γ

2

(
3− 1

2ρ∗

)
c̆z−n−1

= c̆z − γ +
γ

2
= c̆z −

γ

2

c̆z+
n−1

= c̆z + γ− 3γ

2
= c̆z −

γ

2

This means that c̆z − c̆z−i−j′−1
= 0, c̆z − c̆z+

i−j′−1
= γ

2

(
3− 1

2ρ∗

)
, and c̆z − c̆z−n−1

= c̆z − c̆z+
n−1

= γ
2 .

Therefore, ρscore1(z, i− j′− 1) + (1− ρ)score2(z, i− j′− 1) = γ(1−ρ)
2

(
3− 1

2ρ∗

)
and ρscore1(z, n−

1) + (1− ρ)score2(z, n− 1) = γ
2 . Since ρ < ρ∗ and ρ∗ ∈

( 1
3 , 1

2

)
, we have that

ρscore1(z, i− j′ − 1) + (1− ρ)score2(z, i− j′ − 1) =
γ(1− ρ)

2

(
3− 1

2ρ∗

)
≥ γ (1− ρ∗)

2

(
3− 1

2ρ∗

)
≥ γ

2
.

Therefore, x[i− j′ − 1] will be branched on next.
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Case 1: z = o − 1. Since z + o = j, we know that z = j′ and o = j′ + 1. Therefore, the LP
relaxation will set the variables in J< to zero for a total of |J<|+ z = i− j′− 1 + j′ = i− 1 zeros, it
will set the variables in J> \ {x[i + j′ + 1]} to one for a total of |J> \ {x[i + j′ + 1]}|+ o = i− j′−
2 + j′ + 1 = i− 1 ones, and it will set x[i + j′ + 1] to 1

2 . It will also set x[n− 2] = 0, x[n− 1] = 1
2 ,

and x[n] = 1. Therefore, the two fractional variables are x[i + j′ + 1] and x[n− 1]. Branching
on x[i + j′ + 1], we have x̆z−i+j′+1

= x̆z − 1
2 ei+j′+1 + 1

2 ei−j′−1 and x̆z+
i+j′+1

= x̆z + 1
2 ei+j′+1 − 1

2 ei+j′+2.

Branching on x[n− 1], we have that x̆z−n−1
= x̆z − 1

2 en−1 + 1
2 en−2 and x̆z+

n−1
= x̆z + 1

2 en−1 − 1
2 en.

Therefore,

c̆z−i+j′+1
= c̆z −

γ

2

(
3− 1

2ρ∗

)
c̆z+

i+j′+1
= x̆z

c̆z−n−1
= c̆z − γ +

γ

2
= c̆z −

γ

2

c̆z+
n−1

= c̆z + γ− 3γ

2
= c̆z −

γ

2

This means that c̆z − c̆z−i+j′+1
= γ

2

(
3− 1

2ρ∗

)
, c̆z − c̆z+

i+j′+1
= 0, and c̆z − c̆z−n−1

= c̆z − c̆z+
n−1

= γ
2 .

Therefore, ρscore1(z, i + j′+ 1) + (1− ρ)score2(z, i + j′+ 1) = γ(1−ρ)
2

(
3− 1

2ρ∗

)
and ρscore1(z, n−

1) + (1− ρ)score2(z, n− 1) = γ
2 . As in the previous case, this means that x[i + j′ + 1] will be

branched on next.

We now prove by induction that there are 2(d(n−3)/2e)−1)/2 ≥ 2(n−5)/4 paths in the B&B tree
of length at least i− 2. Therefore, the size of the tree is at least 2(n−5)/4.

Inductive hypothesis. Let j be an arbitrary integer between 1 and i− 2. If j is even, then there
exist at least 2j/2 paths in the B&B tree from the root to nodes of depth j such that if J is the set
indices branched on along a given path, then J = {x[i− j/2], x[i− j/2 + 1], . . . , x[i + j/2− 1]}
or J = {x[i− j/2 + 1], x[i− j/2 + 2], . . . , x[i + j/2]}. Moreover, the number of variables set to
0 in J equals the number of variables set to 1. Meanwhile, if j is odd, let j′ = bj/2c. There
exist at least 2(j+1)/2 paths in the B&B tree from the root to nodes of depth j such that if J is
the set indices branched on along a given path, then J = {x[i− j′], x[i− j′ + 1], . . . , x[i + j′]}.
Moreover, the number of variables set to 0 in J equals the number of variables set to 1, plus or
minus 1.

Base case. To prove the base case, we need to show that B&B first branches on x[i]. We saw
that this will be the case in Lemma 4.3.9 so long as ρ < ρ∗.

Inductive step. Let j be an arbitrary integer between 1 and i − 3. There are two cases, one
where j is even and one where j is odd. First, suppose j is even. From the inductive hypothesis,
we know that there exist at least 2j/2 paths in the B&B tree from the root to nodes of depth j
such that if J is the set varibles branched on along a given path, then

J = {x[i− j/2], x[i− j/2 + 1], . . . , x[i + j/2− 1]}
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or J = {x[i− j/2 + 1], x[i− j/2 + 2], . . . , x[i + j/2]}. Moreover, the number of variables set to 0

in J equals the number of variables set to 1. From Claim 4.3.11, we know that in the first case,
x[i + j/2] will be the next node B&B will branch on. This will create two new paths:

{x[i− j/2], x[i− j/2 + 1], . . . , x[i + j/2]}

will be the set of variables branched along each path, and the number of variables set to 0 will
equal the number of variables set to 1, plus or minus 1. Also from Claim 4.3.11, we know that
in the second case, x[i − j/2] will be the next node B&B will branch on. This will also create
two new paths: {x[i− j/2], x[i− j/2 + 1], . . . , x[i + j/2]} will be the set of variables branched
along each path, and the number of variables set to 0 will equal the number of variables set to
1, plus or minus 1. Since this is true for all 2j/2 paths, this leads to a total of 2j/2+1 = 2(j+2)/2

paths, meaning the inductive hypothesis holds.
Next, suppose j is odd and let j′ = bj/2c. From the inductive hypothesis, we know that

there exist at least 2(j+1)/2 paths in the B&B tree from the root to nodes of depth j such that if J is
the set variables branched on along a given path, then J = {x[i− j′], x[i− j′ + 1], . . . , x[i + j′]}.
Moreover, the number of variables set to 0 in J equals the number of variables set to 1, plus or
minus 1. From Claim 4.3.11, we know that B&B will either branch on x[i− j′− 1] or x[i + j′+ 1].
Suppose the number of variables set to 0 in J is 1 greater than the number of variables set to 1.
If B&B branches on x[i− j′ − 1], we can follow the path where x[i− j′ − 1] = 1, and this will
give us a new path where{

x[i− j′ − 1], x[i− j′], . . . , x[i + j′]
}

= {x[i− (j + 1)/2], x[i− (j + 1)/2 + 1], . . . , x[i + (j + 1)/2− 1]}

are the variables branched on and the number of variables set to 0 equals the number of
variables set to 1. If B&B branches on x[i + j′+ 1], we can follow the path where x[i + j′+ 1] = 1,
and this will give us a new path where{

x[i− j′], x[i− j′ + 1], . . . , x[i + j′], x[i + j′ + 1]
}

= {x[i− (j + 1)/2 + 1], x[i− (j + 1)/2 + 1], . . . , x[i + (j + 1)/2]}

are the variables branched on and the number of variables set to 0 equals the number of
variables set to 1. A symmetric argument holds if the number of variables set to 0 in J is 1 less
than the number of variables set to 1. Therefore, all 2(j+1)/2 paths can be extended by one edge,
so the statement holds.

4.3.3 Sample complexity guarantees

We now bound the pseudo-dimension of the set U =
{

uρ : ρ ∈ [0, 1]d} . First, we provide
generalization guarantees for a family of scoring rules we call path-wise, which includes many
well-known scoring rules as special cases. In this case, the number of samples is surprisingly
small given the complexity of these problems: it grows only quadratically with the number of
variables. Then, we provide guarantees that apply to any scoring rule, path-wise or otherwise.
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(a) A B&B search tree T . (b) The path Tz from
the root of the tree T
in Figure 4.5a to the
node labeled z.

(c) Another tree T ′ that has the path Tz
as a rooted subtree.

Figure 4.5: Illustrations to accompany the definition of a path-wise scoring rule (Defini-
tion 4.3.13). If the scoring rule score is path-wise, then for any variable xi, score(T , z, i) =
score(T ′, z, i) = score(Tz, z, i).

Path-wise scoring rules

In this section, we provide guarantees for MILPs where the non-continuous variables are con-
strained to be binary. Later, we provide guarantees for more general MILPs with arbitrary
integer constraints. The guarantees in this section apply broadly to a class of scoring rules we
call path-wise scoring rules. Given a node z in a search tree T , we denote the path from the root
of T to the node z as Tz. The path Tz includes all nodes and edge labels from the root of T to
z. For example, Figure 4.5b illustrates the path Tz from the root of the tree T in Figure 4.5a to
the node labeled z. We now state the definition of path-wise scoring rules.

Definition 4.3.13 (Path-wise scoring rule). The function score is a path-wise scoring rule if for
all search trees T , all nodes z in T , and all variables xi,

score(T , z, i) = score(Tz, z, i) (4.4)

where Tz is the path from the root of T to z.1 See Figure 4.5 for an illustration.

Definition 4.3.13 requires that if the node z appears at the end of the same path in two
different B&B trees, then any path-wise scoring rule must assign every variable the same score
with respect to z in both trees.

Path-wise scoring rules include many well-studied rules as special cases, such as the most
fractional, product, and linear scoring rules, as defined in Section 4.2. The same is true when
B&B only partially solves the LP relaxations of z−i and z+

i for every variable x[i] by running a
small number of simplex iterations, as we describe in Section 4.2 and as is our approach in our
experiments. In fact, these scoring rules depend only on the node in question, rather than the
path from the root to the node. We present our sample complexity bound for the more general
class of path-wise scoring rules because this class captures the level of generality the proof
holds for. On the other hand, pseudo-cost branching [Bénichou et al., 1971, Gauthier and Ribière,
1977, Linderoth and Savelsbergh, 1999] and reliability branching [Achterberg et al., 2005], two

1Under this definition, the scoring rule can simulate B&B for any number of steps starting at any point in the
tree and use that information to calculate the score, so long as Equality (4.4) always holds.
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widely-used branching strategies, are not path-wise, but our more general results later in this
section do apply to those strategies.

In order to prove our generalization guarantees, we make use of the following key structure
which bounds the number of search trees branch-and-bound will build on a given instance
over the entire range of parameters. In essence, this is a bound on the intrinsic complexity of
the algorithm class defined by the range of parameters, and this bound on algorithm class’s
intrinsic complexity implies strong generalization guarantees.

Lemma 4.3.14. Let score1 and score2 be two path-wise scoring rules, and let z be an arbitrary MILP
over n binary variables. There are T ≤ 2n(n−1)/2nn intervals I1, . . . , IT partitioning [0, 1] where for any
interval Ij, across all ρ ∈ Ij, the scoring rule ρscore1 + (1− ρ)score2 results in the same search tree.

Proof. We prove this lemma first by considering the actions of an alternative algorithm A′ which
runs exactly like B&B, except it only fathoms nodes if they are feasible solutions to the original
MILP or if they are infeasible. We then relate the behavior of A′ to the behavior of B&B to
prove the lemma.

First, we prove the following bound on the number of search trees A′ will build on a given
instance over the entire range of parameters. This bound matches that in the lemma statement.

Claim 4.3.15. There are T ≤ 2n(n−1)/2nn intervals I1, . . . , IT partitioning [0, 1] where for any interval
Ij, the search tree A′ builds using the scoring rule ρscore1 + (1− ρ)score2 is invariant across all ρ ∈ Ij.2

Proof of Claim 4.3.15. We prove this claim by induction.

Inductive hypothesis. For i ∈ {1, . . . , n}, there are T ≤ 2i(i−1)/2ni intervals I1, . . . , IT partition-
ing [0, 1] where for any interval Ij and any two parameters ρ, ρ′ ∈ Ij, if T and T ′ are the trees A′

builds using the scoring rules ρscore1 + (1− ρ)score2 and ρ′score1 + (1− ρ′)score2, respectively,
then T [i] = T ′[i].

Base case. Before branching on any variables, the B&B tree T0 consists of a single root node z.
Given a parameter ρ, A′ will branch on variable x[k] so long as

k = argmax`∈[n] {ρscore1(T0, z, `) + (1− ρ)score2(T0, z, `)} .

Since ρscore1(T0, z, `) + (1− ρ)score2(T0, z, `) is a linear function of ρ for each ` ∈ [n], we know
that for any k ∈ [n], there is at most one interval I of the parameter space [0, 1] where k =
argmax`∈[n] {ρscore1 + (1− ρ)score2}. Thus, there are T ≤ n = 21·(1−1)/2n1 intervals I1, . . . , IT

partitioning [0, 1] where for any interval Ij, A′ branches on the same variable at the root node
using the scoring rule ρscore1 + (1− ρ)score2 across all ρ ∈ Ij.

Inductive step. Let i ∈ {2, . . . , n} be arbitrary. From the inductive hypothesis, we know
that there are T ≤ 2(i−2)(i−1)/2ni−1 intervals I1, . . . , IT partitioning [0, 1] where for any interval
Ij and any two parameters ρ, ρ′ ∈ Ij, if T and T ′ are the trees A′ builds using the scoring
rules ρscore1 + (1− ρ)score2 and ρ′score1 + (1− ρ′)score2, respectively, then T [i− 1] = T ′[i−
1]. Consider an arbitrary node z in T [i − 1] (or equivalently, T ′[i − 1]) at depth i − 1. If

2This claim holds even when score1 and score2 are members of the more general class of depth-wise scoring rules,
which we define as follows. For any search tree T of depth depth(T ) and any j ∈ [n], let T [j] be the subtree of T
consisting of all nodes in T of depth at most j. We say that score is a depth-wise scoring rule if for all search trees T ,
all j ∈ [depth(T )], all nodes z of depth j, and all variables x[i], score(T , z, i) = score(T [j], z, i).
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Figure 4.6: Illustrations of the proof of Claim 4.3.15 for a hypothetical MILP z where the
algorithm can either branch on x[1], x[2], or x[3] next. In the left-most interval (colored pink),
x[1] will be branched on next, in the central interval (colored green), x[3] will be branched on
next, and in the right-most interval (colored orange), x[2] next will be branched on next.

z is integral or infeasible, then it will be fathomed no matter which parameter ρ ∈ Ij the
algorithm A′ uses. Otherwise, for all ρ ∈ Ij, let Tρ be the state of the search tree A′ builds using
the scoring rule ρscore1 + (1− ρ)score2 at the point when it branches on z. By the inductive
hypothesis, we know that across all ρ ∈ Ij, the path from the root to z in Tρ is invariant, and
we refer to this path as Tz. Given a parameter ρ ∈ Ij, the variable x[k] will be branched on
at node z so long as k = argmax`

{
ρscore1(Tρ, z, `) + (1− ρ)score2(Tρ, z, `)

}
, or equivalently,

so long as k = argmax` {ρscore1(Tz, z, `) + (1− ρ)score2(Tz, z, `)}. In other words, the decision
of which variable to branch on is determined by a convex combination of the constant values
score1(Tz, z, `) and score2(Tz, z, `) no matter which parameter ρ ∈ Ij the algorithm A′ uses.
Here, we critically use the fact that the scoring rule is path-wise.

Since ρscore1(Tz, z, `) + (1− ρ)score2(Tz, z, `) is a linear function of ρ for all `, there are at
most n intervals subdividing the interval Ij such that the variable branched on at node z is
fixed. This is illustrated in Figure 4.6. Moreover, there are at most 2i−1 nodes at depth i − 1,
and each node similarly contributes a subpartition of Ij of size n. If we merge all 2i−1 partitions,
we have T′ ≤ 2i−1(n− 1) + 1 intervals I′1, . . . , I′T′ partitioning Ij where for any interval I′p and
any two parameters ρ, ρ′ ∈ I′p, if T and T ′ are the trees A′ builds using the scoring rules
ρscore1 + (1− ρ)score2 and ρ′score1 + (1− ρ′)score2, respectively, then T [i] = T ′[i]. We can
similarly subdivide each interval I1, . . . , IT for a total of

T̄ ≤ 2(i−1)(i−2)/2ni−1
(

2i−1(n− 1) + 1
)
≤ 2(i−1)(i−2)/2ni−1

(
2i−1n

)
= 2i(i−1)/2ni

intervals Ī1, . . . , ĪT̄ partitioning [0, 1] such that for any interval Īt, across all ρ ∈ Īt and any two
parameters ρ, ρ′ ∈ Īt, if T and T ′ are the trees A′ builds using the scoring rules ρscore1 + (1−
ρ)score2 and ρ′score1 + (1− ρ′)score2, respectively, then T [i] = T ′[i].

Next, we explicitly relate the behavior of B&B to A′, proving that the search tree B&B builds
is a rooted subtree of the search tree A′ builds.

Claim 4.3.16. Given a parameter ρ ∈ [0, 1], let T and T ′ be the trees B&B and A′ build respectively
using the scoring rule ρscore1 + (1− ρ)score2. For any node z of T , let Tz be the path from the root of
T to z. Then Tz is a rooted subtree of T ′.

Proof of Claim 4.3.16. The path Tz can be labeled by a sequence of indices from {0, 1} and a
sequence of variables from {x[1], . . . , x[n]} describing which variable is branched on and which
value it takes on along the path Tz. Let ((j1, x[i1]), . . . , (jt, x[it])) be this sequence of labels,
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where t is the number of edges in Tz. We can similarly label every edge in T ′. We claim that
there exists a path beginning at the root of T ′ with the labels ((j1, x[i1]), . . . , (jt, x[it])).

For a contradiction, suppose no such path exists. Let (jτ, x[iτ]) be the earliest label in the
sequence ((j1, x[i1]), . . . , (jt, x[it])) where there is a path beginning at the root of T ′ with the
labels ((j1, x[i1]), . . . , (jτ−1, x[iτ−1])), but there is no way to continue the path using an edge
labeled (jτ, x[iτ]). There are exactly two reasons why this could be the case:

1. The node at the end of the path with labels ((j1, x[i1]), . . . , (jτ−1, x[iτ−1])) was fathomed
by A′.

2. The algorithm A′ branched on a variable other than x[iτ] at the end of the path labeled
((j1, x[i1]), . . . , (jτ−1, x[iτ−1])).

In the first case, since A′ only fathoms a node if it is integral or infeasible, we know that
B&B will also fathom the node at the end of the path with labels ((j1, x[i1]), . . . , (jτ−1, x[iτ−1])).
However, this is not the case since B&B next branches on the variable x[iτ].

The second case is also not possible since the scoring rules are both path-wise. In a bit
more detail, let z′ be the node at the end of the path with labels ((j1, x[i1]), . . . , (jτ−1, x[iτ−1])).
We refer to this path as Tz′ . Let T̄ (respectively, T̄ ′) be the state of the search tree B&B (re-
spectively, A′) has built at the point it branches on z′. We know that Tz′ is the path from the
root to z′ in both of the trees T̄ and T̄ ′. Therefore, for all variables x[k], ρscore1(T̄ , z′, k) +
(1 − ρ)score2(T̄ , z′, k) = ρscore1(Tz′ , z′, k) + (1 − ρ)score2(Tz′ , z′, k) = ρscore1(T̄ ′, z′, k) + (1 −
ρ)score2(T̄ ′, z′, k). This means that B&B and A′ will choose the same variable to branch on at
the node z′.

Therefore, we have reached a contradiction, so the claim holds.

Next, we use Claims 4.3.15 and 4.3.16 to prove Lemma 4.3.14. Let I1, . . . , IT be the intervals
guaranteed to exist by Claim 4.3.15 and let It be an arbitrary one of the intervals. Let ρ′ and
ρ′′ be two arbitrary parameters from It. We will prove that the scoring rules ρ′score1 + (1−
ρ′)score2 and ρ′′score1 + (1− ρ′′)score2 result in the same B&B search tree. For a contradiction,
suppose that this is not the case. Consider the first iteration where B&B using the scoring rule
ρ′score1 + (1− ρ′)score2 differs from B&B using the scoring rule ρ′′score1 + (1− ρ′′)score2. By
iteration, we mean lines 3 through 18 of Algorithm 3. Up until this iteration, B&B has built the
same partial search tree T . Since the node-selection policy does not depend on ρ′ or ρ′′, B&B
will choose the same leaf z of the B&B search tree to branch on no matter which scoring rule it
uses.

Suppose B&B chooses different variables to branch on in Step 5 of Algorithm 3 depending
on whether it uses the scoring rule ρ′score1 + (1− ρ′)score2 or ρ′′score1 + (1− ρ′′)score2. Let
Tz be the path from the root of T to z. By Claim 4.3.15, we know that the algorithm A′

builds the same search tree using the two scoring rules. Let T̄ ′ (respectively, T̄ ′′) be the state
of the search tree A′ has built using the scoring rule ρ′score1 + (1 − ρ′)score2 (respectively,
ρ′′score1 + (1− ρ′′)score2) by the time it branches on the node z. By Claims 4.3.15 and 4.3.16,
we know that Tz is the path of from the root to z of both T̄ ′ and T̄ ′′. By Claim 4.3.15, we know
that A′ will branch on the same variable x[i] at the node z in both the trees T̄ ′ and T̄ ′′, so
i = argmaxj

{
ρ′score1(T̄ ′, z, j) + (1− ρ′)score2(T̄ ′, z, j)

}
, or equivalently,

i = argmaxj
{

ρ′score1(Tz, z, j) + (1− ρ′)score2(Tz, z, j)
}

, (4.5)
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and i = argmaxj
{

ρ′′score1(T̄ ′′, z, j) + (1− ρ′′)score2(T̄ ′′, z, j)
}

, or equivalently,

i = argmaxj
{

ρ′′score1(Tz, z, j) + (1− ρ′′)score2(Tz, z, j)
}

. (4.6)

Returning to the search tree T that B&B is building, Equation (4.5) implies that

i = argmaxj
{

ρ′score1(T , z, j) + (1− ρ′)score2(T , z, j)
}

and Equation (4.6) implies that i = argmaxj {ρ′′score1(T , z, j) + (1− ρ′′)score2(T , z, j)}. There-
fore, B&B will branch on x[i] at the node z no matter which scoring rule it uses.

Finally, since the trees B&B has built so far are identical, the choice of whether or not to
fathom the children z+

i and z−i does not depend on the scoring rule, so B&B will fathom the
same nodes no matter whether it uses the scoring rule ρ′score1 + (1− ρ′)score2 or ρ′′score1 +
(1− ρ′′)score2. Therefore, we have reached a contradiction: the iterations were identical. We
conclude that the lemma holds.

This lemma implies the following pseudo-dimension bound. The proof is nearly identical
to that of Theorem 3.0.3 from Chapter 3, and our general theorem from Chapter 7 implies the
pseudo-dimension bound as well.

Theorem 4.3.17. The pseudo-dimension of U =
{

uρ : ρ ∈ [0, 1]
}

is O(n2).

From Theorem 2.1.3, we know that this pseudo-dimension bound implies the following
sample complexity guarantee. Let [−H, H] be the range of each utility function uρ : Z →
[−H, H]. For any ε > 0 and δ ∈ (0, 1), let NU (ε, δ) := Θ

(
H2

ε2

(
n2 + ln 1

δ

))
. With probability

1 − δ over the draw of N ≥ NU (ε, δ) samples S ∼ DN , for all parameters ρ ∈ [0, 1], the
difference between the average value of uρ over the samples and the expected value of uρ is at
most ε:

∣∣ 1
N ∑z∈S uρ(z)−Ez∼D

[
uρ(z)

]∣∣ ≤ ε.

General scoring rules

In this section, we provide sample complexity guarantees that apply to learning convex com-
binations of any set of scoring rules. These guarantees apply to MILPs with arbitrary integer
constraints, whereas in the previous section, we required the non-continuous variables to be
binary. Unlike the results in the previous section, these guarantees depend on the size of the
search trees B&B is allowed to build before terminating, which we denote as κ. The following
lemma corresponds to Lemma 4.3.14 for this setting.

Lemma 4.3.18. Let score1, . . . , scored be d arbitrary scoring rules and let z be an arbitrary MILP over
n integer variables. Suppose we limit B&B to producing search trees of size κ̄. There is a set H of at
most n2(κ̄+1) hyperplanes such that for any connected component R of [0, 1]d \ H, the search tree B&B
builds using the scoring rule ρ[1]score1 + · · ·+ ρ[d]scored is invariant across all (ρ[1], . . . , ρ[d]) ∈ R.

Proof. The proof has two steps. In Claim 4.3.19, we show that there are at most nκ different
search trees that Algorithm 3 might produce for the MILP z as we vary the mixing parameter
vector (ρ[1], . . . , ρ[d]). In Claim 4.3.20, for each of the possible search trees T that might be
produced, we show that the set of parameter values (ρ[1], . . . , ρ[d]) which give rise to that tree
lie in the intersection of κn2 halfspaces. These facts together prove the lemma.
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Claim 4.3.19. There are only nκ different search trees that can be achieved by varying the parameter
vector (ρ[1], . . . , ρ[d]).

Proof of Claim 4.3.19. Fix any d mixing parameters (ρ[1], . . . , ρ[d]) and let v1, . . . , vκ ∈ [n] be
the sequence of branching variables chosen by B&B run with scoring rule ρ[1]score1 + · · · +
ρ[d]scored, ignoring which node of the tree each variable was chosen for. That is, v1 is the
variable branched on at the root, v2 is the variable branched on at the next unfathomed node
chosen by the node-selection policy, and so on. If Algorithm 3 with scoring rule ρ[1]score1 +
· · · + ρ[d]scored produces a tree of size k < κ, then define vt = 1 for all t ≥ k (we are just
padding the sequence v1, v2, . . . so that it has length κ). We will show that whenever two
sets of mixing parameters (ρ[1], . . . , ρ[d]) and (ρ[1]′, . . . , ρ[d]′) give rise to the same sequence
of branching variable selections, they in fact produce identical search trees. This will imply
that the number of distinct trees that can be produced by B&B with scoring rules of the form
ρ[1]score1 + · · ·+ ρ[d]scored is at most nκ, since there are only nκ distinct sequences of κ variables
v1, . . . , vκ ∈ [n].

Let (ρ[1], . . . , ρ[d]) and (ρ̃[1], . . . , ρ̃[d]) be two sets of mixing parameters, and suppose run-
ning B&B with ρ[1]score1 + · · ·+ ρ[d]scored and ρ̃[1]score1 + · · ·+ ρ̃[d]scored both results in the
sequence of branching variable decisions being v1, . . . , vκ. We prove that the resulting search
trees are identical by induction on the iterations of the algorithm, where an iteration corre-
sponds to Lines 4 through 18 of Algorithm 3. Our base case is before the first iteration when
the two trees are trivially equal, since they both contain just the root node. Now suppose that
up until the beginning of iteration t the two trees were identical. Since the two trees are iden-
tical, the node-selection policy will choose the same node to branch on in both cases. In both
trees, the algorithm will choose the same variable to branch on, since the sequence of branching
variable choices v1, . . . , vκ is shared. Since the two trees are identical, we will branch using the
same constraint vt ≤ a for some integer a ∈ Z in both trees. Finally, if any of the children are
fathomed, they will be fathomed in both trees, since the they are identical. It follows that all
steps of B&B maintain equality between the two trees, and the claim follows. Also, whenever
the sequence of branching variables differ, then the search tree produced will not be the same.
In particular, on the first iteration where the two sequences disagree, the tree built so far will
be identical up to that point, but the next variable branched on will be different, leading to
different trees.

Next, we argue that for any given B&B search tree T , the set of mixing parameters ρ ∈ [0, 1]d

giving rise to T is defined by the intersection of nκ+2 halfspaces.

Claim 4.3.20. For a given search tree T , there are at most κn2 halfspaces such that Algorithm 3 using
the scoring rule ρ[1]score1 + · · ·+ ρ[d]scored builds the tree T if and only if (ρ[1], . . . , ρ[d]) lies in the
intersection of those halfspaces.

Proof of Claim 4.3.20. Let v1, . . . , vκ be the sequence of branching variable choices that gives rise
to tree T . We will prove the claim by induction on iterations completed by B&B. Let Tt be the
state of B&B after t iterations.

Induction hypothesis. For a given index t ∈ [κ], there are at most tn2 halfspaces such that
B&B using the scoring rule ρ[1]score1 + · · ·+ ρ[d]scored builds the partial tree Tt after t iterations
if and only if (ρ[1], . . . , ρ[d]) lies in the intersection of those halfspaces.
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Base case. In the base case, before the first iteration, the set of parameters that will produce
the partial search tree consisting of just the root is the entire set of parameters, which vacuously
is the intersection of zero hyperplanes.

Inductive step. For the inductive step, let t < κ be an arbitrary tree size. By the inductive
hypothesis, we know that there exists a set B of at most tn2 halfspaces such that B&B using the
scoring rule ρ[1]score1 + · · ·+ ρ[d]scored builds the partial tree Tt after t iterations if and only if
(ρ[1], . . . , ρ[d]) lies in the intersection of those halfspaces. Let z′ be the IP contained in the next
node that B&B will branch on given Tt. We know that B&B will choose to branch on variable
vt+1 at this node if and only if

ρ[1]score1(Tt, z′, vt+1) + · · ·+ ρ[d]scored(Tt, z′, vt+1)

> max
v′ 6=vt+1

{
ρ[1]score1(Tt, z′, v′) + · · ·+ ρ[d]scored(Tt, z′, v′)

}
.

Since these functions are linear in (ρ[1], . . . , ρ[d]), there are at most n2 halfspaces defining the
region where vt+1 = argmax {ρ[1]score1(T , z′, v′) + · · ·+ ρ[d]scored(T , z′, v′)}. Let B′ be this
set of halfspaces. B&B using the scoring rule ρ[1]score1 + · · ·+ ρ[d]scored builds the partial tree
Tt+1 after t + 1 iterations if and only if (ρ[1], . . . , ρ[d]) lies in the intersection of the (t + 1)n2

halfspaces in the set B ∪ B′.

This piecewise structure implies the following pseudo-dimension guarantee.

Theorem 4.3.21. The pseudo-dimension of U =
{

uρ : ρ ∈ [0, 1]d} is O (d (κ log n + log d)).

Proof. Suppose that Pdim(U ) = N and let S = {z1, . . . , zN} be a shatterable set of problem
instances. We know there exists a set of targets r1, . . . , rN ∈ R that witness the shattering of S
by U . This means that for every S ′ ⊆ S , there exists a parameter vector (ρ1,S ′ , . . . , ρd,S ′) such
that if zi ∈ S ′, then cost (zi, ρ1,S ′score1 + · · ·+ ρd,S ′scored) ≤ ri. Otherwise

cost (zi, ρ1,S ′score1 + · · ·+ ρd,S ′scored) > ri.

Let M = {(ρ1,S ′ , . . . , ρd,S ′) : S ′ ⊆ S}. We will prove that |M| = O
(

d
(

Nκnκ+2)d
)

, and since

2N = |M|, this means that Pdim(U ) = N = O (dκ log n + d log d) (see Lemma 2.1.4 in Sec-
tion 2.1.1).

To prove our bound on |M|, we rely on Lemma 4.3.18, which tells us that for any problem
instance z, there is a set H of at most T ≤ κnκ+2 hyperplanes such that for any connected
component R of [0, 1]d \ H, the search tree B&B builds using the scoring rule ρ1score1 + · · ·+
ρdscored is invariant across all (ρ1, . . . , ρd) ∈ R. If we merge all T hyperplanes for all samples in
S , we are left with a set H′ of T′ ≤ mκnκ+2 hyperplanes where for any connected component
R of [0, 1]d \ H′ and any zi ∈ S , the search tree B&B builds using the scoring rule ρ1score1 +
· · · + ρdscored given as input zi is invariant across all (ρ1, . . . , ρd) ∈ R. Therefore, at most
one element of M can come from each connected component, of which there are O(d|H′|d) =

O
(

d
(

Nκnκ+2)d
)

. Therefore, |M| = O
(

d
(

Nκnκ+2)d
)

, as claimed.
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Algorithm 4 ERM Algorithm
Input: Problem instances z1, . . . , zm, variable scoring rules score1, score2.

1: For each problem instance zi, compute the piecewise constant uρ as a function of the mixing
parameter ρ.

2: Compute the point-wise average of the resulting piecewise constant functions.
Output: The ρ∗ in the interval minimizing the average cost.

In contrast to Theorem 4.3.17, this pseudo-dimension bound implies a sample complexity
bound of NU (ε, δ) := Θ

(
H2

ε2

(
d (κ log n + log d) + ln 1

δ

))
, where [−H, H] is the range of each

utility function uρ. In some ways, this bound is stronger than that implied by Theorem 4.3.17

since it holds for d-dimension parameters and any arbitrary set of scoring rules. At the same
time, it is weaker in some ways because it depends on the tree size bound κ, whereas the bound
implied by Theorem 4.3.17 only depends on the number of variables n.

Learning algorithm

In this section we describe an empirical risk minimization algorithm capable of finding the best
mixture of two variable-selection scoring rules for a given set of m problem instances z1, . . . , zm.
We modify the tree search algorithm so that given a problem instance z and a mixing paramter
ρ ∈ [0, 1], the search algorithm keeps track of the largest interval I ⊂ [0, 1] such that the
behavior of the algorithm is identical to the current run when run with any parameter ρ′ ∈ I.
With this, we can enumerate all possible behaviors of the algorithm for a single instance z by
running the algorithm with ρ = 0, followed by the smallest value of ρ that will give a different
outcome, and so on, until we have covered the entire interval [0, 1]. This procedure results in
running the tree search algorithm on the instance z exactly once for each possible behavior
achievable across all values of the parameter ρ ∈ [0, 1]. By applying this algorithm to each
problem zi for i ∈ {1, . . . , m}, we discover how the tree search algorithm would perform on
every instance for any value of the mixing parameter ρ. This allows us to divide the interval
[0, 1] into a finite number of intervals on which cost is piecewise constant, and to compute the
cost on each interval.

To see why this additional book keeping is possible, suppose we are choosing which vari-
able to branch on in node z of tree T . We have two scoring rules score1 and score2 that each
rank the candidate variables in z, and when we run the algorithm with parameter ρ, we com-
bine these two scores as (1 − ρ)score1(T , z, i) + ρscore2(T , z, i). For any parameter ρ which
results in the same variable having the highest score, the variable chosen for branching in this
node will be identical. Let i∗ be the variable chosen by the algorithm when run with parameter
ρ. The set of all ρ′ for which i∗ is the variable of the highest score is an interval (and its end
points can be found by solving a linear equation to determine the value of ρ′ for which some
other variable overtakes i∗ under the mixed score). Also, for every parameter ρ′ outside of
this interval, the algorithm would indeed branch on a different node, resulting in a different
outcome of the tree search algorithm. By taking the intersections of these intervals across all
branching variable choices, we find the largest subset of [0, 1] for which the algorithm would
behave exactly the same, and this subset is an interval. The overhead of this book keeping is
only linear in the number of candidate branch variables. Pseudo-code for the ERM algorithm
is given in Algorithm 4.
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Generalization to non-linear combinations

In this section, we show that our analysis from the previous sections also implies guarantees
for learning non-linear combinations of the form ∏d

i=1 score
ρ[i]
i . In the following lemma, we

prove that sample complexity bounds for learning convex combinations of scoring rules imply
sample complexity bounds for learning non-linear combinations of scoring rules. It formally
shows that if m samples are sufficient to ensure that for any convex combination ∑d

j=1 ρ[j]scorej,
average cost over the samples is ε-close to expected cost, then m samples are also sufficient to
ensure the same holds for the non-convex combination ∏d

i=1 score
ρ[i]
i . Technically, this lemma

holds for any d scoring rules score1, . . . , scored from a set Ψ that is closed under logarithm: for any
function score ∈ Ψ, log score is also in Ψ. For example, Ψ might be the set of all scoring rules
or the set of path-wise scoring rules. These sets are both closed under logarithm; for example,
if score is path-wise, then log score is also path-wise. In this section, we use the notation u′ρ(z)

to denote the utility of B&B (for example, its tree size) using the scoring rule ∏d
i=1 score

ρ[i]
i

(whereas uρ(z) denotes the utility of B&B using the scoring rule ∑d
j=1 ρ[j]scorej). We assume

that u′ρ is tree-constant, as is uρ (as defined in Section 4.3.1).

Lemma 4.3.22. Let Ψ be a set of scoring rules that is closed under logarithm. Suppose there exists a
sample complexity function mΨ : R>0 × (0, 1) → N such that for any distribution D over MILPs,
any score1, . . . , scored ∈ Ψ, any ε > 0, and any δ ∈ (0, 1), with probability 1− δ over the draw of
m ≥ mΨ(ε, δ) MILPs z1, . . . , zm ∼ D, for any ρ[1], . . . , ρ[d] ∈ [0, 1],

∣∣∣∣∣ 1
m

m

∑
i=1

uρ(zi)− E
z∼D

[
uρ(z)

]∣∣∣∣∣ ≤ ε.

Then for any score1, . . . , scored ∈ Ψ, with probability at least 1− δ over the draw of m ≥ mΨ(ε, δ)

MILPs z1, . . . , zm ∼ D, for any ρ[1], . . . , ρ[d] ∈ [0, 1],
∣∣∣ 1

m ∑m
i=1 u′ρ(zi)−Ez∼D

[
u′ρ(z)

]∣∣∣ ≤ ε.

Proof. We claim that Algorithm 3 builds the same tree using the scoring rule ∏d
i=1 score

ρ[i]
i as it

does using the scoring rule ∑d
i=1 ρ[i] log scorei. Therefore, since uρ and u′ρ are tree-constant, the

lemma statement holds.
For a contradiction, suppose Algorithm 3 does not build the same tree using the scoring

rule ∏d
i=1 score

ρ[i]
i as it does using the scoring rule ∑d

i=1 ρ[i] log scorei. Consider the first round

of Algorithm 3 where the algorithm’s behavior using the scoring rule ∏d
i=1 score

ρ[i]
i differs from

its behavior using the scoring rule ∑d
i=1 ρ[i] log scorei. Let T ′ be the tree Algorithm 3 has built

up until that round and let z be the MILP represented by the next node that Algorithm 3 will
branch on given T ′. It must be that at Step 5, the algorithm chose a different variable to branch
on depending on the scoring rule. In other words,

argmaxj

{
d

∏
i=1

scorei(T ′, z, j)ρ[i]

}
6= argmaxj

{
d

∑
i=1

ρ[i] log scorei(T ′, z, j)

}
.
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However, if j∗ = argmaxj

{
∏d

i=1 scorei(T ′, z, j)ρ[i]
}

, then3

j∗ = argmaxj

{
log

(
d

∏
i=1

scorei(T ′, z, j)ρ[i]

)}
,

which means that j∗ = argmaxj

{
∑d

i=1 ρ[i] log scorei(T ′, z, j)
}

, which is a contradiction. There-

fore, Algorithm 3 builds the same tree using the scoring rule ∏d
i=1 score

ρ[i]
i as it does using the

scoring rule ∑d
i=1 ρ[i] log scorei, so the lemma statement holds.

This implies the following corollary for learning non-linear combinations of path-wise scor-
ing rules. It follows from Lemma 4.3.22, Theorem 4.3.17, and the fact that if score is path-wise,
then log score is path-wise as well.

Corollary 4.3.23. Let score1 and score2 be two path-wise scoring rules and let [−H, H] be the range of
each utility function u′ρ. For any distribution D over MILPs with at most n binary variables, any ε > 0,

and any δ ∈ (0, 1), m = O
(

H2

ε2

(
n2 + ln 1

δ

))
samples are sufficient to ensure that with probability at

least 1− δ over the draw z1, . . . , zm ∼ D, for any ρ ∈ [0, 1],
∣∣∣Ez∼D

[
u′ρ(z)

]
− 1

m ∑m
i=1 u′ρ(zi)

∣∣∣ ≤ ε.

Finally, we prove a similar corollary for non-linear combinations of general scoring rules,
which follows from Lemma 4.3.22 and Theorem 4.3.21.

Corollary 4.3.24. Let score1, . . . , scored be d arbitrary scoring rules, let [−H, H] be the range of each
utility function u′ρ, and let κ be a tree size cap. For any distribution D over MILPs z with at most n

integer variables, m = O
(

H2

ε2

(
dκ log n + d log d + ln 1

δ

))
samples are sufficient to ensure that with

probability at least 1− δ over the draw z1, . . . , zm ∼ D, for any ρ ∈ [0, 1]d,∣∣∣∣∣ E
z∼D

[
u′ρ(z)

]
− 1

m

m

∑
i=1

u′ρ(zi)

∣∣∣∣∣ ≤ ε.

4.4 Experiments

In this section, we show that the parameter of the variable-selection policy in B&B algorithms
for MILP can have a dramatic effect on the average tree size generated for several domains, and
no parameter value is optimal across these distributions.

Experimental setup. We use the C API of IBM ILOG CPLEX 12.8.0.0 to override the default
variable-selection policy using a branch callback. Additionally, our callback performs extra
book-keeping to determine a finite set of values for the parameter that give rise to all possible
B&B trees for a given instance (for the given choice of branching rules that our algorithm is
learning to weight). This ensures that there are no good or bad values for the parameter that get
skipped; such skipping could be problematic according to our theory in Section 4.3.2. We run
CPLEX exactly once for each possible B&B tree on each instance. The CPLEX node-selection
policy is set to “best bound” (aka. A∗ in AI), which is the most typical choice in MILP. All
experiments were run on a 64-core machine with 512 GB of RAM.

3For any set X ⊂ R>0, argmaxx∈X{x} = argmaxx∈X{log x}. After all, if not, then there are x1, x2 ∈ X such that
x1 < x2 but log x1 > log x2, which is a contradiction.
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(a) CATS “arbitrary”: 200

bids, 100 goods
(b) CATS “regions”: 400 bids,
200 goods

(c) Clustering

(d) Linear separators

Figure 4.7: The average tree size produced by B&B when run with the linear scoring rule with
parameter ρ (Equation (4.7)).

For a variety of application domains detailed below, Figure 4.7 shows the average B&B tree
size produced for each possible value of the ρ parameter for the linear scoring rule, averaged
over 100 independent samples from each distribution. Specifically, the scoring rule whose
parameter we tune in Figure 4.7 has the form

score(T , z, i) = (1− ρ) ·min
{

c̆z − c̆z+
i

, c̆z − c̆z−i

}
+ ρ ·max

{
c̆z − c̆z+

i
, c̆z − c̆z−i

}
, (4.7)

where (as defined in Section 4.2) c̆z, c̆z−i
, and c̆z−i

are the objective values of the optimal solu-
tions4 to the LP relaxations of z, z+

i , and z−i .

In Figure 4.8, we plot average tree size as a function of the ρ parameter for the linear scor-
ing rule, but we use pseudo-cost branching rather than strong branching (which we use in
Figure 4.7). Using strong branching, B&B computes the changes in the LP relaxation objective
values c̆z − c̆z+

i
and c̆z − c̆z−i

for every variable, which is time-consuming since it involves evalu-
ating 2n LPs at every node. Pseudo-cost branching instead estimates these values by averaging
the LP objective value changes across all nodes in the tree where the ith variable was chosen
to branch on. Pseudo-cost branching generally leads to larger trees than strong branching. In
Figures 4.8a, 4.8b, and 4.8d, we average over 100 randomly sampled IPs. Since Figure 4.8c is
choppier than these other three, we average over 2000 samples.

Finally, Figure 4.9 illustrates the average B&B tree size produced when tuning the param-
eter of a generalized product rule, averaged over 100 samples from each distribution. This

4When computing c̆z−i
and c̆z−i

for all candidate variables, we limit CPLEX to run at most 10 dual steepest-edge
iterations.

56



(a) CATS “arbitrary”: 150

bids, 100 goods
(b) CATS “regions”: 300 bids,
200 goods

(c) Clustering

(d) Linear separators

Figure 4.8: The average tree size produced by B&B when run with the linear scoring rule with
parameter ρ using pseudo-cost branching.

(a) CATS “arbitrary”: 200

bids, 100 goods
(b) CATS “regions”: 400 bids,
200 goods

(c) Clustering

(d) Linear separators

Figure 4.9: The average tree size produced by B&B when run with the product scoring rule
with parameter ρ (Equation (4.8)).
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parameterized scoring rule has the form56

score(T , z, i) = score1(T , z, i)1−ρscore2(T , z, i)ρ, (4.8)

where
score1(T , z, i) = max

{
min

{
c̆z − c̆z+

i
, c̆z − c̆z−i

}
, 10−6

}
and

score2(T , z, i) = max
{

max
{

c̆z − c̆z+
i

, c̆z − c̆z−i

}
, 10−6

}
.

This scoring rule is equivalent to the product scoring rule from Section 4.2 when ρ = 1
2 because

for any i, j ∈ [n], score1(T , z, i)
1
2 score2(T , z, i)

1
2 ≥ score1(T , z, j)

1
2 score2(T , z, j)

1
2 if and only if

max
{

c̆z − c̆z−i
, 10−6

}
·max

{
c̆z − c̆z+

i
, 10−6

}
≥ max

{
c̆z − c̆z−j

, 10−6
}
·max

{
c̆z − c̆z+

j
, 10−6

}
.

We now detail the application domains we analyze in our experiments.

Combinatorial auctions. We generate instances of the combinatorial auction winner deter-
mination problem under the OR-bidding language [Sandholm, 2002], which makes this prob-
lem equivalent to weighted set packing. The problem is NP-complete. We encode each in-
stance as a binary MILP (see Example 4.2.1). We use the Combinatorial Auction Test Suite
(CATS) [Leyton-Brown et al., 2000] to generate these instances. In Figures 4.7 and 4.9 use the
“arbitrary” generator with 200 bids and 100 goods, resulting in MILPs with around 200 vari-
ables, and “regions” generator with 400 bids and 200 goods, resulting in MILPs with around
400 binary variables. In Figure 4.8, we use the “arbitrary” generator with 150 bids and 100

goods, resulting in MILPs with around 150 binary variables, and “regions” generator with 300

bids and 200 goods, resulting in MILPs with around 300 binary variables.

Clustering. Given n points P = {p1, . . . , pn} and pairwise distances d(pi, pj) between each
pair of points pi and pj, the goal of k-means clustering is to find k centers C = {c1, . . . , ck} ⊆ P
such that the following objective function is minimized: ∑n

i=1 minj∈[k] d
(

pi, cj
)2 . We can for-

mulate k-means clustering as a MILP by assigning a binary variable xi to each point pi where
xi = 1 if and only if pi is a center, as well as a binary variable yij for each pair of points pi and
pj, where yij = 1 if and only if pj is a center and pj is the closest center to pi. We want to solve
the following problem:

min ∑i,j∈[n] d
(

pi, pj
)

yij
s.t. ∑n

i=1 xi = k
∑n

j=1 yij = 1 ∀i ∈ [n]

yij ≤ xj ∀i, j ∈ [n]
xi ∈ {0, 1} ∀i ∈ [n]
yij ∈ {0, 1} ∀i, j ∈ [n].

We generate instances with 35 points each and k = 5. We set d(i, i) = 0 for all i and choose
d(i, j) uniformly at random from [0, 1] for i 6= j. These distances do not satisfy the triangle

5Again, when computing c̆z−i
and c̆z−i

for all candidate variables, we limit CPLEX to run at most 10 dual steepest-
edge iterations.

6As we write in Section 4.2, comparing c̆z − c̆z−i
and c̆z − c̆z+

i
to 10−6 allows the algorithm to compare two

variables even if c̆z − c̆z−i
= 0 or c̆z − c̆z+

i
= 0. After all, suppose the scoring rule simply calculated the product

min
{

c̆z − c̆z+
i

, c̆z − c̆z−i

}1−ρ
max

{
c̆z − c̆z+

i
, c̆z − c̆z−i

}ρ
without comparing to 10−6. If one of these multiplicands

equals 0, then the score equals 0, canceling out the value of the other multiplicand and thus losing the information
encoded by that multiplicand.
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inequality and they are not symmetric (i.e., d(i, j) 6= d(j, i)), which tends to lead to harder
MILP instances than using Euclidean distances between randomly chosen points in Rd. These
MILPs have 1260 binary variables.

Agnostically learning linear separators. Let p1, . . . , pN ∈ Rd be labeled by z1, . . . , zN ∈
{−1, 1}. Suppose we wish to learn a linear separator w ∈ Rd that minimizes 0-1 loss, i.e.,

N

∑
i=1

1{zi〈pi ,w〉<0}.

We can formulate this problem as a MILP as follows. Let M > max ‖pi‖1.

min ∑n
i=1 xi

s.t. zi 〈pi, w〉 > −Mxi ∀i ∈ [n]
w[i] ∈ [−1, 1] ∀i ∈ [n]
xi ∈ {0, 1} ∀i ∈ [n].

Since |〈pi, w〉| < M, the inequality zi 〈pi, w〉 > −Mxi ensures that if zi 〈pi, w〉 > 0, then xi will
equal 0, but if zi 〈pi, w〉 ≤ 0, then xi must equal 1.7

We generate problem instances with 100 points p1, . . . , p100 from the 2-dimensional standard
normal distribution. We sample the true linear separator w∗ from the 2-dimensional standard
Gaussian distribution and label point pi by zi = sign(〈w∗, pi〉). We then choose 15 random
points and flip their labels so that there is no consistent linear separator. These MILPs have 100

binary variables.

Discussion. The relationship between the variable-selection parameter and the average tree
size varies greatly from application to application. This implies that the parameters should
be tuned on a per-application basis, and that no parameter value is universally effective. For
example, the optimal parameter in Figures 4.7b, 4.7c, and 4.7d is close to 0. However, ρ = 0
severely suboptimal in Figure 4.7a, resulting in trees that are twice the size of the trees obtained
under the optimal parameter value.

4.5 Generalization beyond variable selection

In this section, we study the sample complexity of selecting high-performing parameters for
generic tree-based algorithms, which are a generalization of B&B. This abstraction allows us
to provide guarantees for simultaneously optimizing key aspects of tree search beyond cut
selection, including node selection and cutting plane selection. The results in the section are
from ongoing research with Nina Balcan, Siddharth Prasad, and Tuomas Sandholm [Balcan
et al., 2021b].

Tree search algorithms take place over a series of κ rounds (analogous to the B&B tree-size
cap κ in the previous sections). There is a sequence of t steps that the algorithm takes on each
round. For example, in branch-and-cut, these steps include node selection, cut selection, and
variable selection. The specific action the algorithm takes during each step (for example, which
node to select, which cut to include, or which variable to branch on) typically depends on a

7In practice, we implement this constraint by enforcing that zi 〈pi, w〉 ≥ −Mxi + γ for some tiny γ > 0 since
MILP solvers cannot enforce strict inequalities.
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scoring rule. We provided examples of scoring rules for variable selection in Section 4.2 and in
Section 4.5.1, we give examples of scoring rules for cutting plane selection. The scoring rule
weights each possible action and the algorithm performs the action with the highest weight.
These actions (deterministically) transition the algorithm from one state to another. This high-
level description of tree search is summarized by Algorithm 5. For each step j ∈ [t], the number
of possible actions is Tj ∈N. There is a scoring rule scorej, where scorej(k, s) ∈ R is the weight
associated with the action k ∈

[
Tj
]

when the algorithm is in the state s.

Algorithm 5 Tree search

Input: Problem instance, t scoring rules score1, . . . , scoret, number of rounds κ.
1: s1,1 ← Initial state of algorithm
2: for each round i ∈ [κ] do
3: for each step j ∈ [t] do
4: Perform the action k ∈

[
Tj
]

that maximizes scorej
(
si,j, k

)
5: si,j+1 ← New state of algorithm

6: si+1,1 ← si,t+1 . State at beginning of next round equals state at end of this round
Output: Incumbent solution in state sκ,t+1, if one exists.

There are often several scoring rules one could use, and it is not clear which to use in which
scenarios. As in the previous section, we provide guarantees for learning combinations of these
scoring rules for the particular application at hand. More formally, for each step j ∈ [t], rather
than just a single scoring rule scorej as in Step 4, there are dj scoring rules scorej,1, . . . , scorej,dj .
Given parameters ρj =

(
ρj[1], . . . , ρj[dj]

)
∈ Rdj , the algorithm takes the action k ∈ [Tj] that

maximizes ∑
dj
i=1 ρj[i]scorej,i(k, s). There is a distribution D over inputs z to Algorithm 5. For

example, when this framework is instantiated for branch-and-cut, z is an integer program
(c, A, b). There is a utility function uρ(z) ∈ [−H, H] that measures the utility of the algorithm
parameterized by ρ = (ρ1, . . . , ρt) on input z. For example, this utility function might measure
the size of the search tree that the algorithm builds. We assume that this utility function is
final-state-constant (which is a generalization of tree-constant from Section 4.3.1):

Definition 4.5.1. Let ρ = (ρ1, . . . , ρt) and ρ′ = (ρ′1, . . . , ρ′t) be two parameter vectors. Suppose

that we run Algorithm 5 on input z once using the scoring rule scorej = ∑
dj
i=1 ρj[i]scorej,i and

once using the scoring rule scorej = ∑
dj
i=1 ρ′j[i]scorej,i. Suppose that on each run, we obtain the

same final state sκ,t+1. The utility function is final-state-constant if uρ(z) = uρ′(z).

We provide a sample complexity bound for learning the parameters ρ. The proof is a
generalization of that of Theorem 4.3.21.

Theorem 4.5.2. Let d = ∑t
j=1 dj denote the total number of tunable parameters of tree search. Then,

Pdim
({

uρ : ρ ∈ Rd
})

= O

(
dκ

t

∑
j=1

log Tj + d log d

)
.

In the context of integer programming, Theorem 4.5.2 not only recovers Theorem 4.3.21 for
learning variable selection policies, but also yields a more general bound that simultaneously
incorporates cutting plane selection, variable selection, and node selection. In branch-and-cut,
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(a) Efficacy (b) Better objective
parallelism

(c) Worse objective
parallelism

(d) Better directed
cutoff distance

(e) Worse directed
cutoff distance

Figure 4.10: Illustration of scoring rules. In each figure, the blue region is the feasible region,
the black dotted line is the cut in question, the blue solid line is orthogonal to the objective
c, the black dot is the LP optimal solution, and the white dot is the incumbent IP solution.
Figure 4.10a illustrates efficacy, which is the length of the black solid line between the cut and
the LP optimal solution. The cut in Figure 4.10b has better objective parallelism than the cut
in Figure 4.10c. The cut in Figure 4.10d has a better directed cutoff distance than the cut in
Figure 4.10e, but both have the same efficacy.

the first action of each round is to select a node. Since there are at most 2n+1 − 1 nodes,
T1 ≤ 2n+1 − 1. The second action is to choose a cutting plane. Let C be a finite family of
cutting planes, such as the set of Gomory cutting planes. The last action is to choose a variable
to branch on at that node, so T3 = n. Applying Theorem 4.5.2, Pdim({uρ : ρ ∈ Rd}) =
O(dκn + dκ log r + d log d). Ignoring T1 and T2, thereby only learning the variable selection
policy, recovers the O(dκ log n + d log d) bound from Theorem 4.3.21.

4.5.1 Scoring rules for cutting plane selection

Cutting planes are a means of ensuring that at each iteration of branch-and-cut, the solution
to the LP relaxation is as close to the optimal integral solution as possible. Formally, let P =
{x ∈ Rn : Ax ≤ b, x ≥ 0} denote the feasible region obtained by taking the LP relaxation of IP
max{c · x : Ax ≤ b, x ≥ 0, x ∈ Zn}. Let PI = conv(P ∩Zn) denote the integer hull of P . A
valid cutting plane is any hyperplane αTx ≤ β such that if x is in the integer hull (x ∈ PI), then
x satisfies the inequality αTx ≤ β. In other words, a valid cut does not remove any integral
point from the LP relaxation’s feasible region. A valid cutting plane separates x ∈ P \ PI if it
does not satisfy the inequality, or in other words, αTx > β. At any node of the search tree,
branch-and-cut can add valid cutting planes that separate the optimal solution to the node’s
LP relaxation, thus improving the solution estimates used to prune the search tree. However,
adding too many cuts will increase the time it takes to solve the LP relaxation at each node.
Therefore, solvers such as SCIP [Gamrath et al., 2020], the leading open-source solver, bound
the number of cuts that will be applied.

To give an example, a famous class of cutting planes is the family of Chvátal-Gomory (CG)
cuts8 [Chvátal, 1973, Gomory, 1958], which are parameterized by vectors u ∈ Rm. The CG cut
defined by u ∈ Rm is the hyperplane buT Acx ≤ buTbc, which is guaranteed to be valid.

Some IP solvers such as SCIP use scoring rules to select among cutting planes, which
are meant to measure the quality of a cut. Some commonly-used scoring rules include ef-
ficacy [Balas et al., 1996] (score1), objective parallelism [Achterberg, 2007] (score2), directed cut-

8The set of CG cuts is equivalent to the set of Gomory (fractional) cuts [Cornuéjols and Li, 2001], another
commonly studied family of cutting planes with a slightly different parameterization.
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(a) (b)

Figure 4.11: Illustrations of Example 4.6.1.

off distance [Gamrath et al., 2020] (score3), and integral support [Wesselmann and Suhl, 2012]
(score4). Efficacy measures the distance between the cut αTx ≤ β and x∗LP: score1(αTx ≤ β) =
(αTx∗LP − β)/ ‖α‖2 , as illustrated in Figure 4.10a. Objective parallelism measures the angle be-
tween the objective c and the cut’s normal vector α: score2(αTx ≤ β) =

∣∣cTα
∣∣ /(‖α‖2 ‖c‖2), as

illustrated in Figures 4.10b and 4.10c. Directed cutoff distance measures the distance between
the LP optimal solution and the cut in a more relevant direction than the efficacy scoring rule.
Specifically, let x be the incumbent solution, which is the best-known feasible solution to the
input IP. The directed cutoff distance is the distance between the hyperplane (α, β) and the
current LP solution x∗LP along the direction of the incumbent x, as illustrated in Figures 4.10d
and 4.10e: score3(αTx ≤ β) = ‖x− x∗LP‖2 · (αTx∗LP − β)/

∣∣αT (x− x∗LP)
∣∣ . Finally, to describe the

integral support scoring rule, let Z be the set of all indices ` ∈ [n] such that α[`] 6= 0. Let Z̄ be
the set of all indices ` ∈ Z such that the `th variable is constrained to be integral. This scoring
rule is defined as score4(αTx ≤ β) = |Z̄|

|Z| . Wesselmann and Suhl [2012] write that “one may
argue that a cut having non-zero coefficients on many (possibly fractional) integer variables is
preferable to a cut which consists mostly of continuous variables.” SCIP uses the scoring rule
3
5score1 + 1

10score2 + 1
2score3 + 1

10score4 [Gamrath et al., 2020].

4.6 Constraint satisfaction problems

In this section, we describe tree search for constraint satisfaction problems. The generalization
guarantee from Section 4.3.3 also applies to tree search in this domain.

A constraint satisfaction problem (CSP) is a tuple (X, D, C), where X = {x1, . . . , xn} is a
set of variables, D = {D1, . . . , Dn} is a set of domains where Di is the set of values variable
xi can take on, and C is a set of constraints between variables. Each constraint in C is a pair
((xi1 , . . . , xir ) , ψ) where ψ is a function mapping Di1 × · · · × Dir to {0, 1} for some r ∈ [n] and
some i1, . . . , ir ∈ [n]. Given an assignment (y1, . . . , yn) ∈ D1 × · · · × Dn of the variables in X, a
constraint ((xi1 , . . . , xir ) , ψ) is satisfied if ψ (yi1 , . . . , yir ) = 1. The goal is to find an assignment
that maximizes the number of satisfied constraints.

The degree of a variable x, denoted deg(x), is the number of constraints involving x. The
dynamic degree of (an unassigned variable) x given a partial assignment y, denoted ddeg(x, y)
is the number of constraints involving x and at least one other unassigned variable.

Example 4.6.1 (Graph k-coloring). Given a graph, the goal of this problem is to color its vertices
using at most k colors such that no two adjacent vertices share the same color. This problem can
be formulated as a CSP, as illustrated by the following example. Suppose we want to 3-color the
graph in Figure 4.11a using pink, green, and orange. The four vertices correspond to the four
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variables X = {x1, . . . , x4}. The domain D1 = · · · = D4 = {pink, green, orange}. The only con-
straints on this problem are that no two adjacent vertices share the same color. Therefore we de-
fine ψ to be the “not equal” relation mapping {pink, green, orange}× {pink, green, orange} →
{0, 1} such that ψ(ω1, ω2) = 1{ω1 6=ω2}. Finally, we define the set of constraints to be

C = {((x1, x2), ψ), ((x1, x3), ψ), ((x2, x3), ψ), ((x3, x4), ψ)) .

See Figure 4.11b for a coloring that satisfies all constraints (y1 = y4 = green, y2 = orange, and
y3 = pink).

4.6.1 CSP tree search

CSP tree search begins by choosing a variable xi with domain Di and building |Di| branches,
each one corresponding to one of the |Di| possible value assignments of x. Next, a node z
of the tree is chosen, another variable xj is chosen, and |Dj| branches from z are built, each
corresponding to the possible assignments of xj. The search continues and a branch is pruned
if any of the constraints are not feasible given the partial assignment of the variables from the
root to the leaf of that branch.

4.6.2 Variable selection in CSP tree search

As in MILP tree search, there are many variable selection policies researchers have suggested
for choosing which variable to branch on at a given node. Typically, algorithms associate a
score for branching on a given variable xi at node z in the tree T , as in B&B. The algorithm
then branches on the variable with the highest score. We provide several examples of common
variable selection policies below.

deg/dom and ddeg/dom [Bessiere and Régin, 1996]: deg/dom corresponds to the scoring
rule score(T , z, i) = deg(xi)

|Di | and ddeg/dom corresponds to the scoring rule score(T , z, i) =
ddeg(xi ,y)
|Di | , where y is the assignment of variables from the root of T to z.

Smallest domain [Haralick and Elliott, 1980]: In this case, score(T , z, i) = 1
|Di | .

Our theory is for tree search and applies to both MILPs and CSPs. It applies both to looka-
head approaches that require learning the weighting of the two children (the more promising
and less promising child) and to approaches that require learning the weighting of several
different scoring rules.
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Chapter 5

Mechanism design

In this chapter, we study parameter tuning in the context of mechanism design. In economics,
a mechanism is a tool that helps a set of rational agents come to a collective decision. For
example, given a set of items and the agents’ reported values for those items, a mechanism
might determine an allocation of the items to the agents. In order to ensure the agents do not
act strategically, and thus report their values truthfully, mechanisms often require agents to pay
some amount of money for the items they receive. Given the right payment scheme, one can
ensure that the agents are always incentivized to report truthfully. This type of mechanism is
known as incentive compatible.

Mechanisms can be designed with many different goals in mind. For example, one might
wish to design an incentive compatible mechanism with high revenue (the sum of the agents’
payments), profit (the revenue minus the cost of producing the items), or social welfare (the sum
of the agents’ values for the items they receive). As in the case of algorithm configuration, there
are myriad different mechanism families, each defined by tunable parameters, and different
parameter settings will lead to differing profit, revenue, and social welfare.

In this chapter, we analyze automated parameter tuning under a model that is nearly iden-
tical to the previous few chapters of this thesis. There is an unknown distribution over agents’
values for a set of values. The mechanism designer receives a training set of values sampled
from this distribution. His goal is to use this training set to select mechanism parameters with
high expected profit on the underlying distribution. We analyze the sample complexity of this
problem in Section 5.1.

Next, in Section 5.2, we analyze a more general mechanism design problem where the
agents’ values are over an arbitrary set of outcomes. For example, these mechanisms can help
agents come to a collective decision about whether or not to build a public good, such as a
bridge. In this setting, we provide sample complexity bounds for social welfare maximization.

5.1 Profit maximization

The design of profit-maximizing1 mechanisms is a fundamental problem with diverse appli-
cations including Internet retailing, advertising markets, strategic sourcing, and artwork sales.
This problem has traditionally been studied under the assumption that there is a joint dis-
tribution from which the buyers’ values are drawn and that the mechanism designer knows

1In this work, we study the standard setting of profit maximization with risk-neutral agents.
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this distribution in advance. This assumption has led to groundbreaking theoretical results in
the single-item setting [Myerson, 1981], but transitioning from theory to practice is challeng-
ing because the true distribution over buyers’ values is typically unknown. Moreover, in the
dramatically more challenging setting where there are multiple items for sale, the support of
the distribution alone is often doubly exponential (even if there were just a single buyer with a
finite type space2), so obtaining and storing the distribution is typically impossible.

We relax this strong assumption and instead assume that the mechanism designer only has
a set of independent samples from the distribution, an approach introduced by Likhodedov
and Sandholm [2004, 2005] and Sandholm and Likhodedov [2015]. Specifically, a single sample
is a random draw from the distribution over buyers’ values, listing each buyer’s value for
each set of items for sale. When the mechanism designer uses a set of samples rather than a
description of the distribution to design a mechanism, we refer to this procedure as sample-
based mechanism design. Sample-based mechanism design reflects current industry practices
since many companies, such as online ad exchanges [He et al., 2014b, Muñoz Medina and
Vassilvitskii, 2017], sponsored search platforms [Benisch et al., 2009, Edelman et al., 2007, Tang,
2017], travel companies [Yee and Ifrach, 2015], and resellers of returned items [Walsh et al.,
2008], use historical purchase data to adjust the sales mechanism.

In this chapter, we present a general theory for deriving uniform convergence generalization
guarantees in multi-item settings, as well as data-dependent guarantees when the distribution
over buyers’ values is well-behaved. In this setting, a generalization guarantee for a mecha-
nism classM bounds the difference between the average profit over the samples and expected
profit on the distribution for any mechanism in M. Prior research has suggested a variety
of optimization algorithms for mechanism classes we consider [Balcan et al., 2020d, Cai and
Daskalakis, 2017a, Likhodedov and Sandholm, 2004, 2005, Sandholm and Likhodedov, 2015].
A mechanism designer can use our guarantees to ensure that for any mechanism in M he
considers, average profit over the training set will be close to expected profit.

This chapter is part of a line of research that studies how learning theory can be used
to design and analyze mechanisms, beginning with seminal research by Balcan et al. [2005,
2008]. The majority of these papers have studied only single-parameter settings [Alon et al.,
2017, Bubeck et al., 2017, Cole and Roughgarden, 2014, Devanur et al., 2016, Elkind, 2007,
Gonczarowski and Nisan, 2017, Guo et al., 2019, Hartline and Taggart, 2016, Huang et al.,
2015, Mohri and Muñoz Medina, 2014, Morgenstern and Roughgarden, 2015, Roughgarden
and Schrijvers, 2016]. In contrast, we focus on multi-item mechanism design, as have recent
papers by Cai and Daskalakis [2017a], Morgenstern and Roughgarden [2016], Muñoz Medina
and Vassilvitskii [2017], Syrgkanis [2017], and Gonczarowski and Weinberg [2018].

5.1.1 Our contributions

Our contributions come in three interrelated parts. The results in this section are joint work
with Nina Balcan and Tuomas Sandholm [Balcan et al., 2018e]. Our existing results appeared
in EC 2018.

2When each buyer’s values are independent from every other buyer’s values, the number of support points is
nk2m

, where n is the number of buyers, k is the number of discrete value levels a buyer can assign to a bundle,
and m is the number of items. This is because each of the 2m bundles can take any of k values. With correlated
valuations, the prior has k2nm

support points.
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Category Mechanism class Valuations Result

Pricing mechanisms Item-pricing mechanisms General, unit-demand, additive Lemmas 5.1.16, 5.1.27,
A.0.7, A.0.8

Two-part tariffs General Lemma 5.1.10

Non-linear pricing mechanisms General Lemmas 5.1.13, 5.1.15

Auctions Second-price auctions with
reserves

Additive Lemmas 5.1.17, 5.1.26,
A.0.9

Affine maximizer auctions General Lemma 5.1.19

Virtual valuation combinatorial
auctions

General Lemma 5.1.19

Mixed-bundling auctions with
reserves

General Lemma 5.1.18

Randomized
mechanisms

Lotteries Additive, unit-demand Lemmas 5.1.21, 5.1.28

Table 5.1: Brief summary of some of the main mechanism classes we analyze in Sections 5.1.4
and 5.1.5 as well as Appendix A.

Valuations Auction class Our bounds Prior bounds

Additive or
unit-
demand

Length-` lottery menu H
√
`m log(`m)/N N/A

Additive,
item-
independent1

Length-` item lottery menu H
√
` log `/N N/A

1 Additive cost function

Table 5.2: Generalization bounds in big-Õ notation for lotteries. We denote the maximum profit
achievable by any mechanism in the class over the support of the buyers’ valuation distribution
by H. There are m items, N samples, and the cost function is general unless otherwise noted.

A general theory that unifies diverse mechanism classes. We provide a clean, easy-to-use,
general theorem for deriving generalization guarantees and we demonstrate its application
to a large number of widely-used mechanism classes. This chapter thus expands our under-
standing of uniform convergence in multi-item mechanism design, which had thus far focused
on deriving guarantees for a small number of specific mechanism classes that are “simple”
by design [Morgenstern and Roughgarden, 2016, Syrgkanis, 2017]. We uncover a key struc-
tural property shared by a variety of mechanisms which allows us to prove generalization
guarantees: for any fixed set of bids, profit is a piecewise linear function of the mechanism’s
parameters. Our main theorem provides generalization guarantees for any class exhibiting
this structure. To prove this theorem, we relate the complexity of the partition splitting the
parameter space into linear portions to the intrinsic complexity of the mechanism class, which
we quantify using pseudo-dimension. In turn, pseudo-dimension bounds imply generalization
bounds. We prove that many seemingly disparate mechanisms share this structure, and thus
our main theorem yields learnability guarantees.

Table 5.1 summarizes some of the main mechanism classes we analyze and Tables 5.2, 5.3,
and 5.4 summarize our bounds.
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Valuations Mechanism class Price class Our bounds Prior bounds

General Length-` menus of
two-part tariffs
over κ units

Anonymous H
√
` log(κn`)/N N/A

Non-anonymous H
√

n` log(κn`)/N N/A

Non-linear pricing Anonymous H
√

m ∏m
i=1(κi + 1)/N3 N/A

Non-anonymous H
√

nm ∏m
i=1(κi + 1)/N3 N/A

Additively
decomposable
non-linear pricing

Anonymous H
√

m ∑m
i=1 κi/N3 N/A

Non-anonymous H
√

nm ∑m
i=1 κi/N3 N/A

Item-pricing Anonymous H
√

m2/N H
√

m2/N4

Non-anonymous H
√

nm(m + log n)/N H
√

nm2 log n/N4

Unit-
demand

Item-pricing Anonymous H
√

m ·min{m, log(nm)}/N H
√

m2/N4

Non-anonymous H
√

nm log(nm)/N H
√

nm2 log n/N4

Additive Item-pricing Anonymous H
√

m log m/N H
√

m log m/N4,
(H/δ)

√
m log (nN) /N2

Non-anonymous H
√

nm log(nm)/N H
√

nm log(nm)/N4,
(H/δ)

√
nm log (N) /N2

Additive,
item-
independent1

Item-pricing Anonymous H
√

1/N H
√

m log m/N4,
(H/δ)

√
m log (nN) /N2

Non-anonymous H
√

n log n/N H
√

nm log(nm)/N4,
(H/δ)

√
nm log (N) /N2

1 Additive cost function; 2 Syrgkanis [2017]. The probability these bounds fail to hold is δ. In all other bounds, δ appears in a
log so we suppress it using big-Õ notation; 3 κi is an upper bound on the number of units available of item i; 4 Morgenstern
and Roughgarden [2016].

Table 5.3: Generalization bounds in big-Õ notation for pricing mechanisms. We denote the
maximum profit achievable by any mechanism in the class over the support of the buyers’
valuation distribution by H. There are m items, n buyers, and N samples. The cost function is
general unless otherwise noted.

We prove that our main theorem applies to lotteries, a general representation of random-
ized mechanisms. Randomized mechanisms are known to generate higher expected revenue
than deterministic mechanisms in many settings [Conitzer and Sandholm, 2003, Dobzinski and
Dughmi, 2009]. Our results imply, for example, that if the mechanism designer plans to offer a
menu of ` lotteries over m items to an additive or unit-demand buyer, the difference between
any such menu’s average profit over N samples and its expected profit is Õ

(
H
√
`m/N

)
, where

H is the maximum profit achievable over the support of the buyer’s valuation distribution.
We also provide guarantees for pricing mechanisms using our main theorem. These include

item-pricing mechanisms, also known as posted-price mechanisms, where each item has a price
and buyers buy their utility-maximizing bundles. Additionally, we study multi-part tariffs,
where there is an upfront fee and a price per unit. These tariffs and other non-linear pricing
mechanisms have been studied in economics for decades [Feldstein, 1972, Oi, 1971, Wilson,
1993]. For instance, our main theorem guarantees that if there are κ units of a single good for
sale, the difference between any two-part tariff’s average profit over N samples and its expected
profit is Õ

(
H
√

κ/N
)
.

Our main theorem implies generalization bounds for many auction classes, such as sec-
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Valuations Auction class Our bounds Prior bounds

General AMAs and λ-auctions H
√

nm+1m log n/N cH
√

m/Nnm+2
(

n2 +
√

nm
)

56

VVCAs H
√

n2m2m log n/N cH
√

m/Nnm+2
(

n2 +
√

nm
)

56

MBARPs H
√

m(log n + m)/N H
√

m3 log n/N5

Additive Second price item auctions with
anonymous reserve prices

H
√

m log m/N H
√

m log m/N4

Second price item auctions with
non-anonymous reserve prices

H
√

nm log(nm)/N H
√

nm log(nm)/N4

Additive,
item-
independent1

Second price item auctions with
anonymous reserve prices

H
√

1/N H
√

m log m/N4

Second price item auctions with
non-anonymous reserve prices

H
√

n log n/N H
√

nm log(nm)/N4

1 Additive cost function; 4 Morgenstern and Roughgarden [2016]; 5 Balcan et al. [2016]; 6 The value of c > 1 depends on
the range of the auction parameters;

Table 5.4: Generalization bounds in big-Õ notation for auctions. We denote the maximum
profit achievable by any mechanism in the class over the support of the buyers’ valuation
distribution by H. There are m items, n buyers, and N samples. The cost function is general
unless otherwise noted.

ond price auctions. We also study several well-studied generalized VCG auctions, such as affine
maximizer auctions, virtual valuations combinatorial auctions, and mixed-bundling auctions [Dobzin-
ski and Sundararajan, 2008, Jehiel et al., 2007, Lavi et al., 2003, Roberts, 1979, Sandholm and
Likhodedov, 2015].

A key challenge which differentiates our generalization guarantees from those typically
found in machine learning is the sensitivity of these mechanisms to small changes in their pa-
rameters. For example, changing the price of a good can cause a steep drop in profit if the
buyer no longer wants to buy it. Meanwhile, for many well-understood function classes in ma-
chine learning, there is a close connection between the distance in parameter space between two
parameter vectors and the distance in function space between the two corresponding functions.
Understanding this connection is often the key to quantifying the class’s intrinsic complexity.
Intrinsic complexity can be quantified by pseudo-dimension, for example, which allows us to
derive learnability guarantees. Since profit functions do not exhibit this predictable behavior,
we must carefully analyze the structure of the mechanisms we study in order to derive our
generalization guarantees.

Data-dependent generalization guarantees for profit maximization. We strengthen our main
theorem when the distribution over buyers’ values is “well-behaved,” proving generalization
guarantees that are independent of the number of items for item-pricing mechanisms, second
price auctions with reserves, and a subset of lottery mechanisms. Under anonymous prices,
our bounds do not depend on the number of buyers either. These guarantees hold when the
buyers are additive with values drawn from item-independent distributions (buyer i1’s value for
item j is independent from her value for item j′, but her value for item j may be arbitrarily
correlated with buyer i2’s value for item j). Buyers with item-independent value distributions
have been studied extensively in prior research [Babaioff et al., 2017, Cai and Daskalakis, 2017a,
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Cai et al., 2016, Chawla et al., 2007, Goldner and Karlin, 2016, Hart and Nisan, 2012, Yao, 2014].
This could model buyers at, for example, antique auctions and art auctions (as long as there
are no collections to try to assemble or the collections are sold as atomic lots).

Cai and Daskalakis [2017a] provide learning algorithms for buyers with valuations drawn
from product distributions, which are item-independent. As we describe in Section 5.1.7, we
improve a generalization bound by Cai and Daskalakis [2017a] and Morgenstern and Rough-
garden [2016] for learning a mechanism with expected revenue that is nearly a constant fraction
of optimal when the buyers have additive values drawn from a product distribution. The im-
provement is by a multiplicative factor of O(

√
m), where m is the number of items.

Structural profit maximization. Many of the mechanism classes we study exhibit a hierarchi-
cal structure. For example, when designing a pricing mechanism, the designer can segment the
population into k groups and charge each group a different price. This is prevalent throughout
daily life: movie theaters and amusement parks have different admission prices per market
segment, with groups such as Child, Student, Adult, and Senior Citizen. In the simplest case,
k = 1 and the prices are anonymous. If k equals the number of buyers, the prices are non-
anonymous, thus forming a hierarchy of mechanisms. In general, the designer should not
choose the simplest class to optimize over simply to guarantee good generalization because
more complex classes are more likely to contain nearly optimal mechanisms. We show how the
mechanism designer can determine the precise level in the hierarchy assuring him the optimal
tradeoff between profit maximization and generalization.

5.1.2 Related research

Sample-based mechanism design was introduced in the context of automated mechanism design
(AMD). In AMD, the goal is to design algorithms that take as input information about a set
of buyers and return a mechanism that maximizes an objective such as revenue [Conitzer and
Sandholm, 2002, 2004, Sandholm, 2003]. The input information about the buyers in early AMD
was an explicit description of the distribution over their valuations. The support of the distri-
bution’s prior is often doubly exponential, for example in combinatorial auctions, so obtaining
and storing the distribution is impractical. In response, sample-based mechanism design was
introduced where the input is a set of samples from this distribution [Likhodedov and Sand-
holm, 2004, 2005, Sandholm and Likhodedov, 2015]. Those papers also introduced the idea
of searching for a high-revenue mechanism in a parameterized space where any parameter
vector yields a mechanism that satisfies the individual rationality and incentive-compatibility
constraints. This was in contrast to the traditional approach of representing mechanism design
as an unrestricted optimization problem where those constraints need to be explicitly mod-
eled. The parameterized work studied algorithms for designing combinatorial auctions with
high empirical revenue. We follow the parameterized approach, but we study generalization
guarantees, which they did not address.

Balcan et al. [2005, 2008] were the first to study the connection between learning theory
and revenue maximization, employing classic learning-theoretic tools such as covering numbers.
They showed how to use an algorithm A that returns a high-revenue, manipulable mechanism
in order to find a high-revenue, incentive-compatible mechanism. Their approach randomly
splits the buyers into two groups. With the first group’s bids as input, they use the algorithm
A to find a high-revenue mechanism and they field that mechanism on the second group (and
vice versa). While the mechanism is not incentive compatible for the first group, it is incentive
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compatible for the second. They prove that the mechanism’s revenue over the first group’s bids
nearly matches the revenue obtained from the second group, so long as the number of buyers
is sufficiently large compared to the covering number of the mechanism class being optimized
over. Balcan et al. [2005, 2008] study settings with unrestricted supply, whereas we primarily
focus on settings with limited supply.

More recent research has provided generalization guarantees when there is limited supply,
with a particular focus on single-parameter (e.g., single-item) settings [Alon et al., 2017, Bubeck
et al., 2017, Chawla et al., 2014, Cole and Roughgarden, 2014, Devanur et al., 2016, Elkind,
2007, Gonczarowski and Nisan, 2017, Guo et al., 2019, Hartline and Taggart, 2016, Huang et al.,
2015, Mohri and Muñoz Medina, 2014, Morgenstern and Roughgarden, 2015, Roughgarden
and Schrijvers, 2016]. From an algorithmic perspective, Devanur et al. [2016], Gonczarowski
and Nisan [2017], Guo et al. [2019], and Hartline and Taggart [2016] provide computationally
efficient algorithms for learning nearly-optimal single-item auctions in various settings. In
contrast, we study multi-parameter settings.

Balcan et al. [2014] drew on classic tools from learning theory to provide algorithms and
generalization guarantees for a related problem in algorithmic game theory: learning agents’
preferences. Specifically, they made connections to the concept of generalized linear functions
from the structured prediction literature [e.g., Collins, 2000, which we discuss in Appendix A].
Their algorithms make use of past data describing the purchases of a utility-maximizing agent
in order to predict the agent’s future purchases.

Morgenstern and Roughgarden [2016] later used the same concept of generalized linear
functions from the structured prediction literature to provide sample complexity guarantees
for multi-item revenue maximization. They proposed a technique for bounding a mechanism
class’s pseudo-dimension that requires two steps; we describe these two steps at a high level
here and refer the reader to Appendix A for more details. First, one must show that for any
mechanism in the class, its allocation function is a d-dimensional linear function, for some
d ∈ Z (see Appendix A for the formal definition). Next, fixing an arbitrary set of samples
and an allocation per sample, one must bound the pseudo-dimension of the set of revenue
functions across all mechanisms that induce those allocations. They show how these two steps
imply a bound on the mechanism class’s pseudo-dimension.

The guarantees presented in this chapter offer several advantages over Morgenstern and
Roughgarden’s approach. First, our main theorem depends on a structural property—the
piecewise-linear form of the revenue function—that is not defined in terms of any learning the-
ory concept (such as generalized linear functions or pseudo-dimension) and thus can be more
readily applicable. Moreover, in several cases, Morgenstern and Roughgarden [2016] proved
loose guarantees using structured prediction; in the appendix, they used a first-principles ap-
proach to prove stronger guarantees. Their structured prediction proof technique requires them
to bound the total number of allocations a mechanism class can induce on a set of samples.
Their bound is a bit loose, and we are able to tighten it using the techniques we develop in this
chapter, as we detail in Appendix A. By combining our analysis techniques with tools from
structured prediction, we are able to match the tighter bounds that Morgenstern and Rough-
garden [2016] proved via a first-principals approach. This answers an open question posed by
Morgenstern and Roughgarden [2016]. Finally, we apply our guarantees to a wide variety of
mechanism classes, both simple and complex (as summarized in Table 5.1), whereas Morgen-
stern and Roughgarden [2016] applied their guarantees to three mechanism classes that are
“simple” by design: item-pricing mechanisms, grand-bundle-pricing mechanisms (where an
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agent can buy either the grand bundle consisting of all items or nothing at all), and second-
price item auctions.

Syrgkanis [2017] also suggests a general technique for providing generalization guaran-
tees which he applies to several “simple” mechanism classes: the same three as Morgenstern
and Roughgarden [2016] as well as single-item t-level auctions [Morgenstern and Roughgarden,
2015]. His generalization guarantees apply only to empirical revenue maximization algorithms,
which return the mechanism (from within a particular mechanism class) that maximizes aver-
age revenue over the samples. This is in contrast to our bounds (as well as those by Morgenstern
and Roughgarden [2016]), which apply uniformly to every mechanism in a given class. This
is crucial when it may not be computationally feasible to determine a mechanism with highest
average revenue over the samples, but only an approximation. Given a set of samples S of size
N, Syrgkanis’s bound depends on a quantity he calls the split-sample growth rate, which counts
how many different mechanisms the empirical revenue maximization algorithm can return on
any sub-sample of S of size N/2. Another advantage of our generalization bounds (beyond
applying uniformly to every mechanism in a given class) is that they grow only logarithmically
with a term 1

δ , where δ is the probability that the bound fails to hold (as do those by Morgen-
stern and Roughgarden [2016]). In contrast, the bounds by Syrgkanis [2017] grow linearly in
1
δ .

In Section 5.1.7, we provide more details on how our results compare to those by Morgen-
stern and Roughgarden [2016] and Syrgkanis [2017], as well as a detailed comparison of our
results to other papers on the sample complexity of multi-item revenue maximization [Balcan
et al., 2016, Cai and Daskalakis, 2017a, Gonczarowski and Weinberg, 2018, Muñoz Medina and
Vassilvitskii, 2017].

Dynamic mechanism design

A problem that is similar but distinct from ours is dynamic pricing, where prices are adjusted
over a finite time horizon and the consumer demand function is unknown [e.g., Araman and
Caldentey, 2009, Besbes and Zeevi, 2009, Broder and Rusmevichientong, 2012, Golrezaei et al.,
2020, Kanoria and Nazerzadeh, 2020, all of whom study the single-item setting]. The goal is
typically to minimize regret, which is the difference between the cumulative profit of the best
prices in hindsight and that of the algorithm’s selected prices.

Approximation guarantees for mechanism design

Although the revenue-maximizing multi-item mechanism remains elusive, a long line of re-
search has shown that many of the mechanism classes we analyze can guarantee approximately-
optimal revenue. Beginning with unit-demand buyers, Chawla et al. [2007] prove that under
a single unit-demand buyer, item-pricing mechanisms can yield a constant fraction of optimal
revenue. Given constraints on which allocations are feasible, Chawla et al. [2010] prove that
under multiple unit-demand buyers, item-pricing mechanisms provide a constant fraction of
optimal revenue.

Moving on to a single additive buyer with independent values, Hart and Nisan [2012,
2017] prove that item-pricing mechanisms provide a O(log2 m) fraction of optimal revenue, an
approximation ratio Li and Yao [2013] improve to O(log m), which is tight. Although even in
this simple setting, item-pricing alone cannot always guarantee a constant fraction of optimal
revenue, Babaioff et al. [2014] show that the better of selling items separately via an item-pricing
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mechanism or selling the grand-bundle as a single unit can guarantee a constant fraction of op-
timal revenue. A constant factor approximation ratio also holds when the buyers’ values exhibit
specific types of correlations [Bateni et al., 2015], buyers with subadditive values [Rubinstein
and Weinberg, 2015], and buyers with limited complementarities [Eden et al., 2021].

Finally, a line of research shows that in certain settings, lottery menus with a finite number
of menu entries can provide a (1− ε)-fraction of optimal revenue. For a single additive buyer
with independent values, Babaioff et al. [2017, 2021] prove that a menu of length (log m/ε)O(m)

suffices. Under a single unit-demand buyer, Kothari et al. [2019] introduce the notion of sym-
metric menu complexity, which is the number of menu entries the buyer may choose among, up
to permutations of the items. They show that a quasi-polynomial symmetric menu complexity
suffices to guarantee a (1− ε)-fraction of optimal revenue.

5.1.3 Preliminaries and notation

We study the problem of selling m heterogeneous items to n buyers. We denote a bundle of
items as a quantity vector q ∈ Zm

≥0. The number of units of item i in the bundle represented
by q is denoted by its ith component q[i]. Accordingly, the bundle consisting of only one copy
of the ith item is denoted by the standard basis vector ei, where ei[i] = 1 and ei[j] = 0 for all
j 6= i. Each buyer j ∈ [n] has a valuation function vj over bundles of items. If one bundle q0 is
contained within another bundle q1 (i.e., q0[i] ≤ q1[i] for all i ∈ [m]), then vj (q0) ≤ vj (q1) and
vj (0) = 0. We denote an allocation as Q = (q1, . . . , qn) where qj is the bundle of items that
buyer j receives under allocation Q. The cost to produce the bundle q is denoted as c (q) and
the cost to produce the allocation Q is denoted as c (Q). Suppose there are κi units available
of item i. Let K = ∏m

i=1 (κi + 1). We use vj =
(
vj (q1) , . . . , vj (qK)

)
to denote buyer j’s values

for all of the K bundles and we use v = (v1, . . . , vn) to denote a vector of buyer values. We
use the notation X to denote the set of all valuation vectors v. We also study additive buyers(
vj (q) = ∑m

i=1 q[i]vj (ei)
)

and unit-demand buyers
(

vj (q) = maxi:q[i]≥1 vj (ei)
)

. Every auction
in the classes we study is dominant strategy incentive compatible, so we assume that the bids
equal the buyers’ valuations.

There is an unknown distribution D over buyers’ values, which means the support of D is
contained in the set X . We make very few assumptions about this distribution. First of all, we
do not assume the distribution belongs to a parametric family. Moreover, we do not assume the
buyers’ values are independently or identically distributed. In particular, a buyer’s values for
multiple bundles may be correlated, and multiple buyers may have correlated values as well.

Our results apply to mechanisms that are parameterized by a vector ρ ∈ Rd, where the
value of d depends on the mechanism class. For example, ρ might equal the prices of the items
for sale. We use the notation uρ(v) to denote the profit of the mechanism parameterized by
ρ on the valuation vector v. For a distribution D over buyers’ values, we denote the expected
profit of the mechanism parameterized by ρ over D as uD (ρ) = Ev∼D

[
uρ (v)

]
and for a set of

samples S , we denote the average profit of the mechanism over S as uS (ρ) = 1
|S| ∑v∈S uρ (v).

5.1.4 Worst-case generalization guarantees

Our guarantees apply to mechanism classes where for every valuation vector v ∈ X , the profit
as a function of the parameters ρ, denoted uv (ρ), is piecewise linear. We begin by illustrating
this property via several simple examples.
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Figure 5.1: This figure illustrates the partition of the two-part tariff parameter space into
piecewise-linear portions in the following scenario: there is one buyer whose value for one
unit is v1(1) = 6, value for two units is v1(2) = 9, value for three units is v1(3) = 11, and value
for i ≥ 4 units is v1(i) = 12. We assume the seller produces at most four units. The buyer
will buy exactly one unit if v1(1)− ρ[1]− ρ[2] > v1(i)− ρ[1]− i · ρ[2] for all i ∈ {2, 3, 4} and
v1(1)− ρ[1]− ρ[2] > 0. This region of the parameter space is colored orange (the top region),
and within, profit is linear in ρ[1] and ρ[2]. By similar logic, the buyer will buy exactly two
units in the blue region (the second-the-top region), exactly three units in the green region (the
second-the-bottom region), and exactly four units in the red region (the bottom region), and
profit is linear in ρ[1] and ρ[2] in each of these regions.

Example 5.1.1 (Two-part tariffs). In a two-part tariff, there are multiple units (i.e., copies) of a
single item for sale. The seller sets an upfront fee ρ[1] and a price per unit ρ[2]. Here, we consider
the simple case where there is a single buyer3. If the buyer wishes to buy t ≥ 1 units, she
pays the upfront fee ρ[1] plus ρ[2] · t, and if she does not want to buy anything, she does not
pay anything. Two-part tariffs have been studied extensively [Feldstein, 1972, Oi, 1971, Wilson,
1993] and are prevalent throughout daily life. For example, health club membership programs
often require an upfront membership fee plus a fee per month. Amusement parks often require
an entrance fee with an additional payment per ride, as Oi [1971] analyzed in his paper “A
Disneyland Dilemma.” In many cities, purchasing a public transportation card requires a small
upfront fee and an additional cost per ride. Many coffee machines, such as those made by
Keurig and Nespresso, require specialty coffee pods. Purchasing these pods amounts to paying
a fee per unit on top of the upfront fee, which is the cost of the coffee machine. Following the
publication of the conference version of this paper [Balcan et al., 2018e], Balcan et al. [2020d]
showed how to efficiently learn two-part tariffs that maximize average revenue over a training
set, as well as menus of two-part tariffs, which we discuss in Section 5.1.4.

Revenue is a piecewise-linear function of the two-part tariff parameters ρ[1] and ρ[2] for the
following reason. Suppose there are κ units of the item for sale. The buyer will buy exactly
t ∈ {1, . . . , κ} units so long as v1 (t)− (ρ[1] + ρ[2] · t) > v1 (t′)− (ρ[1] + ρ[2] · t′) for all t′ 6= t
and v1 (t)− (ρ[1] + ρ[2] · t) > 0. Therefore, for a fixed set of buyer values, there are at most
(κ+1

2 ) hyperplanes splitting R2 into convex regions such that within any one region, the number
of units bought does not vary. So long as the number of units bought is invariant, profit is a
linear function of ρ[1] and ρ[2]. See Figure 5.1 for an illustration.

3We generalize to multiple buyers later in this section.
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Figure 5.2: This figure illustrates the partition of the item-pricing parameter space into
piecewise-linear portions in the following scenario: there are two items for sale and there
are two buyers. Buyer 1’s value for the first item is v1(1, 0) = 2, her value for the second
item is v1(0, 1) = 1, and her value for both items is v1(1, 1) = 2.5. Buyer 2’s values are
v2(1, 0) = 0, v2(0, 1) = 1, and v2(1, 1) = 1. Suppose buyer 1 comes before buyer 2 in the
ordering, which means that buyer 1 will first choose to buy the bundle of items that maxi-
mizes her utility and then buyer 2 will buy the bundle of remaining items that maximizes her
utility. In the orange region, buyer 1 will buy item 1 because v1(1, 0)− ρ[1] > v1(0, 1)− ρ[2],
v1(1, 0)− ρ[1] > v1(1, 1)− (ρ[1] + ρ[2]), and v1(1, 0)− ρ[1] > 0. Buyer 2 will not buy anything
because the only remaining item is item 2 and v2(0, 1) − ρ[2] < 0. By the same logic, in the
red region, neither buyer will buy any item. In the blue region, buyer 1 will buy item 1 and
buyer 2 will buy item 2. In the green region, buyer 1 will buy item 2 and buyer 2 will not buy
anything. Finally, in the white region, buyer 1 will buy both items and buyer 2 will not buy
anything.

Example 5.1.2 (Item-pricing mechanisms). Under an item-pricing mechanism, also known as a
posted-price mechanism, there are multiple items for sale and multiple buyers. Unlike in Exam-
ple 5.1.1, we assume there is a single unit of each item for sale. The mechanism designer sets a
price per item and buyers buy their utility-maximizing bundles. These mechanisms are preva-
lent throughout the economics and computation literature (e.g., [Babaioff et al., 2014, Cai et al.,
2016, Feldman et al., 2015]). In a bit more detail, an item-pricing mechanism can be defined by
either anonymous or non-anonymous prices. Under anonymous prices, the seller sets a price ρ[i]
per item i. Under non-anonymous prices, there is a buyer-specific price per item. There is some
fixed but arbitrary ordering on the buyers such that the first buyer in the ordering arrives first
and buys the bundle of items that maximizes his utility, then the next buyer in the ordering
arrives and buys the bundle of remaining items that maximizes his utility, and so on.

Consider the simple case where the prices are anonymous4. For a given buyer j and bun-
dle pair q1, q2 ∈ {0, 1}m, buyer j will prefer bundle q1 over bundle q2 so long as vj(q1) −
∑i:q1[i]=1 ρ[i] > vj(q2) − ∑i:q2[i]=1 ρ[i]. Therefore, for a fixed set of buyer values and for each
buyer j, her preference ordering over the bundles is completely determined by the (2m

2 ) hyper-
planes vj(q1)− ∑

i:q1[i]=1
ρ[i] = vj(q2)− ∑

i:q2[i]=1
ρ[i] : q1, q2 ∈ {0, 1}m

 .

Once the buyers’ preference orderings are all fixed, the set of bundles they will each buy is
also fixed. Furthermore, in any region of the price space where the bundles the buyers buy are

4We study non-anonymous prices as well later in this section.
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fixed, profit is a linear function of the prices. See Figure 5.2 for an illustration.

We provide generalization guarantees that are closely dependent on the “complexity” of
the partition splitting Rd into regions such that uv(ρ) is linear. Inspired by structure exhibited
by many mechanism classes, such as Examples 5.1.1 and 5.1.2, we require that this partition
be defined by a finite number of hyperplanes. We give the following name to this type of
mechanism class:

Definition 5.1.3 ((d, t)-delineable). Fix a set of mechanisms defined parameters P ⊆ Rd and
let U =

{
uρ : ρ ∈ P

}
be the corresponding set of profit functions. The set U is (d, t)-delineable

if for any valuation vector v ∈ X , there is a set H of t hyperplanes such that for any connected
component P ′ of P \H, the function uv (ρ) is linear over P ′.

In Theorem 5.1.4, we relate pseudo-dimension to delineability. The proof is similar to that
of Theorem 4.3.21 from Section 4.3.3, and our general theorem from Chapter 7 implies the
pseudo-dimension bound as well.

Theorem 5.1.4. If U is (d, t)-delineable, the pseudo dimension of U is O (d log (dt)).

We now prove that a variety of mechanism classes exhibit this delineability structure, and
thus we can apply Theorem 5.1.4. We warm up with the classes from Examples 5.1.1 and 5.1.2.

Lemma 5.1.5. Let U =
{

uρ : ρ ∈ R2} be the set of profit functions corresponding to the class of

two-part tariffs over a single buyer and κ units of a single good. The set U is
(

2, (κ+1
2 )
)

-delineable.

Proof. As we saw in Example 5.1.1, for any valuation vector v, there are (κ+1
2 ) hyperplanes

splitting R2 into regions over which uv(ρ) is linear.

Lemma 5.1.6. Let U =
{

uρ : ρ ∈ Rm+1} be the class of item-pricing mechanisms with anonymous

prices. The set U is
(

m, n(2m

2 )
)

-delineable.

Proof. This class’s parameter space is Rm, since there is one price per item. As we saw in
Example 5.1.2, for any valuation vector v, there are n(2m

2 ) hyperplanes splitting Rm into regions
such that within any one region, uv(ρ) is linear.

Non-linear pricing mechanisms.

Non-linear pricing mechanisms are specifically used to sell multiple units (i.e., copies) of a set
of items. We discuss two-part tariffs and general non-linear pricing mechanisms. We make the fol-
lowing natural assumption which informally states that as the number of units in an allocation
grows, the cost of that allocation will exceed the buyers’ welfare. This implies delineability.
Our assumption is formalized as follows.

Assumption 5.1.7. There is some cap κi per item i such that it costs more to produce κi units of item
i than the buyers will pay. In other words, there exists (κ1, . . . , κm) ∈ Rm such that for all v in the
support of the distribution D over buyers’ values and all allocations Q = (q1, . . . , qn), if there exists an
item i such that ∑n

j=1 qj[i] > κi, then ∑n
j=1 vj

(
qj
)
− c (Q) < 0.

For example, suppose there are multiple units of a single item for sale and a single buyer
whose value for τ units is always at most 8 + τ. Moreover, suppose the cost of producing τ
units is 3τ. Then κ1 = 4 because for τ ≥ 5, 8 + τ < 3τ.

In the remainder of this section, we describe why this assumption implies (d, t)-delineability
with d < ∞ and t < ∞.
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Menus of two-part tariffs. Menus of two-part tariffs are a generalization of Example 5.1.1.
At a high level, the seller offers the buyers ` different two-part tariffs and each buyer simulta-
neously chooses the tariff and number of units that maximizes his utility. Menus of two-part
tariffs are common throughout daily life: consumers often choose among various membership
tiers—typically with a larger upfront fee in exchange for lower future payments—for health
clubs, wholesale stores like Costco, amusement parks, credit cards, and cellphone plans.

More formally, in the case of non-anonymous prices, let
(

ρ
(1)
1,j , ρ

(1)
2,j

)
, . . . ,

(
ρ

(`)
1,j , ρ

(`)
2,j

)
be the

menu of two-part tariffs that the seller offers to buyer j. Here, ρ
(i)
1,j is the upfront fee of the

ith tariff and ρ
(i)
2,j is the price per unit. If the prices are anonymous, then for each tariff i,

ρ
(i)
1,1 = · · · = ρ

(i)
1,n and ρ

(i)
2,1 = · · · = ρ

(i)
2,n. We assume each buyer simultaneously5 chooses the

tariff and the number of units maximizing his utility. In this context, an allocation is simply
a vector (q1, . . . , qn) where qj ∈ Z≥0 is the number of units buyer j chooses to buy. If buyer j

chooses the tariff tj ∈ [`] and chooses to buy qj ≥ 1 units, he will pay ρ
(tj)

1,j + ρ
(tj)

2,j · qj. Thus, the
seller’s profit is

n

∑
j=1

ρ
(tj)

1,j · 1{qj≥1} + ρ
(tj)

2,j · qj − c (Q)

where Q = (q1, . . . , qn). Note that this set of mechanisms is parameterized by vectors in R2n` if
there are non-anonymous prices and R2` if the prices are anonymous.

Assumption 5.1.7 states that there is some cap κ ∈ R such that for all v in the support of
the distribution D over buyers’ values and all allocations Q = (q1, . . . , qn), if ∑n

j=1 qj > κ, then
∑n

j=1 vj
(
qj
)
− c (Q) < 0. We also make the natural assumption that the mechanism designer

will not choose prices that cause the seller to have negative utility. In other words, we assume
he will select a profit non-negative menu of two-part tariffs, formalized as follows.

Definition 5.1.8. In the case of anonymous prices (respectively, non-anonymous), let P ⊆ R2`

(respectively, P ′ ⊆ R2n`) be the set of prices where no matter which tariff each buyer chooses
and no matter how many units he buys, the seller will obtain non-negative utility. In other
words, let P (respectively, P ′) be the set of mechanism parameters such that for each buyer
j ∈ [n], each tariff tj ∈ [`], and each allocation Q = (q1, . . . , qn), the seller’s utility is non-
negative:

n

∑
j=1

ρ
(tj)

1,j · 1{qj≥1} + ρ
(tj)

2,j · qj − c (Q) ≥ 0.

The set of profit non-negative menus of two-part tariffs is defined by parameters in P (respectively,
P ′).

Under Assumption 5.1.7, we are guaranteed that no matter which profit non-negative pa-
rameters the mechanism designer chooses in P or P ′, if all buyers simultaneously choose the
tariff and the number of units (q1, . . . , qn) that maximize their utilities, then ∑n

j=1 qj ≤ κ, as we
prove in the following lemma.

Lemma 5.1.9. No matter which parameters the mechanism designer chooses in P or P ′, if all buyers
simultaneously choose the tariff and the number of units (q1, . . . , qn) that maximize their utilities, then
∑n

j=1 qj ≤ κ.
5The fact that the buyers arrive simultaneously and that there are multiple units of each item for sale differenti-

ates this setting from that of item-pricing, which we describe in Example 5.1.2 and later in this section.
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Proof. We prove this lemma for non-anonymous prices, and the lemma for anonymous prices
follow since they are a special case of non-anonymous prices. For a contradiction, suppose
there exists a set of buyers’ values v and a non-anonymous menu of two-part tariffs with
parameters in P ′ such that if tj is the tariff that buyer j chooses and qj is the number of
units he chooses, ∑n

j=1 qj > κ. Since the mechanisms are profit non-negative, we know that

∑n
j=1 ρ

(tj)

1,j · 1{qj≥1}+ ρ
(tj)

2,j · qj− c (Q) ≥ 0, where Q = (q1, . . . , qn). We also know that each buyer’s

value for the units he bought is greater than the price: ∑n
j=1 vj(qj) ≥ ∑n

j=1 ρ
(tj)

1,j · 1{qj≥1}+ ρ
(tj)

2,j · qj.
Therefore, ∑n

j=1 vj(qj)− c(Q) ≥ 0. However, this contradicts Assumption 5.1.7, so the lemma
holds.

This fact is crucial to proving delineability since the number of hyperplanes splitting the
parameter space into regions where profit is linear depends on κ.

Lemma 5.1.10. Let U =
{

uρ : ρ ∈ R2`} be the set of profit functions corresponding to the class of

anonymous profit non-negative length-` menus of two-part tariffs. The set U is
(

2`, O
(

n (κ`)2
))

-

delineable. When the prices are non-anonymous, the set is
(

2n`, O
(

n (κ`)2
))

-delineable.

Proof. A length-` menu of two-part tariffs is defined by 2` parameters. The first 2 param-
eters (denoted

(
ρ

(1)
0 , ρ

(1)
1

)
) define the first tariff in the menu, the second 2 parameters (de-

noted
(

ρ
(2)
0 , ρ

(2)
1

)
) define the second tariff in the menu, and so on. Buyer j will prefer to

buy q ≥ 1 units using ith menu entry (defined by the parameters
(

ρ
(i)
0 , ρ

(i)
1

)
) so long as

vj(q) −
(

ρ
(i)
0 + ρ

(i)
1 q
)

> vj(q′) −
(

ρ
(i′)
0 + ρ

(i′)
1 q′

)
for any i′ 6= i and q′ 6= q. In total, these in-

equalities define O
(

n (κ`)2
)

hyperplanes in R2`. In any region defined by these hyperplanes,
the menu entries and quantities demanded by all n buyers are fixed. In any such region, profit
is linear in the fixed fees and unit prices.

In the case of non-anonymous reserve prices, the same argument holds, except that every
length-` menu of two-part tariffs is defined by 2n` parameters: for each buyer, we must set the
fixed fee and unit price for each of the ` menu entries.

General non-linear pricing mechanisms. We study general non-linear pricing mechanisms
under Wilson’s bundling interpretation [Wilson, 1993]: if the prices are anonymous, there is
a price per quantity vector q denoted ρ (q). The buyers simultaneously choose the bundles
maximizing their utility: buyer j will purchase the bundle that maximizes vj (q)− ρ (q). If the
prices are non-anonymous, there is a price per quantity vector q and buyer j ∈ [n] denoted
ρj (q). These general non-linear pricing mechanisms include multi-part tariffs as a special case.

Without any assumptions, the parameter space of this mechanism class has an infinite num-
ber of dimensions, since the mechanism designer, in theory, could choose prices for each and
every bundle q ∈ Zm

≥0. In Lemma 5.1.12, we show that under Assumption 5.1.7, no buyer will
ever choose a bundle q such that q[i] > κi for any i ∈ [m]. This holds so long as the mech-
anism designer chooses a profit non-negative non-linear pricing mechanism (see Definition 5.1.11,
which is similar to Definition 5.1.8). Thus, the seller only needs to carefully set the prices of the
bundles q such that q[i] ≤ κi for all i ∈ [m]. Letting K = ∏m

i=1(κi + 1) be the number of such
bundles, the set of anonymous prices the mechanism designer needs to carefully set is a subset
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of RK and the set of non-anonymous prices is a subset of RnK. We now provide the definition
of profit non-negative non-linear pricing mechanisms.

Definition 5.1.11. In the case of anonymous prices (respectively, non-anonymous), let P (re-
spectively, P ′) be the set of mechanism parameters such that for each buyer j ∈ [n] and each
allocation Q = (q1, . . . , qn), the seller’s utility is non-negative:

n

∑
j=1

ρj(qj)− c (Q) ≥ 0.

The set of profit non-negative non-linear pricing mechanisms is defined by parameters in P
(respectively, P ′).

Under Assumption 5.1.7, we are guaranteed that no matter which profit non-negative pa-
rameters the mechanism designer chooses in P or P ′, if all buyers simultaneously choose the
bundles that maximize their utilities, then ∑n

j=1 qj[i] ≤ κi for all i ∈ [m], as we show in the
following lemma.

Lemma 5.1.12. No matter which parameters the mechanism designer chooses in P or P ′, if all buyers
simultaneously choose the bundles that maximize their utilities, then ∑n

j=1 qj[i] ≤ κi for all i ∈ [m].

Proof. We prove this lemma for non-anonymous prices, and the lemma for anonymous prices
follow since they are a special case of non-anonymous prices. For a contradiction, suppose
there exists a set of buyers’ values v and a non-anonymous non-linear pricing mechanism with
parameters in P ′ such that if qj is the bundle buyer j chooses, ∑n

j=1 qj[i] > κi for some i ∈ [m].
Since the mechanisms are profit non-negative, we know that ∑n

j=1 ρj(qj) − c (Q) ≥ 0, where
Q = (q1, . . . , qn). We also know that each buyer’s value for the units he bought is greater
than the price: ∑n

j=1 vj(qj) ≥ ∑n
j=1 ρj(qj). Therefore, ∑n

j=1 vj(qj) − c(Q) ≥ 0. However, this
contradicts Assumption 5.1.7, so the lemma holds.

As in the case of two-part tariffs, this fact is crucial to proving delineability since the num-
ber of hyperplanes splitting the parameter space into regions where profit is linear depends
on κ1, . . . , κm. Moreover, under these assumptions, the set of mechanism parameters is ef-
fectively K-dimensional in the case of anonymous prices and nK-dimensional in the case of
non-anonymous prices: without loss of generality, the mechanism designer might as well set
the price of any bundle q such that q[i] ≥ κi for some i ∈ [m] to ∞.

Lemma 5.1.13. Let U be the set of profit functions corresponding to the class of anonymous non-linear
pricing mechanisms. Let K = ∏m

i=1 (κi + 1). The set U is
(
K, nK2)-delineable. When the prices are

non-anonymous, the set is
(
nK, nK2)-delineable.

Proof. We begin by analyzing the case where there are anonymous prices. By Lemma 5.1.12,
the mechanism designer might as well set the price of any bundle q such that q[i] ≥ κi for some
i ∈ [m] to ∞. Therefore, every non-linear pricing mechanism is defined by d = ∏m

i=1 (κi + 1)
parameters because that is the number of different bundles and there is a price per bundle.
Buyer j will prefer the bundle corresponding to the quantity vector q over the bundle corre-
sponding to the quantity vector q′ if vj(q)− ρ(q) ≥ vj(q′)− ρ(q′). Therefore, there are at most

∏m
i=1 (κi + 1)2 hyperplanes in Rd determining each buyer’s preferred bundle — one hyperplane

per pair of bundles. This means that there are a total of n ∏m
i=1 (κi + 1)2 hyperplanes in Rd such
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that in any one region induced by these hyperplanes, the bundles demanded by all n buyers
are fixed and profit is linear in the prices of these n bundles.

In the case of non-anonymous prices, the same argument holds, except that every non-linear
pricing mechanism is defined by n ∏m

i=1 (κi + 1) parameters — one parameter per bundle-buyer
pair.

We prove polynomial bounds when prices are additive over items.

Definition 5.1.14 (Additively decomposable non-linear pricing mechanisms). Additively de-
composable non-linear pricing mechanisms are a subset of non-linear pricing mechanisms
where the prices are additive over the items. Specifically, if the prices are anonymous, there
exist m functions ρ(i) : [κi] → R for all i ∈ [m] such that for every quantity vector q, ρ(q) =

∑i:q[i]≥1 ρ(i)(q[i]). If the prices are non-anonymous, there exist nm functions ρ
(i)
j : [κi] → R for

all i ∈ [m] and j ∈ [n] such that for every quantity vector q, ρj(q) = ∑i:q[i]≥1 ρ
(i)
j (q[i]).

Lemma 5.1.15. Let U be the set of profit functions corresponding to the class of additively decomposable
non-linear pricing mechanisms with anonymous prices. Then U is

(
∑m

i=1(κi + 1), n ∏m
i=1 (κi + 1)2

)
-

delineable. When the prices are non-anonymous, the class is
(

n ∑m
i=1 (κi + 1) , n ∏m

i=1 (κi + 1)2
)

-
delineable.

Proof. In the case of anonymous prices, any additively decomposable non-linear pricing mech-
anism is defined by d = ∑m

i=1(κi + 1) parameters. As in the proof of Lemma 5.1.13, there are
a total of n ∏m

i=1(κi + 1)2 hyperplanes in Rd such that in any one region induced by these hy-
perplanes, the bundles demanded by all n buyers are fixed and profit is linear in the prices of
these n bundles.

In the case of non-anonymous prices, the same argument holds, except that every non-
linear pricing mechanism is defined by n ∑m

i=1(κi + 1) parameters — one parameter per item,
quantity, and buyer tuple.

Item-pricing mechanisms.

We now apply Theorem 5.1.4 to anonymous and non-anonymous item-pricing mechanisms.
Unlike non-linear pricing mechanisms, in this setting, there is only a single unit of each item
for sale. Under anonymous prices, the seller sets a price per item. Under non-anonymous
prices, there is a buyer-specific price per item. Since there is only one unit of each item for sale,
we cannot assume the buyers arrive simultaneously and buy the bundle of goods maximizing
their utilities, as we did when studying non-linear pricing. After all, this may lead to over-
demand. Rather, we assume that there is some fixed but arbitrary ordering on the buyers such
that the first buyer in the ordering arrives first and buys the bundle of items that maximizes
his utility, then the next buyer in the ordering arrives and buys the bundle of remaining items
that maximizes his utility, and so on. This assumption is prevalent throughout the economics
and computation literature (e.g., [Babaioff et al., 2014, Cai et al., 2016, Feldman et al., 2015]).

Lemma 5.1.16. Let U be the set of profit functions corresponding to the class of anonymous item-pricing
mechanisms with anonymous prices and additive6 buyers. The set U is (m, m)-delineable. When the

6In the two cases where the buyers have unit-demand and general valuations, we prove generalization bounds by
connecting the hyperplane structure we investigate in this chapter to the structured prediction literature in machine
learning. See Appendix A for details.
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prices are non-anonymous, the set is is (nm, nm)-delineable.

Proof. In the case of anonymous prices, every item-pricing mechanisms is defined by m prices
p ∈ Rm, so the parameter space is Rm. Let ji be the buyer with the highest value for item i.
We know that item i will be bought so long as vji (ei) ≥ ρ(ei). Once the items bought are fixed,
profit is linear. Therefore, there are m hyperplanes splitting Rm into regions where profit is
linear.

In the case of non-anonymous prices, the parameter space is Rnm since there is a price per
buyer and per item. The items each buyer j is willing to buy is defined by m hyperplanes:
vj(ei) ≥ ρj(ei). So long as these preferences are fixed, profit is a linear function of the prices.
Therefore, there are nm hyperplanes splitting Rnm into regions where profit is linear.

In Appendix A, we connect the hyperplane structure we investigate in this chapter to the
structured prediction literature in machine learning (e.g., [Collins, 2000]), thus proving even
stronger generalization bounds for item-pricing mechanisms under buyers with unit-demand
and general valuations and answering an open question by Morgenstern and Roughgarden
[2016]. Balcan et al. [2014] were the first to explore the connection between structured predic-
tion and mechanism design, though in a different setting from us: they provided algorithms
that make use of past data describing the purchases of a utility-maximizing agent to produce a
hypothesis function that can accurately forecast the future behavior of the agent.

In Section 5.1.7, we compare these results with those from prior research [Morgenstern and
Roughgarden, 2016, Syrgkanis, 2017].

Auctions.

We now present applications of Theorem 5.1.4 to auctions. In each setting, there is a single unit
of each item for sale.

Second price item auctions with item reserves. These auctions are only incentive compatible
for additive buyers, so we restrict our attention to this setting. In the case of non-anonymous
reserves, there is a price ρj (ei) for each item i and each buyer j. The buyers submit bids on
the items. For each item i, the highest bidder j wins the item if and only if her bid is above
ρj (ei). She pays the maximum of the second highest bid and ρj (ei). If the bidder with the
highest bid bids below her reserve, the item goes unsold. In the case of anonymous reserves,
ρ1 (ei) = ρ2 (ei) = · · · = ρn (ei) for each item i.

Lemma 5.1.17. Let U be the set of profit functions corresponding to the class of anonymous second-
price item auctions. The set U is (m, m)-delineable. If the prices are non-anonymous, the set is is
(nm, m)-delineable.

Proof. For a given valuation vector v, let ji be the highest bidder for item i and let j′i be the
second highest bidder. Under anonymous prices, item i will be bought so long as vji (ei) ≥ ρ(ei).
If buyer ji buys item i, his payment depends on whether or not vj′i

(ei) ≥ ρ(ei). Therefore, there
are t = 2m hyperplanes splitting Rm into regions where profit is linear. In the case of non-
anonymous prices, the only difference is that the parameter space is Rnm.

In Section 5.1.7, we provide a detailed comparison of this lemma with results from prior
research [Devanur et al., 2016, Morgenstern and Roughgarden, 2016, Syrgkanis, 2017], in both
the single- and multi-item setting.
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Mixed bundling auctions with reserve prices (MBARPs). MBARPs [Jehiel et al., 2007, Tang
and Sandholm, 2012a] are a variation on the VCG mechanism with item reserve prices, with
an additional fixed boost to the social welfare of any allocation where some buyer receives
the grand bundle. Recall that in a single-item VCG auction (i.e., second-price auction) with a
reserve price, the item is only sold if the highest bidder’s bid exceeds the reserve price, and the
winner must pay the maximum of the second highest bid and the reserve price. To generalize
this intuition to the multi-item case, we enlarge the set of agents to include the seller, whose
valuation for a set of items is the set’s reserve price. An MBARP gives an additional additive
boost to the social welfare of any allocation where some buyer receives the grand bundle, and
then runs the VCG mechanism over this enlarged set of buyers. The allocation is the boosted
social welfare maximizer and the payments are the VCG payments on the boosted social welfare
values. Importantly, the seller makes no payments, no matter her allocation.

Formally, MBARPs are defined by a parameter γ ≥ 0 and m reserve prices ρ (e1) , . . . , ρ (em).
Let λ be a function such that λ (Q) = γ if some buyer receives the grand bundle under alloca-
tion Q and 0 otherwise. For an allocation Q, let qQ be the items not allocated. Given a valuation
vector v, the MBARP allocation is

Q∗ = (q∗1 , . . . , q∗n) = argmax

 n

∑
j=1

vj
(
qj
)

+ ∑
i:qQ[i]=1

ρ (ei) + λ (Q)− c (Q)

 .

Using the notation

Q−j =
(

q−j
1 , . . . , q−j

n

)
= argmax

∑
` 6=j

v` (q`) + ∑
i:qQ[i]=1

ρ (ei) + λ (Q)− c (Q)

 ,

buyer j pays

∑
` 6=j

v`
(

q−j
`

)
+ ∑

i:q
Q−j [i]=1

ρ (ei) + λ
(

Q−j
)
− c
(

Q−j
)
−∑

` 6=j
v` (q∗` )− ∑

i:qQ∗ [i]=1
ρ (ei)−λ (Q∗) + c (Q∗) .

Lemma 5.1.18. Let U be the set of profit functions corresponding to the class of MBARPs. The set U is(
m + 1, (n + 1)22m)-delineable.

Proof. An MBARP is defined by m + 1 parameters since there is one reserve per item and one
allocation boost. Let K = (n + 1)m be the total number of allocations. Fix some valuation vector
v. We claim that the allocation of any MBARP is determined by at most (n + 1)K2 hyperplanes
in Rm+1. To see why this is, let Qk =

(
qk

1, . . . , qk
n
)

and Q` =
(
q`

1, . . . , q`
n
)

be any two allocations
and let qQk and qQ` be the bundles of items not allocated. Consider the (K

2) hyperplanes defined
as

n

∑
i=1

vi

(
q`

i

)
+ ∑

j:qQ` [i]=1
ρ (ei) + λ

(
Q`
)
− c

(
Q`
)

=
n

∑
i=1

vi

(
qk

i

)
+ ∑

j:qQk [i]=1
ρ (ei) + λ

(
Qk
)
− c

(
Qk
)

.

In the intersection of these (K
2) hyperplanes, the allocation of the MBARP is fixed.

By a similar argument, it is straightforward to see that K2 hyperplanes determine the al-
location of any MBARP in this restricted space without any one bidder’s participation. This
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leads us to a total of (n + 1)K2 hyperplanes which partition the space of MBARP parameters in
a way such that for any two parameter vectors in the same region, the auction allocations are
the same, as are the allocations without any one bidder’s participation. Once these allocations
are fixed, profit is a linear function in this parameter space.

In Table 5.4, we compare this lemma with results from prior research [Balcan et al., 2016].

Affine maximizer auctions (AMAs). AMAs are an expressive mechanism class: Roberts
[1979] proved that AMAs are the only ex post truthful mechanisms over unrestricted value
domains. Later, Lavi et al. [2003] proved that under natural assumptions, every truthful multi-
item auction is an “almost” AMA, that is, an AMA for sufficiently high values.7 An AMA is
defined by a weight per buyer wj ∈ R>0 and a boost per allocation λ (Q) ∈ R≥0. By increasing
any wj or λ (Q), the seller can increase buyer j’s bids or increase the likelihood that Q is the
auction’s allocation. The AMA allocation Q∗ is the one which maximizes the weighted social
welfare, i.e., Q∗ = (q∗1 , . . . , q∗n) = argmax

{
∑n

j=1 wjvj
(
qj
)

+ λ (Q)− c (Q)
}

. The payments have
the same form as the VCG payments, with the parameters factored in to ensure truthfulness.
Formally, using the notation

Q−j =
(

q−j
1 , . . . , q−j

n

)
= argmax

{
∑
` 6=j

w`v` (q`) + λ (Q)− c (Q)

}
,

each buyer j pays

1
wj

[
∑
` 6=j

w`v`
(

q−j
`

)
+ λ

(
Q−j

)
− c

(
Q−j

)
−
(

∑
` 6=j

w`v` (q∗` ) + λ (Q∗)− c (Q∗)

)]
.

A virtual valuation combinational auction (VVCA) [Likhodedov and Sandholm, 2004] is an
AMA where each λ (Q) is split into n terms such that λ (Q) = ∑n

j=1 λj (Q) where λj (Q) = cj,q
for all allocations Q that give buyer j exactly bundle q. Finally, λ-auctions [Jehiel et al., 2007]
are a special case of AMAs where the buyer weights equal 1.

Lemma 5.1.19. Let U , U ′, and U ′′ be the sets of profit functions corresponding to the classes of AMAs,
VVCAs, and λ-auctions, respectively. The set U is

(
2n(n + 1) + (n + 1)m+1, (n + 1)2m+1

)
-delineable,

U ′ is
(

n2m(3 + 2n), (n + 1)2m+1
)

-delineable, and U ′′ is
(

(n + 1)m , (n + 1)2m+1
)

-delineable.

Proof. Let K = (n + 1)m be the total number of allocations and let p be a parameter vector
where the first n components correspond to the bidder weights wj for j ∈ [n], the next n
components correspond to 1/wj for j ∈ [n], the next 2(n

2) components correspond to wi/wj for
all i 6= j, the next K components correspond to λ(Q) for every allocation Q, and the final nK
components correspond to λ(Q)/wj for all allocations Q and all bidders j ∈ [n]. In total, the
dimension of this parameter space is at most 2n + 2n2 + K + nK = O(nK). Let v be a valuation

7Surprisingly, even when the buyers have additive values, AMAs can generate higher revenue than running a
separate Myerson auction for each item [Sandholm and Likhodedov, 2015], even though the buyers’ values do not
exhibit any complementarity or substitutability. While this may seem surprising, it is to be expected due to prior
research in bundle pricing in catalog offers [Adams and Yellen, 1976, Bakos and Brynjolfsson, 1999, McAfee et al.,
1989].
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vector. We claim that this parameter space can be partitioned using t = (n + 1)K2 hyperplanes
into regions where in any one region P ′, there exists a vector k such that uv(p) = k · p for all
p ∈ P ′.

To this end, an allocation Q = (q1, . . . , qn) will be the allocation of the AMA so long as
∑n

i=1 wivi (qi) + λ(Q) − c(Q) ≥ ∑n
i=1 wivi (q′i) + λ (Q′) − c(Q′) for all Q′ = (q′1, . . . , q′n) 6= Q.

Since the number of different allocations is at most K, the allocation of the auction on v is
defined by at most K2 hyperplanes in Rd. Similarly, the allocations Q−1, . . . , Q−n are also
determined by at most K2 hyperplanes in Rd. Once these allocations are fixed, profit is a linear
function of this parameter space.

The proof for VVCAs follows the same argument except that we redefine the parameter
space to consist of vectors where the first n components correspond to the bidder weights wj
for j ∈ [n], the next n components correspond to 1/wj for j ∈ [n], the next 2(n

2) components
correspond to wi/wj for all i 6= j, the next K′ = n2m components correspond to the bidder-
specific bundle boosts cj,q for every quantity vector q and bidder j ∈ [n], and the final nK′

components correspond to ck,q/wj for every quantity vector q and every pair of bidders j, k ∈
[n]. The dimension of this parameter space is at most 2n + 2n2 + K′ + nK′ ≤ 2K′ + nK′ + K′ +
nK′ = O(nK′).

Finally, the proof for λ-auctions follows the same argument as the proof for AMAs ex-
cept there are zero bidder weights. Therefore, the parameter space consists of vectors with K
components corresponding to λ(Q) for every allocation Q.

In Table 5.4, we compare this lemma with results from prior research [Balcan et al., 2016].
We now study two hierarchies of AMAs. In Section 5.1.6, we show how to learn which

level of the hierarchy optimizes the tradeoff between generalization and profit for the setting
at hand.

Q-boosted AMAs and λ-auctions. Let Q be a set of allocations. The set of Q-boosted AMAs
(resp., λ-auctions) consists of all AMAs (resp., λ-auctions) where only allocations in Q are
boosted. In other words, if λ (Q) > 0, then Q ∈ Q. (Recall that λ-auctions [Jehiel et al., 2007]
are a special case of AMAs where the buyer weights equal 1.)

Lemma 5.1.20. Let U and U ′ be the sets of profit functions corresponding to the classes of Q-boosted
AMAs and λ-auctions, respectively. Then U is

(
3n(n + |Q|), (n + 1)2(m+1)

)
-delineable and U ′ is(

|Q|, (n + 1) (|Q|+ 1)2
)

-delineable.

Proof. Let K = (n + 1)m be the total number of allocations and let p be a parameter vector where
the first n components correspond to the bidder weights wj for j ∈ [n], the next n components
correspond to 1/wj for j ∈ [n], the next 2(n

2) components correspond to wi/wj for all i 6= j,
the next |Q| components correspond to λ(Q) for every allocation Q ∈ |Q|, and the final n|Q|
components correspond to λ(Q)/wj for all allocations Q ∈ Q and all bidders j ∈ [n]. In total,
the dimension of this parameter space is at most 2n + 2n2 + |Q|+ n|Q| < (n + 2)(n + |Q|) ≤
3n(n + |Q|). We set d = 3n(n + |Q|). Fix some valuation vector v. We claim that the allocation
of any Q-boosted AMA is determined by at most (n + 1)K2 hyperplanes in Rd. To see why this
is, the allocation will be Qj =

(
qj

1, . . . , qj
n

)
where ∑ wivi

(
qj

i

)
+ λ

(
Qj)− c(Qj) ≥ ∑ wivi

(
qk

i
)

+

λ
(
Qk)− c(Qk) for all allocations Qk =

(
qk

1, . . . , qk
n
)
. This decision governing which of the K
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possible allocations will be the AMA allocation is defined by the K2 hyperplanes, one per pair
of distinct allocations Qj and Qk.

By a similar argument, it is straightforward to see that K2 hyperplanes determine the allo-
cation of any AMA in this restricted space without any one bidder’s participation. This leads
us to a total of (n + 1)K2 hyperplanes which partition the space of Q-boosted AMA parameters
in a way such that for any two parameter vectors in the same region, the auction allocations are
the same, as are the allocations without any one bidder’s participation. Once these allocations
are fixed, profit is a linear function in this parameter space.

The proof for λ-auctions is very similar to that for AMAs. However, we claim that the
allocation of any Q-boosted λ-auction is determined by at most (n + 1)(|Q|+ 1)2 hyperplanes
in R|Q|. This is because without the bidder weights, the allocation of the Q-boosted λ-auction
will either be a boosted allocation or the VCG allocation if it is not boosted. Therefore, there are
only (|Q|+ 1)2 hyperplanes determining the allocation of the λ-auction, and the same number
of hyperplanes determine the allocation of the λ-auction in this restricted space without any
one bidder’s participation. Once these allocations are fixed, profit is linear function of the
λ-terms.

Lotteries.

We now apply Theorem 5.1.4 to lottery menus. Lotteries are randomized mechanisms which are
known to generate higher expected revenue than deterministic mechanisms in many settings
(e.g., [Conitzer and Sandholm, 2003, Manelli and Vincent, 2006, Thanassoulis, 2004])

A length-` lottery menu is a set

M =
{

ρ(0), ρ(1), . . . , ρ(`)
}
⊂ Rm+1,

where ρ(0) = 0. We assume there is a single additive buyer, but our results easily generalize
to unit-demand buyers and multiple buyers. Under the lottery defined by the parameters ρ(j)

the buyer receives each item i with probability ρ(j)[i] and pays a price of ρ(j)[m + 1]. Since
v1(ei) · ρ(j)[i] is his value for item i times the probability they get that item, his expected utility
is v ·

(
ρ(j)[1], . . . , ρ(j)[m]

)
− ρ(j)[m + 1]. Given a buyer with values defined by v, let ρv ∈ M be

the lottery that maximizes the buyer’s expected utility. We use the notation q ∼ ρv to denote
a random allocation of the lottery defined by ρv. Specifically, for all i ∈ [m], q[i] = 1 with
probability ρv[i] and q[i] = 0 with probability 1− ρv[i]. The expected profit of the mechanism
is uρ(v) = ρv −Eq∼ρv [c (q)]]. Let U =

{
uρ : ρ ∈ R`(m+1)

}
.

The key challenge in bounding Pdim (U ) is that Eq∼ρv [c (q)] is not a piecewise linear
function of the parameters ρ(0), . . . , ρ(`). To overcome this challenge, rather than bounding
Pdim (U ), we bound the pseudo-dimension of a related class Ũ . We then show that opti-
mizing over Ũ amounts to optimizing over U itself. To motivate the definition of Ũ , no-
tice that if w ∼ U ([0, 1]m), the probability that w[j] is smaller than ρv[j] is ρv[j]. There-
fore, Eq∼ρv [c (q)] = Ew

[
c
(

∑j:w[j]<ρv[j] ej

)]
. Given lottery parameters ρ ∈ R`(m+1), we define

ũρ (v, w) := ρv[m + 1]− c
(

∑j:w[j]<ρv[j] ej

)
and define Ũ =

{
ũρ : ρ ∈ R`(m+1)

}
. The important

insight is that the class Ũ is delineable because for a fixed pair (v, w), both the lottery the buyer
chooses and the bundle ∑j:w[j]<ρv[j] ej are defined by a set of hyperplanes.
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Lemma 5.1.21. For additive buyers, Ũ is
(
`(m + 1), (` + 1)2 + m`

)
-delineable.

Proof. A length-` lottery menu is defined by `(m + 1) parameters. The first m + 1 param-
eters (denoted ρ(1)[1], . . . , ρ(1)[m + 1]) define the first lottery in the menu, the second m + 1
parameters (denoted ρ(2)[1], . . . , ρ(2)[m + 1]) define the second lottery in the menu, and so on.
The buyer will prefer the jth menu entry (defined by the parameters ρ(j)[1], . . . , ρ(j)[m + 1]) so
long as v ·

(
ρ(j)[1], . . . , ρ(j)[m]

)
− ρ(j)[m + 1] > v ·

(
ρ(k)[1], . . . , ρ(k)[m]

)
− ρ(k)[m + 1] for any

k 6= j. In total, these inequalities define (`+1
2 ) hyperplanes in R`(m+1). In any region defined

by these hyperplanes, the menu entry that the buyer prefers is fixed. Next, for each menu
entry ρ(k), there are m hyperplanes determining the vector ∑j:w[j]<ρ(k)[j] ej, and thus the cost

c
(

∑j:w[j]<ρ(k)[j] ej

)
. These vectors have the form w[j] = ρ(k)[j]. Thus, there are a total of `m hy-

perplanes determining the costs. Let H be the union of all (` + 1)2 + m` hyperplanes. Within
any connected component of R`(m+1) \ H, the menu entry that the buyer buys is fixed and for
each menu entry, c

(
∑j:w[j]<ρ(k)[j] ej

)
is fixed. Therefore, profit is a linear function of the prices

ρ(1)[m + 1], . . . , ρ(`)[m + 1].

The following lemma guarantees that optimizing over Ũ amounts to optimizing over U
itself. It follows from the fact that for all v and ρ, uρ (v) = Ew

[
ũρ (v, w)

]
.

Lemma 5.1.22. With probability 1− δ over the draw{(
v(1), w(1)

)
, . . . ,

(
v(N), w(N)

)}
∼
(
D ×U ([0, 1])m)N ,

for all parameter settings ρ ∈ Rm+1,∣∣∣∣∣ 1
N

N

∑
i=1

ũρ

(
v(i), w(i)

)
− E

v∼D
[uρ (v)]

∣∣∣∣∣ ≤ O

(
H

√
1
N

(
Pdim(Ũ ) + ln

1
δ

))
.

Proof. We know that with probability at least 1− δ over the draw of a sample{(
v(1), w(1)

)
, . . . ,

(
v(N), w(N)

)}
∼ (D ×U([0, 1])m)N ,

for all parameter settings ρ ∈ Rm+1,∣∣∣∣∣ 1
N

N

∑
j=1

ũρ

(
v(j), w(j)

)
− E

v,w∼D×U([0,1])m

[
ũρ(v, w)

]∣∣∣∣∣ = O

(
H

√
1
N

(
Pdim(Ũ ) + ln

1
δ

))
.

We now claim that Ev,w∼D×U([0,1])m
[
ũρ(v, w)

]
= Ev∼D

[
uρ(v)

]
. By definition of ũρ,

E
w

[
ũρ (v, w)

]
= E

w

ρv[m + 1]− c

 ∑
j:w[j]<ρv[j]

ej


= ρv[m + 1]− ∑

r∈{0,1}m

c (r) ∏
j:r[j]=1

Pr [w[j] < ρv[j]] ∏
j:r[j]=0

Pr [w[j] ≥ ρv[j]]

= ρv[m + 1]− ∑
r∈{0,1}m

c (r) ∏
j:r[j]=1

ρv[j] ∏
j:r[j]=0

(1− ρv[j]) .
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From the other direction,

uρ (v) = ρv[m + 1]− E
q∼ρv

[c(q)]

= ρv[m + 1]− ∑
r∈{0,1}m

c (r) ∏
j:r[j]=1

Pr [q[j] = 1] ∏
j:r[j]=0

Pr [q[j] = 0]

= ρv[m + 1]− ∑
r∈{0,1}m

c (r) ∏
j:r[j]=1

ρv[j] ∏
j:r[j]=0

(1− ρv[j]) .

Therefore, uρ(v) = Ew
[
ũρ (v, w)

]
. Therefore, the lemma statement holds.

As we have seen in this section, a wide variety of mechanism classes are delineable. There-
fore, Theorem 5.1.4 immediately implies a generalization guarantee for a diverse array of mech-
anism classes.

5.1.5 Data-dependent generalization guarantees

In this section, we provide two ways to strengthen the results in Section 5.1.4 when the buyers’
values are additive and drawn from item-independent distributions. We say a distribution over
buyers’ values is item-independent if for all i1, i2 ∈ [n] and j ∈ [m], buyer i1’s value for item j
is independent from her value for item j′, but her value for item j may be arbitrarily correlated
with buyer i2’s value for item j or j′. We also require that the mechanism class’s profit func-
tions decompose additively. For example, under item-pricing mechanisms, the profit function
decomposes into the profit obtained from selling item 1, plus the profit obtained by selling
item 2, and so on. Surprisingly, our bounds do not depend on the number of items and under
anonymous prices, they do not depend on the number of buyers either.

We make the notion of a distribution-dependent generalization guarantee more formal, as
follows.

Definition 5.1.23. Let U =
{

uρ : ρ ∈ Rd} be a set of profit functions parameterized by ρ ∈ Rd,
for some d. A distribution-dependent generalization guarantee for U and a distribution D over
buyers’ values is a function εDU : Z≥1 × (0, 1) → R≥0 defined such that for any sample size
N ∈ Z≥1 and any δ ∈ (0, 1), with probability at least 1− δ over the draw of a set S ∼ DN , for
any parameter setting ρ ∈ Rd, the difference between the average value of uρ over S and the
expected value of uρ over D is at most εDU (N, δ). In other words,

Pr
S∼DN

[
∃ρ ∈ Rd such that

∣∣∣∣∣ 1
N ∑

v∈S
uρ (v)− E

v∼D

[
uρ (v)

]∣∣∣∣∣ > εDU (N, δ)

]
< δ.

To obtain our data-dependent guarantees, we move from pseudo-dimension to Rademacher
complexity [Bartlett and Mendelson, 2002, Koltchinskii, 2001]. This is the key advantage
of Rademacher complexity over pseudo-dimension; pseudo-dimension implies generalization
guarantees that are worst-case over the distribution whereas Rademacher complexity implies
distribution-dependent guarantees. We prove that this shift to Rademacher complexity from
pseudo-dimension is in fact necessary in order to obtain guarantees that are independent of
the number of items (Theorem 5.1.29).

In the following corollary of Theorem 5.1.4, we show that if the profit functions of a class U
decompose additively into a number of simpler functions, then we can easily bound R̂S (U ) us-
ing the Rademacher complexity of those simpler functions. We then demonstrate the power of
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this corollary by proving stronger guarantees for many well-studied mechanism classes when
the buyers are additive and their valuations are drawn from item-independent distributions.
This includes buyers with values drawn from product distributions as a special case, a setting
which has been extensively studied in the mechanism design literature [e.g., Babaioff et al.,
2017, Cai and Daskalakis, 2017a, Cai et al., 2016, Goldner and Karlin, 2016, Hart and Nisan,
2012, Yao, 2014].

We say that a mechanism class parameterized by vectors ρ ∈ Rd decomposes additively if
for all ρ ∈ Rd, there exist T functions u1,ρ, . . . , uT,ρ such that the function uρ can be written
as uρ (·) = u1,ρ (·) + · · · + uT,ρ (·). We note that this decomposition is not necessarily into
coordinates (for example, it is not necessary that each function fi,M corresponds to some buyer
or good).

Corollary 5.1.24. Let U be the set of profit functions corresponding to a class of additively decomposable
mechanisms parameterized by vectors ρ ∈ Rd. Let Ui equal the set Ui =

{
ui,ρ : ρ ∈ Rd}. Suppose that

for all ρ ∈ Rd, the range of ui,ρ over the support of D is [0, Hi] and that the class Ui is (di, ti)-delineable.
Then for any set of samples S ∼ DN ,

R̂S (U ) = O

(
T

∑
i=1

Hi

√
di ln (diti)

N

)
.

Proof. The corollary follows from the fact that for any function class G with range [0, H],

R̂S (G) = O
(

H
√

Pdim(G)
|S|

)
Dudley [1987], Pollard [1984], and the fact that for any sets G and G ′

of functions mapping an abstract domain A to R and any set S ⊆ A,

R̂S
({

g + g′ : g ∈ G, g′ ∈ G ′
})
≤ R̂S (G) + R̂S

(
G ′
)

.

Lemma 5.1.25. Let X = X1 × · · · × Xd. Let F =
{

fρ : ρ ∈ P
}

be a set of functions mapping X
to R, parameterized by a set P = P1 × · · · × Pd. Suppose for i ∈ [d], there exists a class Fi ={

f (i)
ρ : ρ ∈ Pi

}
of functions mapping Xi to R such that for any ρ ∈ P , fρ decomposes additively as

fρ (v) = ∑d
i=1 f (i)

ρ[i] (v[i]). Then

sup
v∈X ,ρ∈P

fρ(v) =
d

∑
i=1

sup
v∈Xi ,ρ∈Pi

f (i)
ρ (v) .

Proof. Recall that for any set A ⊆ R, s = sup A if and only if:

1. For all ε > 0, there exists a ∈ A such that a > s− ε, and

2. For all a ∈ A, a ≤ s.

Let ti = supv∈Xi ,ρ∈Pi
f (i)
ρ (v) and let t = ∑d

i=1 ti. We will show that t = supv∈X ,ρ∈P fρ(v).
First, we will show that condition (1) holds. In particular, we want to show that for all

ε > 0, there exists v ∈ X and ρ ∈ P such that fρ(v) > t− ε. Since ti = supv∈Xi ,ρ∈Pi
f (i)
ρ (v),

we know that there exists v[i] ∈ Xi, ρi ∈ P such that f (i)
ρi (v[i]) > ti − ε/d. Therefore, letting

88



ρ = (ρ1, . . . , ρd), we know that fρ (v1, . . . , vd) = ∑d
i=1 f (i)

ρi (v[i]) > ∑d
i=1 ti − ε = t − ε. Since

(v1, . . . , vd) ∈ X and (ρ1, . . . , ρd) ∈ P , we may conclude that condition (1) holds.
Next, we will show that condition (2) holds. In particular, we want to show that for all

v ∈ X and ρ ∈ P , fρ(v) ≤ t. We know that f (i)
ρ[i] (v[i]) ≤ ti, which means that fρ(v) =

∑d
i=1 f (i)

ρ[i] (v[i]) ≤ ∑d
i=1 ti = t. Therefore, condition (2) holds.

We now instantiate Corollary 5.1.24 for several mechanism classes.

Lemma 5.1.26. Let U be the set of profit functions corresponding to the class of second-price auctions
with anonymous reserves. Suppose the bidders are additive, D is item-independent, and the cost function
is additive. For any set S ∼ DN , R̂S (U ) = O

(
H
√

1/N
)
. When the reserves are non-anonymous,

R̂S (U ) = O
(

H
√

n log n/N
)
.

Proof. We begin with anonymous second-price auctions, which are parameterized by a set
P ⊂ Rm. Without loss of generality, we may write P = P1 × · · · × Pm, where Pi ⊂ R.
Given a valuation vector v and an item i, let v(i) ∈ Rn be all n buyers’ values for item i. Let
uρ(v(i)) be the profit obtained by selling item i with a reserve price of ρ. Notice that for any
ρ ∈ P , uρ(v) = ∑m

i=1 uρ[i](v(i)). Let Xi be the support of the distribution over v(i) and let
Hi = supρ∈Pi ,v(i)∈Xi

uρ(v(i)). Next, let X be the support of D. By definition, since H is the
maximum profit achievable via second price auctions over valuation vectors from X , we may
write H = supv∈X ,ρ∈P uρ(v). Since D is item-independent, we know that X = X1 × · · · × Xm.
Therefore, we may apply Lemma 5.1.25, which tells us that H = ∑m

i=1 Hi. Finally, each class of
functions

{
uρ : ρ ∈ Pi

}
is (1, 2)-delineable, since for v(i) ∈ Xi, uv(i)(ρ) is linear so long as ρ is

larger than the largest component of v(i), between the second largest and largest component
of v(i), or smaller than the second largest component of v(i). By Corollary 5.1.24, we may
conclude that for any set of samples S ∼ DN , R̂S (U ) ≤ O

(
H
√

1/N
)
.

The bound on R̂S (U ′) follows by almost the exact same logic, except for a few adjustments.
First of all, the class is defined by nm parameters coming from some set P ⊆ Rnm, since
there are n non-anonymous prices per item. Without loss of generality, we assume P = P1 ×
· · · × Pm, where Pi ⊆ Rn is the set of non-anonymous prices for item i. Given a set of non-
anonymous prices ρ ∈ Rn for item i, let uρ(v(i)) be the profit of selling the item the bidders
defined by v(i) given the reserve prices ρ. Notice that uv(i)(ρ) is linear so long as for each
bidder j, ρ[j] is either larger than their value for item i or smaller than their value. Thus, the set{

uρ : ρ ∈ Pi
}

is (n, n)-delineable. Defining each Hi in the same way as before, Lemma 5.1.25

guarantees that H = ∑m
i=1 Hi. Therefore, by Corollary 5.1.24, we may conclude that for any set

of samples S ∼ DN , R̂S (U ′) ≤ O
(

H
√

n log n/N
)
.

The following lemma follows from the same logic as Lemma 5.1.26.

Lemma 5.1.27. Let U be the set of profit functions corresponding to the class of anonymous item-pricing
mechanisms. Suppose the bidders are additive, D is item-independent, and the cost function is additive.
For any set of samples S ∼ DN , R̂S (U ) = O

(
H
√

1/N
)
. When the prices are non-anonymous,

R̂S (U ) = O
(

H
√

n log n/N
)
.

Proof. We begin with anonymous item-pricing mechanisms, which are parameterized by a set
P ⊂ Rm. Without loss of generality, we may write P = P1 × · · · × Pm, where Pi ⊂ R. Given a
valuation vector v and an item i, let v(i) ∈ Rn be all n buyers’ values for item i. Let uρ(v(i))
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be the profit obtained by selling item i at a price of ρ, i.e., uρ(v(i)) = 1{||v(i)||∞≥ρ}(ρ− c(ei)).
Notice that for any ρ ∈ P , uρ(v) = ∑m

i=1 uρ[i](v(i)). Let Xi be the support of the distribution
over v(i) and let Hi = supρ∈Pi ,v(i)∈Xi

uρ(v(i)). Next, let X be the support of D. By definition,
since H is the maximum profit achievable via item-pricing mechanisms over valuation vectors
from X , we may write H = supv∈X ,ρ∈P uρ(v). Since D is item-independent, we know that
X = X1 × · · · × Xm. Therefore, we may apply Lemma 5.1.25, which tells us that H = ∑m

i=1 Hi.
Finally, each class of functions

{
uρ : ρ ∈ Pi

}
is (1, 1)-delineable, since for v(i) ∈ Xi, uv(i)(ρ) is

linear so long as ||v(i)||∞ ≤ ρ or ||v(i)||∞ > ρ. By Corollary 5.1.24, we may conclude that for
any set of samples S ∼ DN , R̂S (U ) ≤ O

(
H
√

1/N
)
.

The bound on R̂S (U ′) follows by almost the exact same logic, except for a few adjustments.
First of all, the class is defined by nm parameters coming from some set P ⊆ Rnm, since
there are n non-anonymous prices per item. Without loss of generality, we assume P = P1 ×
· · · × Pm, where Pi ⊆ Rn is the set of non-anonymous prices for item i. Given a set of non-
anonymous prices ρ ∈ Rn for item i, let uρ(v(i)) be the profit of selling the item to the buyers
defined by v(i) given the prices ρ. Notice that uv(i)(ρ) is linear so long as for each buyer
j, ρ(ej) is either larger than their value for item i or smaller than their value. Thus, the set{

uρ : ρ ∈ Pi
}

is (n, n)-delineable. Defining each Hi in the same way as before, Lemma 5.1.25

guarantees that H = ∑m
i=1 Hi. Therefore, by Corollary 5.1.24, we may conclude that for any set

of samples S ∼ DN , R̂S (U ′) ≤ O
(

H
√

n log n/N
)
.

Menus of item lotteries. A length-` item lottery menu is a set of ` lotteries per item. The menu
for item i is Mi =

{
ρ

(0)
i , ρ

(1)
i , . . . , ρ

(`)
i

}
⊂ R2, where ρ

(0)
i = 0. The buyer chooses one lottery

ρ
(ji)
i per menu Mi, receives each item i with probability ρ

(ji)
i [1], and pays ∑m

i=1 ρ
(ji)
i [2].

Lemma 5.1.28. Let U be the set profit functions corresponding to the class of length-` item lottery
menus. If the bidder is additive, D is item-independent, and the cost function is additive, then for any
set S ∼ DN , R̂S (U ) ≤ O

(
H
√
` log `/N

)
.

Proof. For a given menu M = (M1, . . . , Mm) of item lotteries, let uMi (v) be the profit achieved
from menu Mi. Since the cost function is additive, uMi (v) = ρi,v[2]−Eq∼ρi,v[1] [c(q)] = ρi,v[2]−
c(ei) · ρi,v[1], where ρi,v is the lottery in Mi that maximizes the buyer’s utility. Notice that
uM(v) = ∑m

i=1 uMi (v(ei)). Let Xi be the support of the distribution Di over v(ei) and let
Hi = supMi ,v(ei)∈Xi

uMi (v(ei)). By definition, since H is the maximum profit achievable via item
menus over valuation vectors from X , we may write H = supv∈X ,M∈U uM(v). Since D is a prod-
uct distribution, we know that X = X1 × · · · × Xm. Therefore, we may apply Lemma 5.1.25,
which tells us that H = ∑m

i=1 Hi. Finally, for each i ∈ [n], the class of all single-item lotteries
Mi is (2`, `2)-delineable, since for v(ei) ∈ Xi, the lottery the buyer chooses depends on the
(`+1

2 ) hyperplanes ρ
(j)
i [1]v(ei)− ρ

(j)
i [2] = ρ

(j′)
i [1]v(ei)− ρ

(j′)
i [2] for j, j′ ∈ {0, . . . , `}, and once the

lottery is fixed, profit is a linear function.

Finally, we prove lower bounds showing that one could not hope to prove the generalization
guarantees implied by Lemmas 5.1.26 and 5.1.27 using pseudo-dimension alone.

Theorem 5.1.29. Let U be the set of profit functions corresponding to the class of anonymous item-
pricing mechanisms. The Pdim(U ) ≥ m. If the prices are non-anonymous, then Pdim(U ) ≥ nm.
The same two lower bounds hold when U is the set of profit functions corresponding to the classes of
anonymous and non-anonymous second-price auctions.
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Proof. We construct a set S of m single-buyer, m-item valuation vectors that can be shattered
by U . Let v(i) be valuation vector where v(i)

1 (ei) = 3 and v(i)
1 (ej) = 0 for all j 6= i and let

S =
{

v(1), . . . , v(m)
}

. For any T ⊆ [m], let ρT be the prices defined such that the price of

item i is 2 if i ∈ T and otherwise, its price is 0. If i ∈ T, then uρT (v(i)) = 2 and otherwise,
uρT (v(i)) = 0. Therefore, the targets t(1) = · · · = t(m) = 1 witness the shattering of S by U .
This example also proves that the pseudo-dimension of the class of second-price auctions with
anonymous reserve prices is also at least m, since in the single-buyer case, this class is identical
to U .

Next, we construct a set S of nm n-buyer, m-item valuation vectors that can be shattered by
U ′. For i ∈ [m] and j ∈ [n], let v(i,j) be valuation vector where v(i,j)

j (ei) = 3 and v(i,j)
j′ (ei′) = 0

for all (i′, j′) 6= (i, j). Let S =
{

v(i,j)
}

i∈[m],j∈[n]
. For any T ⊆ [m]× [n], let ρT be the mechanism

defined such that the price of item i for buyer j is 2 if (i, j) ∈ T and otherwise, it is 0. If
(i, j) ∈ T, then uρT (v(i,j)) = 2 and otherwise, uρT (v(i,j)) = 0. Therefore, the targets t(i,j) = 1
for all i ∈ [m], j ∈ [n] witness the shattering of S by U . This example with the prices as
reserve prices also proves that the pseudo-dimension of the class of second-price auctions with
non-anonymous reserve prices is at least nm.

5.1.6 Structural profit maximization

In this section, we use our results from Section 5.1.4 to provide tools for optimizing the
profit-generalization tradeoff, taking inspiration from classic machine learning results on struc-
tural risk minimization [Blumer et al., 1987, Vapnik, 2013, Vapnik and Chervonenkis, 1974].
Throughout this section, we will use the following notation: for a mechanism class M, let
U be the corresponding set of profit functions, and let εM(N, δ) be defined as εM(N, δ) =

O
(

H
√

1
N

(
Pdim(U ) + ln 1

δ

))
. By Theorem 2.1.3, with probability 1− δ over the draw of the

set S ∼ DN , for all functions uρ ∈ U ,
∣∣ 1

N ∑v∈S uρ(v)−Ev∼D
[
uρ(v)

]∣∣ ≤ εM(N, δ).
We begin by demonstrating this profit-generalization tradeoff pictorially. For the sake of

illustration, suppose that M is a mechanism class that decomposes into a nested sequence of
subclassesM1 ⊆ · · · ⊆ Mt =M. For example, ifM is the class of AMAs, thenMk could be
the class of all Q-boosted AMAs with |Q| = k. Prior work [Balcan et al., 2016] gave uniform
convergence bounds for AMAs without taking advantage of the class’s hierarchical structure.
We illustrate8 uniform convergence bounds in the left panel of Figure 5.3 with t = 4. On the
x-axis, we illustrate the intrinsic complexity of the nested subclasses which can be measured
using pseudo-dimension, for example. On the y-axis, for i = 1, 2, 3, 4, we illustrate the average
profit over a fixed set of samples S of the mechanism M̂i ∈ Mi that maximizes average profit
(the orange solid line). In particular, the dot on the orange solid line above Mi illustrates the
average profit of M̂i. SinceMi ⊆Mj for i ≤ j, the average profit of M̂j over S is at least as high
as the average profit of M̂i over S , which is why the orange solid line is increasing. Similarly,
the dot on the blue dotted line aboveMi illustrates the expected profit of M̂i. This blue dotted
line begins decreasing when the complexity of the subclass grows to the point that overfitting
occurs: a mechanism’s average profit over the samples is no longer indicative of its expected
profit on the unknown distribution. The purple dashed line illustrates a naı̈ve lower bound on

8These figures are purely illustrative; they are not based on a simulation or real data.
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Figure 5.3: An illustration of uniform generalization guarantees versus stronger complexity-
dependent bounds for a mechanism class M that decomposes into a nested sequence of sub-
classes M1 ⊆ M2 ⊆ M3 ⊆ M4. The x-axis is meant to measure each subclass’s intrinsic
complexity using a quantity such as pseudo-dimension. Given a fixed set of samples S , the
orange solid line plots the hypothetical average profit of the mechanism M̂i ∈ Mi that max-
imizes average profit over the samples. Specifically, the dot on the orange solid line above
Mi illustrates the average profit of M̂i. Similarly, the dot on the blue dotted line above Mi
illustrates the expected profit of M̂i. The purple dashed line illustrates the lower bound on
expected profit given by the uniform generalization guarantee, which equals the average profit
of M̂i minus εM (N, δ). Meanwhile, the green dashed-dotted line illustrates the lower bound
on expected profit given by the complexity-dependent generalization guarantee, which equals
the average profit of M̂i minus εMi (N, δ). We describe the figure in more detail in Section 5.1.6.
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the expected profit of M̂i which is equal to the average profit of M̂i over the samples S minus
εM (N, δ). Since the average profit of M̂i increases with i, this lower bound also increases with
i, so the mechanism designer may erroneously think that M̂4 is the best mechanism to field.

Our general theorem allows us to be more careful since we can easily derive bounds
εMi (N, δ) for each class Mi. Then, we can spread the confidence parameter δ across all sub-
sets M1, . . . ,Mt using a weight function w : N → [0, 1] such that ∑ w (i) ≤ 1. More formally,
by a union bound, we are guaranteed that with probability at least 1− δ, for all mechanisms
M ∈ M, the difference between the average profit of M over the samples and expected profit
of M is at most mini:M∈Mi εMi (N, δ · w (i)). This is illustrated by the green dashed-dotted line
in Figure 5.3, where for i = 1, 2, 3, 4, the lower bound on the expected profit of M̂i is its average
profit minus εMi (N, δ · w (i)). This complexity-dependent lower bound indicates when over-
fitting begins. By maximizing this complexity-dependent lower bound on expected profit, the
designer can correctly determine that M̂2 is a better mechanism to field than M̂4.

Both the decomposition of M into subsets and the choice of a weight function allow the
designer to encode his prior knowledge about the market. For example, if mechanisms in
Mi are likely more profitable than others, he can increase w (i). The larger the weight w (i)
assigned toMi is, the larger δ ·w (i) is, and a larger δ ·w (i) implies a smaller εMi (N, δ · w (i)),
thereby implying stronger guarantees.

We now present an application of this complexity-dependent analysis to item pricing. Mar-
ket segmentation is prevalent throughout daily life: movie theaters, amusement parks, and
tourist attractions have different admission prices per market segment, with groups such as
Child, Student, Adult, and Senior Citizen. Formally, the designer can segment the buyers into
k groups and charge each group a different price. If k = 1, the prices are anonymous and if
k = n, they are non-anonymous, thus forming a mechanism hierarchy. For k ∈ [n], let Mk
be the class of non-anonymous pricing mechanisms where there are k price groups. In other
words, for all mechanisms in Mk, there is a partition of the buyers B1, . . . , Bk such that for all
t ∈ [k], all pairs of buyers j, j′ ∈ Bt, and all items i ∈ [m], ρj (ei) = ρj′ (ei). We derive the
following guarantee for this hierarchy.

Theorem 5.1.30. Let U =
{

uρ : ρ ∈ Rnm} be the set of profit functions corresponding to the class of
non-anonymous item-pricing mechanisms over additive bidders. Let w : [n] → R be a weight function
such that ∑n

i=1 w (i) ≤ 1. With probability at least 1− δ over the draw of a set S ∼ DN , for any k ∈ [n]
and any mechanism inMk with parameters ρ ∈ Rnm,∣∣∣∣∣ 1

N ∑
v∈S

uρ(v)− E
v∼D

[
uρ(v)

]∣∣∣∣∣ = O

(
H

√
1
N

(
km log (nm) + ln

1
δ · w (k)

))
.

We also prove the following theorem for the hierarchy of AMAs defined by the classes of
Q-boosted AMAs. For an AMA M, let QM be the set of all allocations Q such that λ (Q) > 0.

Theorem 5.1.31. Let U be the set of profit functions corresponding to the class of AMAs. Let w be a
weight function that maps sets of allocations Q to [0, 1] such that ∑ w (Q) ≤ 1. With probability 1− δ
over the draw of a set S ∼ DN , for any AMA M with parameters ρ,∣∣∣∣∣ 1

N ∑
v∈S

uρ(v)− E
v∼D

[
uρ(v)

]∣∣∣∣∣ = O

(
H

√
1
N

(
nm (n + |QM|) ln n + ln

1
δ · w (QM)

))
.
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5.1.7 Comparison of our results to prior research

Here, we provide a brief comparison of this section’s results to prior research. These works
provide generalization guarantees for a subset of the mechanisms we study. We match or
improve over the best-known guarantees for many of the special classes that these papers also
studied.

Morgenstern and Roughgarden [2016] studied “simple” multi-item mechanisms: item-
pricing mechanisms and second-price item auctions. See Appendix A and Tables 5.3 and 5.4
for a comparison of our guarantees.

Syrgkanis [2017] provided generalization guarantees specifically for the mechanism that
maximizes average revenue over the samples. This is in contrast to our bounds, which apply
uniformly to every mechanism in a given class. This is crucial when it may not be computa-
tionally feasible to determine a mechanism with highest average revenue over the samples, but
only an approximation. Syrgkanis [2017] analyzed multi-item, multi-buyer item-pricing mech-
anisms when the buyers have additive valuations and there is no supplier cost. For a set S of
samples, let ρ̂ be the set of anonymous prices that maximize average revenue over the samples.
Syrgkanis [2017] proved that with probability 1− δ over the draw of S ∼ DN ,∣∣∣∣ E

v∼D

[
uρ̂(v)

]
− max

ρ∈Rm
E

v∼D

[
uρ(v)

]∣∣∣∣ = O

(
H
δ

√
m log (nN)

N

)
.

When D is item-independent, our bound of O
(

H
√

log (1/δ) /N
)

improves over this bound.

Otherwise, our bound of O
(

H
√

m log (m) /N + H
√

log (1/δ) /N
)

is incomparable. Letting
ρ̂′ be the set of anonymous prices that maximize average revenue over the samples, Syrgkanis
[2017] also proved that with probability 1− δ,∣∣∣∣ E

v∼D

[
uρ̂′(v)

]
− max

ρ∈Rnm
E

v∼D

[
uρ(v)

]∣∣∣∣ = O

(
H
δ

√
nm log N

N

)
.

Our bound of O
(

H
√

nm log (nm) /N + H
√

log (1/δ) /N
)

is incomparable.
Cai and Daskalakis [2017a] provided learning algorithms for buyers with valuations drawn

from product distributions, which are item-independent9. At a high level, their algorithms
return mechanisms with expected revenue that is nearly a constant fraction of the optimal ex-
pected revenue (OPT) obtainable by any randomized and Bayesian truthful mechanism. When
the buyers have additive valuations, they proved that given N samples, the difference between
the expected revenue of the mechanism their algorithm outputs and OPT

32 is εDU (N, δ) (as defined
in Definition 5.1.23), where D is the distribution over buyers’ values and U is the set of profit
functions for non-anonymous item-pricing mechanisms (Lemma 15 and Theorem 13 of the full
paper by Cai and Daskalakis [2017b]). At the time, Morgenstern and Roughgarden’s (2016)
bound of εDU (N, δ) = O

(
H
√

nm log(nm)/N + H
√

log(1/δ)/N
)

was the best-known bound.10

Via Lemma 5.1.27, we improve this to εDU (N, δ) = O
(

H
√

n log n/N + H
√

log(1/δ)/N
)

, re-
moving the dependence on the number of items. Cai and Daskalakis [2017a] also provided

9Item-independent distributions are discussed in Section 5.1.5.
10For this bound by Morgenstern and Roughgarden [2016] to hold, revenue must be contained in the interval

[0, H], as we assume throughout this chapter.
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algorithms for buyers with other types of valuations, such as subadditive and XOS. In these
cases, their algorithms return item-pricing mechanisms with entry fees. Our main theorem
would provide pessimistic guarantees for these mechanisms due to the exponentially large
number of parameters.

Muñoz Medina and Vassilvitskii [2017] studied single-buyer, multi-item pricing in a differ-
ent model from ours, where there is no bound on the number of items but each item is defined
by a feature vector. Their pricing algorithm has access to a bid predictor mapping from feature
vectors to bids. They related their algorithm’s performance to the bid predictor’s accuracy,
among other factors.

Devanur et al. [2016] studied several single-item auction classes, including the class of sec-
ond price item auctions with non-anonymous reserves and no cost function. When the buyers’
values are contained in the interval [1, H], they proved that N = O

((H
ε

)2 (n log H
ε + log 1

δ

))
samples are sufficient to ensure that with probability 1 − δ over the draw S ∼ DN , for all
non-anonymous reserves ρ ∈ Rn,

∣∣ 1
N ∑v∈S uρ (v)−Ev∼D uρ (v)

∣∣ ≤ ε (Section 6.1 of the full
paper by Devanur et al. [2017]). Our Lemma 5.1.17 for the multi-item case, specialized to the
single-item setting, implies O

(
(H/ε)2 (n log n + log (1/δ))

)
samples are sufficient, which is

incomparable to Devanur et al.’s bound due to the log factors.
Gonczarowski and Weinberg [2018] study a setting where there are n buyers with additive,

independent values for m items, as well as a generalization to Lipschitz valuation functions.
They prove that poly(n, m, H, 1/ε) samples are sufficient to learn an approximately Bayesian
incentive compatible mechanism whose revenue is within an ε-factor of optimal. They prove
the same result for approximately dominant strategy incentive compatible mechanisms as well.
This is an information-theoretic result: the learning algorithm is not computationally efficient
since it is not known how to efficiently find an ε-approximately optimal mechanism in this
setting where the number of types is exponential in the number of items. In contrast, we
are able to handle arbitrarily correlated distributions over combinatorial valuations. Moreover,
guarantees apply uniformly to any mechanism from within a variety of parameterized mech-
anism classes, so the mechanism designer can use them to bound the expected profit of the
mechanism he obtains via any optimization procedure. However, there may not always be a
mechanism in these parameterized classes that competes with the optimal incentive compati-
ble mechanism. Meanwhile, Gonczarowski and Weinberg [2018] bound the number of samples
sufficient to compete with the optimal incentive compatible mechanism, and thus are not re-
stricted to a parameterized set of mechanisms, but require the buyers’ values to be independent
and Lipschitz.

5.2 Social welfare maximization

A large body of research in economics studies how to design mechanisms that help groups of
agents come to collective decisions. For example, when children inherit an estate, how should
they divide the property? When a jointly-owned company is dissolved, which partner should
buy the others out? There is no one protocol that best answers these questions; the optimal
mechanism depends on the setting at hand.

In a STOC’21 paper [Balcan et al., 2021a] with Nina Balcan, Dan DeBlasio, Travis Dick,
Carl Kingsford, and Tuomas Sandholm, we study a family of mechanisms called neutral affine
maximizers (NAMs) Mishra and Sen [2012], Nath and Sandholm [2019], Roberts [1979]. A NAM
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takes as input a set of agents’ reported values for each possible outcome and returns one of
those outcomes. A NAM can thus be thought of as an algorithm that the agents use to arrive at
a single outcome. NAMs are incentive compatible, which means that each agent is incentivized
to report his values truthfully. In order to satisfy incentive compatibility, each agent may have
to make a payment. NAMs are also budget-balanced which means that the aggregated payments
are redistributed among the agents.

Formally, we study a setting where there is a set of m alternatives and a set of n agents.
Each agent i has a value vi(j) ∈ R for each alternative j ∈ [m]. We denote all of his values
as vi ∈ Rm and all n agents’ values as v = (v1, . . . , vn) ∈ Rnm. In this case, the unknown
distribution D is over vectors v ∈ Rnm.

A NAM is defined by n parameters (one per agent) ρ = (ρ[1], . . . , ρ[n]) ∈ Rn
≥0 such that at

least one agent is assigned a weight of zero. There is a social choice function ψρ : Rnm → [m]
which uses the values v ∈ Rnm to choose an alternative ψρ(v) ∈ [m]. In particular, ψρ(v) =
argmaxj∈[m] ∑n

i=1 ρ[i]vi(j) maximizes the agents’ weighted values. Each agent i with zero weight
ρ[i] = 0 is called a sink agent because his values do not influence the outcome. For every agent
who is not a sink agent (ρ[i] 6= 0), their payment is defined as in the weighted version of
the classic Vickrey-Clarke-Groves mechanism [Clarke, 1971, Groves, 1973, Vickrey, 1961]. To
achieve budget balance, these payments are given to the sink agent(s). More formally, let
j∗ = ψρ(v) and for each agent i, let j−i = argmaxj∈[m] ∑i′ 6=i ρ[i′]vi′(j). The payment function is
defined as

pi(v) =


1

ρ[i]

(
∑i′ 6=i ρ[i′]vi′ (j∗)−∑i′ 6=i ρ[i′]vi′ (j−i)

)
if ρ[i] 6= 0

−∑i′ 6=i pi′(v) if i = min {i′ : ρ[i′] = 0}
0 otherwise.

We aim to optimize the expected social welfare Ev∼D
[
∑n

i=1 vi
(
ψρ(v)

)]
of the NAM’s out-

come ψρ(v), so we define the utility function uρ(v) = ∑n
i=1 vi

(
ψρ(v)

)
.

Lemma 5.2.1. For any valuation vector v ∈ Rnm, let uv : Rn
≥0 → R denote the function uv(ρ) =

uρ (v). There is a set H of at most m2 hyperplanes such that in any connected component R of Rn \ H,
uv(ρ) is constant across all ρ ∈ R.

Proof. Fix a valuation vector v ∈ Rnm. We know that for any two alternatives j, j′ ∈ [m], the
alternative j would be selected over j′ so long as

n

∑
i=1

ρ[i]vi(j) >
n

∑
i=1

ρ[i]vi
(

j′
)

. (5.1)

Therefore, there is a set H of (m
2 ) hyperplanes such that across all parameter vectors ρ in a

single connected component of Rn \ H, the outcome of the NAM defined by ρ is fixed. When
the outcome of the NAM is fixed, the social welfare is fixed as well. This means that for a single
connected component R of Rn \ H, there exists a real value cR such that uρ(v) = uv (ρ) = cR
for all ρ ∈ R.

This fact implies the following pseudo-dimension bound. The proof is similar to that of
Theorem 4.3.21 from Section 4.3.3, and our general theorem from Chapter 7 implies the pseudo-
dimension bound as well.
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Theorem 5.2.2. The pseudo-dimension of U =
{

uρ | ρ ∈ Rn
≥0, {ρ[i] | i = 0} 6= ∅

}
is O(n ln(nm)).

Next, we prove that the pseudo-dimension of U is at least n
2 , which means that our pseudo-

dimension upper bound is tight up to log factors.

Theorem 5.2.3. The pseudo-dimension of U =
{

uρ | ρ ∈ Rn
≥0, {ρ[i] | i = 0} 6= ∅

}
is Ω(n).

Proof. Let the number of alternatives m = 2 and without loss of generality, suppose that n is
even. To prove this theorem, we will identify a set of N = n

2 valuation vectors v(1), . . . , v(N) that
are shattered by the set U of social welfare functions.

Let ε be an arbitrary number in
(
0, 1

2

)
. For each ` ∈ [N], define agent i’s values for the first

and second alternatives under the `th valuation vector v(`)—namely, v(`)
i (1) and v(`)

i (2)—as
follows:

v(`)
i (1) =

{
1 if ` = i
0 otherwise

and v(`)
i (2) =

{
ε if ` = n

2 + i
0 otherwise.

For example, if there are n = 6 agents, then across the N = n
2 = 3 valuation vectors v(1), v(2), v(3),

the agents’ values for the first alternative are defined asv(1)
1 (1) · · · v(1)

6 (1)

v(2)
1 (1) · · · v(2)

6 (1)

v(3)
1 (1) · · · v(3)

6 (1)

 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


and their values for the second alternative are defined asv(1)

1 (2) · · · v(1)
6 (2)

v(2)
1 (2) · · · v(2)

6 (2)

v(3)
1 (2) · · · v(3)

6 (2)

 =

0 0 0 ε 0 0
0 0 0 0 ε 0
0 0 0 0 0 ε

 .

Let b ∈ {0, 1}N be an arbitrary bit vector. We will construct a NAM parameter vector ρ such
that for any ` ∈ [N], if b` = 0, then the outcome of the NAM given bids v(`) will be the second
alternative, so uρ

(
v(`)

)
= ε because there is always exactly one agent who has a value of ε for

the second alternative, and every other agent has a value of 0. Meanwhile, if b` = 0, then the
outcome of the NAM given bids v(`) will be the first alternative, so uρ

(
v(`)

)
= 1 because there

is always exactly one agent who has a value of 1 for the first alternative, and every other agent
has a value of 0. To do so, when b` = 0, ρ must ignore the values of agent ` in favor of the
values of agent n

2 + `. After all, under v(`), agent ` has a value of 1 for the first alternative and
agent n

2 + ` has a value of ε for the second alternative, and all other values are 0. By a similar
argument, when b` = 1, ρ must ignore the values of agent n

2 + ` in favor of the values of agent
`. Specifically, we define ρ ∈ {0, 1}n as follows: for all ` ∈ [N] =

[ n
2

]
, if b` = 0, then ρ[`] = 0

and ρ
[ n

2 + `
]

= 1 and if b` = 1, then ρ[`] = 1 and ρ
[ n

2 + `
]

= 0. All other entries of ρ are set to
0.

We claim that if b` = 0, then uρ

(
v(`)

)
= ε. To see why, we know that ∑n

i=1 ρ[i]v(`)
i (1) =

ρ[`]v(`)
` (1) = ρ[`] = 0. Meanwhile, ∑n

i=1 ρ[i]v(`)
i (2) = ρ

[ n
2 + `

]
v(`)

n
2 +`(1) = ε. Therefore, the

outcome of the NAM is alternative 2. The social welfare of this alternative is ε, so uρ

(
v(`)

)
= ε.
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Next, we claim that if b` = 1, then uρ

(
v(`)

)
= 1. To see why, we know that ∑n

i=1 ρ[i]v(`)
i (1) =

ρ[`]v(`)
` (1) = ρ[`] = 1. Meanwhile, ∑n

i=1 ρ[i]v(`)
i (2) = ρ

[ n
2 + `

]
v(`)

n
2 +`(1) = 0. Therefore, the out-

come of the NAM is alternative 1. The social welfare of this alternative is 1, so uρ

(
v(`)

)
= 1.

We conclude that the valuation vectors v(1), . . . , v(N) that are shattered by the set U of social
welfare functions with witnesses z(1) = · · · = z(N) = 1

2 .

Theorem 5.2.3 implies that the pseudo-dimension upper bound from Theorem 5.2.2 is tight
up to logarithmic factors.
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Chapter 6

Computational biology algorithms

In this chapter, we study algorithms that are used in practice for three biological problems:
sequence alignment, RNA folding, and predicting topologically associated domains in DNA.
In these applications, there are two unifying similarities. First, algorithmic performance is mea-
sured in terms of the distance between the algorithm’s output and a ground-truth solution. In
most cases, this solution is discovered using laboratory experimentation, so it is only available
for the instances in the training set. Second, these algorithms use dynamic programming to
maximize parameterized objective functions. This objective function represents a surrogate op-
timization criterion for the dynamic programming algorithm, whereas utility measures how
well the algorithm’s output resembles the ground truth. There may be multiple solutions that
maximize this objective function, which we call co-optimal. Although co-optimal solutions have
the same objective function value, they may have different utilities. To handle tie-breaking, we
assume that in any region of the parameter space where the set of co-optimal solutions is fixed,
the algorithm’s output is also fixed, which is typically true in practice.

The results in this chapter are joint work with Nina Balcan, Dan DeBlasio, Travis Dick, Carl
Kingsford, and Tuomas Sandholm and appeared in STOC’21 [Balcan et al., 2021a].

6.1 Global pairwise sequence alignment

In pairwise sequence alignment, the goal is to line up strings in order to identify regions
of similarity. In biology, for example, these similar regions indicate functional, structural,
or evolutionary relationships between the sequences. Formally, let Σ be an alphabet and let
S1, S2 ∈ Σn be two sequences. A sequence alignment is a pair of sequences τ1, τ2 ∈ (Σ ∪ {−})∗
such that |τ1| = |τ2|, del (τ1) = S1, and del (τ2) = S2, where del is a function that deletes
every −, or gap character. There are many features of an alignment that one might wish to
optimize, such as the number of matches (τ1[i] = τ2[i]), mismatches (τ1[i] 6= τ2[i]), indels (τ1[i] = −
or τ2[i] = −), and gaps (maximal sequences of consecutive gap characters in τ ∈ {τ1, τ2}).
We denote these features using functions `1, . . . , `d that map pairs of sequences (S1, S2) and
alignments L to R.

A common dynamic programming algorithm Aρ [Gotoh, 1982, Waterman et al., 1976] re-
turns the alignment L that maximizes the objective function

ρ[1] · `1 (S1, S2, L) + · · ·+ ρ[d] · `d (S1, S2, L) , (6.1)
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where ρ ∈ Rd is a parameter vector. We denote the output alignment as Aρ (S1, S2). As
Gusfield, Balasubramanian, and Naor [1994] wrote, “there is considerable disagreement among
molecular biologists about the correct choice” of a parameter setting ρ.

We assume that there is a utility function that characterizes an alignment’s quality, de-
noted u(S1, S2, L) ∈ R. For example, u(S1, S2, L) might measure the distance between L and
a “ground truth” alignment of S1 and S2 [Sauder et al., 2000]. We then define uρ (S1, S2) =
u
(
S1, S2, Aρ (S1, S2)

)
to be the utility of the alignment returned by the algorithm Aρ.

In the following lemma, we prove that for any pair of sequences, each function in U ={
uρ : ρ ∈ Rd} is a piecewise-constant function of the parameter vector ρ. This will allow us to

bound the pseudo-dimension of U .

Lemma 6.1.1. For any pair of sequences S1, S2 ∈ Σn, let uS1,S2 : Rd → R denote the function
uS1,S2(ρ) = uρ (S1, S2). There is a set H of at most 4nn4n+2 hyperplanes such that in any connected
component R of Rd \ H, uS1,S2(ρ) is constant across all ρ ∈ R.

Proof. Fix a sequence pair S1 and S2. Let L be the set of alignments the algorithm returns as
we range over all parameter vectors ρ ∈ Rd. In other words, L =

{
Aρ(S1, S2) | ρ ∈ Rd}. In the

following claim, we prove that |L| ≤ 2nn2n+1.

Claim 6.1.2. Fix a pair of sequences S1, S2 ∈ Σn. There are at most 2nn2n+1 alignments of S1 and S2.

Proof of Claim 6.1.2. For any alignment (τ1, τ2), we know that |τ1| = |τ2| and for all i ∈ [|τ1|],
if τ1[i] = −, then τ2[i] 6= − and vice versa. This means that τ1 and τ2 have the same number
of gaps. To prove the upper bound, we count the number of alignments (τ1, τ2) where τ1 and
τ2 each have exactly i gaps. There are (n+i

i ) choices for the sequence τ1. Given a sequence τ1,
we can only pair a gap in τ2 with a non-gap in τ1. Since there are i gaps in τ2 and n non-
gaps in τ1, there are (n

i ) choices for the sequence τ2 once τ1 is fixed. This means that there are
(n+i

i )(n
i ) ≤ 2nn2n alignments (τ1, τ2) where τ1 and τ2 each have exactly i gaps. Summing over

i ∈ [n], the total number of alignments is at most 2nn2n+1.

For any alignment L ∈ L, the algorithm Aρ will return L if and only if

ρ[1] · `1 (S1, S2, L) + · · ·+ ρ[d] · `d (S1, S2, L) > ρ[1] · `1
(
S1, S2, L′

)
+ · · ·+ ρ[d] · `d

(
S1, S2, L′

)
for all L′ ∈ L \ {L}. Therefore, there is a set H of at most (2nn2n+1

2 ) ≤ 4nn4n+2 hyperplanes such
that across all parameter vectors ρ in a single connected component of Rd \ H, the output of
the algorithm parameterized by ρ, Aρ(S1, S2), is fixed. (As is standard, Rd \ H indicates set
removal.) This means that for any connected component R of Rd \ H, there exists a real value
cR such that uρ(S1, S2) = cR for all ρ ∈ R.

This fact implies the following pseudo-dimension bound. The proof is similar to that of
Theorem 4.3.21 from Section 4.3.3, and our general theorem from Chapter 7 implies the pseudo-
dimension bound as well.

Theorem 6.1.3. The pseudo-dimension of U =
{

uρ : ρ ∈ Rd} is O(nd ln n + d ln d).
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Tighter guarantees for a structured algorithm subclass: the affine-gap model

A line of prior work [Fernández-Baca et al., 2004, Gusfield et al., 1994, Pachter and Sturm-
fels, 2004a,b] analyzed a specific instantiation of the objective function (6.1) where d = 3.
In this case, we can obtain a pseudo-dimension bound of O(ln n), which is exponentially
better than the bound from Theorem 6.1.3. Given a pair of sequences S1, S2 ∈ Σn, the dy-
namic programming algorithm Aρ returns the alignment L maximizes the objective function
mt(S1, S2, L)− ρ[1] ·ms(S1, S2, L)− ρ[2] · id(S1, S2, L)− ρ[3] · gp(S1, S2, L), where mt(S1, S2, L) is
the number of matches, ms(S1, S2, L) is the number of mismatches, id(S1, S2, L) is the number of
indels, gp(S1, S2, L) is the number of gaps, and ρ = (ρ[1], ρ[2], ρ[3]) ∈ R3 is a parameter vector.
We denote the output alignment as Aρ (S1, S2). This is known as the affine-gap scoring model. We
exploit specific structure exhibited by this algorithm family to obtain the exponential pseudo-
dimension improvement. This useful structure guarantees that for any pair of sequences S1
and S2, there are only O

(
n3/2) different alignments the algorithm family

{
Aρ | ρ ∈ R3} might

produce as we range over parameter vectors [Fernández-Baca et al., 2004, Gusfield et al., 1994,
Pachter and Sturmfels, 2004a]. This bound is exponentially smaller than our generic bound of
4nn4n+2 from Claim 6.1.2.

Lemma 6.1.4. For any pair of sequences S1, S2 ∈ Σn, let uS1,S2 : R3 → R denote the function
uS1,S2(ρ) = uρ (S1, S2). There is a set H of O(n3) hyperplanes such that in any connected compo-
nent R of Rd \ H, uS1,S2(ρ) is constant across all ρ ∈ R.

Proof. Fix a sequence pair S1 and S2. Let L be the set of alignments the algorithm returns as
we range over all parameter vectors ρ ∈ R3. In other words, L = {Aρ(S1, S2) | ρ ∈ R3}. From
prior research [Fernández-Baca et al., 2004, Gusfield et al., 1994, Pachter and Sturmfels, 2004a],
we know that |L| = O

(
n3/2). For any alignment L ∈ L, the algorithm Aρ will return L if and

only if

mt(S1, S2, L)− ρ[1] ·ms(S1, S2, L)− ρ[2] · id(S1, S2, L)− ρ[3] · gp(S1, S2, L)

> mt(S1, S2, L′)− ρ[1] ·ms(S1, S2, L′)− ρ[2] · id(S1, S2, L′)− ρ[3] · gp(S1, S2, L′)

for all L′ ∈ L \ {L}. Therefore, there is a set H of at most O
(
n3) hyperplanes such that across

all parameter vectors ρ in a single connected component of R3 \H, the output of the algorithm
parameterized by ρ, Aρ(S1, S2), is fixed.

Lemma 6.1.4 implies that Pdim(U ) = O(ln n). Again, the proof is similar to that of The-
orem 4.3.21 from Section 4.3.3, and our general theorem from Chapter 7 implies the pseudo-
dimension bound as well.

Theorem 6.1.5. The pseudo-dimension of U =
{

uρ : ρ ∈ R3} is O(ln n).

We also prove that this pseudo-dimension bound is tight up to constant factors. In this
lower bound proof, our utility function u is the Q score between a given alignment L of two
sequences (S1, S2) and the ground-truth alignment L∗ (the Q score is also known as the SPS
score in the case of multiple sequence alignment [Edgar, 2010]). The Q score between L and
the ground-truth alignment L∗ is the fraction of aligned letter pairs in L∗ that are correctly
reproduced in L. For example, the following alignment L has a Q score of 2

3 because it correctly
aligns the two pairs of Cs, but not the pair of Gs:

L =

[
G A T C C
A G - C C

]
L∗ =

[
- G A T C C
A G - - C C

]
.
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We use the notation u (S1, S2, L) ∈ [0, 1] to denote the Q score between L and the ground-truth
alignment of S1 and S2.

Theorem 6.1.6. There exists a set
{

Aρ | ρ ∈ R3
≥0
}

of co-optimal-constant algorithms and an alphabet
Σ such that the set of functions U =

{
uρ : (S1, S2) 7→ u

(
S1, S2, Aρ (S1, S2)

)
| ρ ∈ R3

≥0
}

, which map
sequence pairs S1, S2 ∈ ∪n

i=1Σi of length at most n to [0, 1], has a pseudo-dimension of Ω(log n).

First, we provide a high-level proof sketch of this theorem before proving it in its entirety.

Proof sketch. In this proof sketch, we illustrate the way in which two sequences pairs can be
shattered, and then describe how the proof can be generalized to Θ(log n) sequence pairs.

Setup. Our setup consists of the following three elements: the alphabet, the two sequence
pairs

(
S(1)

1 , S(1)
2

)
and

(
S(2)

1 , S(2)
2

)
, and ground-truth alignments of these pairs. We detail these

elements below:

1. Our alphabet consists of twelve characters: {ai, bi, ci, di}3
i=1.

2. The two sequence pairs are comprised of three subsequence pairs:
(

t(1)
1 , t(1)

2

)
,
(

t(2)
1 , t(2)

2

)
,

and
(

t(3)
1 , t(3)

2

)
, where

t(1)
1 = a1b1d1

t(1)
2 = b1c1d1

,
t(2)
1 = a2a2b2d2

t(2)
2 = b2c2c2d2

, and
t(3)
1 = a3a3a3b3d3

t(3)
2 = b3c3c3c3d3

. (6.2)

We define the two sequence pairs as

S(1)
1 = t(1)

1 t(2)
1 t(3)

1 = a1b1d1a2a2b2d2a3a3a3b3d3

S(1)
2 = t(1)

2 t(2)
2 t(3)

2 = b1c1d1b2c2c2d2b3c3c3c3d3
and

S(2)
1 = t(2)

1 = a2a2b2d2

S(2)
2 = t(2)

2 = b2c2c2d2
.

3. Finally, we define ground-truth alignments of the two sequence pairs
(

S(1)
1 , S(1)

2

)
and(

S(2)
1 , S(2)

2

)
. We define the ground-truth alignment of

(
S(1)

1 , S(1)
2

)
to be

a1 b1 - d1 a2 a2 b2 - - d2 a3 a3 a3 b3 - - - d3
b1 - c1 d1 - - b2 c2 c2 d2 b3 - - - c3 c3 c3 d3

. (6.3)

The most important properties of this alignment are that the dj characters are always
matching and the bj characters alternate between matching and not matching. Similarly,

we define the ground-truth alignment of the pair
(

S(2)
1 , S(2)

2

)
to be

a2 a2 b2 - - d2
- - b2 c2 c2 d2

.

102



Figure 6.1: The form of u(0,ρ[2],0)

(
S(1)

1 , S(1)
2

)
as a function of the indel parameter ρ[2]. When

ρ[2] ≤ 1
6 , the algorithm returns the bottom alignment. When 1

6 < ρ[2] ≤ 1
4 , the algorithm

returns the alignment that is second to the bottom. When 1
4 < ρ[2] ≤ 1

2 , the algorithm returns
the alignment that is second to the top. Finally, when ρ[2] > 1

2 , the algorithm returns the top
alignment. The purple characters denote which characters are correctly aligned according to
the ground-truth alignment (Equation (6.3)).

Shattering. We now show that these two sequence pairs can be shattered. A key step is
proving that the functions u(0,ρ[2],0)

(
S(1)

1 , S(1)
2

)
and u(0,ρ[2],0)

(
S(2)

1 , S(2)
2

)
have the following form:

u(0,ρ[2],0)

(
S(1)

1 , S(1)
2

)
=


4
6 if ρ[2] ≤ 1

6
5
6 if 1

6 < ρ[2] ≤ 1
4

4
6 if 1

4 < ρ[2] ≤ 1
2

5
6 if ρ[2] > 1

2

and u(0,ρ[2],0)

(
S(2)

1 , S(2)
2

)
=

{
1 if ρ[2] ≤ 1

4
1
2 if ρ[2] > 1

4

. (6.4)

The form of u(0,ρ[2],0)

(
S(1)

1 , S(1)
2

)
is illustrated by Figure 6.1. It is then straightforward to verify

that the two sequence pairs are shattered by the parameter settings (0, 0, 0),
(
0, 1

5 , 0
)
,
(
0, 1

3 , 0
)
,

and (0, 1, 0) with the witnesses z1 = z2 = 3
4 . In other words, the mismatch and gap parameters

are set to 0 and the indel parameter ρ[2] takes the values
{

0, 1
5 , 1

3 , 1
}

.

Proof sketch of Equation (6.4). The full proof that Equation (6.4) holds follows the following
high-level reasoning:

1. First, we prove that under the algorithm’s output alignment, the dj characters will always
be matching. Intuitively, this is because the algorithm’s objective function will always be
maximized when each subsequence t(j)

1 is aligned with t(j)
2 .
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2. Second, we prove that the characters bj will be matched if and only if ρ[2] ≤ 1
2j . Intuitively,

this is because in order to match these characters, we must pay with 2j indels. Since the
objective function is mt

(
S(1)

1 , S(1)
2 , L

)
− ρ[2] · id

(
S(1)

1 , S(1)
2 , L

)
, the 1 match will be worth

the 2j indels if and only if 1 ≥ 2jρ[2].

These two properties in conjunction mean that when ρ[2] > 1
2 , none of the bj characters are

matched, so the characters that are correctly aligned (as per the ground-truth alignment (Equa-
tion (6.3))) in the algorithm’s output are (a1, b1), (d1, d1), (d2, d2), (a3, b3), and (d3, d3), as
illustrated by purple in the top alignment of Figure 6.1. Since there are a total of 6 aligned
letters in the ground-truth alignment, we have that the Q score is 5

6 , or in other words,

u(0,ρ[2],0)

(
S(1)

1 , S(1)
2

)
= 5

6 .

When ρ[2] shifts to the next-smallest interval
( 1

4 , 1
2

]
, the indel penalty ρ[2] is sufficiently

small that the b1 characters will align. Thus we lose the correct alignment (a1, b1), and the
Q score drops to 4

6 . Similarly, if we decrease ρ[2] to the next-smallest interval
( 1

6 , 1
4

]
, the b2

characters will align, which is correct under the ground-truth alignment (Equation (6.3)). Thus
the Q score increases back to 5

6 . Finally, by the same logic, when ρ[2] ≤ 1
6 , we lose the correct

alignment (a3, b3) in favor of the alignment of the b3 characters, so the Q score falls to 4
6 . In this

way, we prove the form of u(0,ρ[2],0)

(
S(1)

1 , S(1)
2

)
from Equation (6.4). A parallel argument proves

the form of u(0,ρ[2],0)

(
S(2)

1 , S(2)
2

)
.

Generalization to shattering Θ(log n) sequence pairs. This proof intuition naturally gener-
alizes to Θ(log n) sequence pairs of length O(n) by expanding the number of subsequences t(j)

i

a la Equation (6.2). In essence, if we define S(1)
1 = t(1)

1 t(2)
1 · · · t

(k)
1 and S(1)

2 = t(1)
2 t(2)

2 · · · t
(k)
2 for

a carefully-chosen k = Θ
(√

n
)
, then we can force u(0,ρ[2],0)

(
S(1)

1 , S(1)
2

)
to oscillate O(n) times.

Similarly, if we define S(2)
1 = t(2)

1 t(4)
1 · · · t

(k−1)
1 and S(2)

2 = t(2)
2 t(4)

2 · · · t
(k−1)
2 , then we can force

u(0,ρ[2],0)

(
S(1)

1 , S(1)
2

)
to oscillate half as many times, and so on. This construction allows us to

shatter Θ(log n) sequences.

With this intuition in mind, we now provide the full proof of Theorem 6.1.6.

Proof of Theorem 6.1.6. To prove this theorem, we identify:

1. An alphabet Σ,

2. A set of N = Θ(log n) sequence pairs
(

S(1)
1 , S(1)

2

)
, . . . ,

(
S(N)

1 , S(N)
2

)
∈ ∪n

i=1Σi × Σi,

3. A ground-truth alignment L(i)
∗ for each sequence pair

(
S(i)

1 , S(i)
2

)
, and

4. A set of N witnesses z1, . . . , zN ∈ R such that for any subset T ⊆ [N], there exists an indel
penalty parameter ρ[T] such that if i ∈ [T], then u0,ρ[T],0

(
S(i)

1 , S(i)
2

)
< zi and if i 6∈ [T],

then u0,ρ[T],0

(
S(i)

1 , S(i)
2

)
≥ zi.

We now describe each of these four elements in turn.
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The alphabet Σ. Let k = 2blog
√

n/2c − 1 = Θ(
√

n). The alphabet Σ consists of 4k characters1

we denote as {ai, bi, ci, di}k
i=1.

The set of N = Θ(log n) sequence pairs. These N sequence pairs are defined by a set of
k subsequence pairs

(
t(1)
1 , t(1)

2

)
, . . . ,

(
t(k)
1 , t(k)

2

)
∈ Σ∗ × Σ∗. Each pair

(
t(i)
1 , t(i)

2

)
is defined as

follows:

• The subsequence t(i)
1 begins with i ais followed by bidi. For example, t(3)

1 = a3a3a3b3d3.

• The subsequence t(i)
2 begins with 1 bi, followed by i cis, followed by 1 di. For example,

t(3)
2 = b3c3c3c3d3.

Therefore, t(i)
1 and t(i)

2 are both of length i + 2.
We use these subsequence pairs to define a set of N = log(k + 1) = Θ(log n) sequence

pairs. The first sequence pair,
(

S(1)
1 , S(1)

2

)
is defined as follows: S(1)

1 is the concatenation of all

subsequences t(1)
1 , . . . , t(k)

1 and S(1)
2 is the concatenation of all subsequences t(1)

2 , . . . , t(k)
2 :

S(1)
1 = t(1)

1 t(2)
1 t(3)

1 · · · t
(k)
1 and S(1)

2 = t(1)
2 t(2)

2 t(3)
2 · · · t

(k)
2 .

Next, S(2)
1 and S(2)

2 are the concatenation of every 2nd subsequence:

S(2)
1 = t(2)

1 t(4)
1 t(6)

1 · · · t
(k−1)
1 and S(2)

2 = t(2)
2 t(4)

2 t(6)
2 · · · t

(k−1)
2 .

Similarly, S(3)
1 and S(3)

2 are the concatenation of every 4th subsequence:

S(3)
1 = t(4)

1 t(8)
1 t(12)

1 · · · t(k−3)
1 and S(3)

2 = t(4)
2 t(8)

2 t(12)
2 · · · t(k−3)

2 .

Generally speaking, S(i)
1 and S(i)

2 are the concatenation of every
(
2i−1)th subsequence:

S(i)
1 = t(2i−1)

1 t(2·2i−1)
1 t(3·2i−1)

1 · · · t(k+1−2i−1)
1 and S(i)

2 = t(2i−1)
2 t(2·2i−1)

2 t(3·2i−1)
2 · · · t(k+1−2i−1)

2 .

To explain the index of the last subsequence of every pair, since k + 1 is a power of two, we
know that k − 1 is divisible by 2, k − 3 is divisible by 4, and more generally, k + 1− 2i−1 is
divisible by 2i−1.

We claim that there are a total of N = log(k + 1) such sequence pairs. To see why, note
that each sequence in the first pair S(1)

1 and S(1)
2 consists of k subsequences. Each sequence in

the second pair S(2)
1 and S(2)

2 consists of k−1
2 subsequences. More generally, each sequence in

the ith pair S(k+1−2i−1)
1 and S(k+1−2i−1)

2 consists of k+1−2i−1

2i−1 subsequences. The final pair will will

consist of only one subsequence, so k+1−2i−1

2i−1 = 1, or in other words i = log(k + 1).
We also claim that each sequence has length at most n. This is because the longest sequence

pair is the first,
(

S(1)
1 , S(1)

2

)
. By definition of the subsequences t(i)

j , these two sequences are of

length ∑k
i=1(i + 2) = 1

2 k(k + 5) ≤ n. Therefore, all N sequence pairs are of length at most n.

1To simplify the proof, we use this alphabet of size 4k, but we believe it is possible to adapt this proof to handle
the case where there are only 4 characters in the alphabet.
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Example 6.1.7. Suppose that n = 128. Then k = 2blog
√

n/2c − 1 = 7 and N = log(k + 1) = 3.
The three sequence pairs have the following form2:

S(1)
1 = a1b1d1a2a2b2d2a3a3a3b3d3a4a4a4a4b4d4a5a5a5a5a5b5d5a6a6a6a6a6a6b6d6a7a7a7a7a7a7a7b7d7

S(1)
2 = b1c1d1b2c2c2d2b3c3c3c3d3b4c4c4c4c4d4b5c5c5c5c5c5d5b6c6c6c6c6c6c6d6b7c7c7c7c7c7c7c7d7

S(2)
1 = a2a2b2d2a4a4a4a4b4d4a6a6a6a6a6a6b6d6

S(2)
2 = b2c2c2d2b4c4c4c4c4d4b6c6c6c6c6c6c6d6

S(3)
1 = a4a4a4a4b4d4

S(3)
2 = b4c4c4c4c4d4

A ground-truth alignment for every sequence pair. To define a ground-truth alignment for
all N sequence pairs, we first define two alignments per subsequence pair

(
t(i)
1 , t(i)

2

)
. The result-

ing ground-truth alignments will be a concatenation of these alignments. The first alignment,
which we denote as

(
h(i)

1 , h(i)
2

)
, is defined as follows: h(i)

1 begins with i ais, followed by 1 bi,

followed by i gap characters, followed by 1 di; h(i)
2 begins with i gap characters, followed by 1

bi, followed by i cis, followed by 1 di. For example,

h(3)
1 = a3 a3 a3 b3 - - - d3

h(3)
2 = - - - b3 c3 c3 c3 d3

.

The second alignment, which we denote as
(
`

(i)
1 , `(i)

2

)
, is defined as follows: `

(i)
1 begins with

i ais, followed by 1 bi, followed by i gap characters, followed by 1 di; `
(i)
2 begins with 1 bi,

followed by i gap characters, followed by i cis, followed by 1 di. For example,

`
(3)
1 = a3 a3 a3 b3 - - - d3

`
(3)
2 = b3 - - - c3 c3 c3 d3

.

We now use these 2k alignments to define a ground-truth alignment L(i)
∗ per sequence pair(

S(i)
1 , S(i)

2

)
. Beginning with the first pair

(
S(1)

1 , S(1)
2

)
, where

S(1)
1 = t(1)

1 t(2)
1 t(3)

1 · · · t
(k)
1 and S(1)

2 = t(1)
2 t(2)

2 t(3)
2 · · · t

(k)
2 ,

we define the alignment of S(1)
1 to be `

(1)
1 h(2)

1 `
(3)
1 h(4)

1 · · · `
(k)
1 and we define the alignment of S(1)

2

to be `
(1)
2 h(2)

2 `
(3)
2 h(4)

2 · · · `
(k)
2 . Moving on to the second pair

(
S(2)

1 , S(2)
2

)
, where

S(2)
1 = t(2)

1 t(4)
1 t(6)

1 · · · t
(k−1)
1 and S(2)

2 = t(2)
2 t(4)

2 t(6)
2 · · · t

(k−1)
2 ,

we define the alignment of S(2)
1 to be `

(2)
1 h(4)

1 `
(6)
1 h(8)

1 · · · `
(k−1)
1 and we define the alignment of

S(1)
2 to be `

(2)
2 h(4)

2 `
(6)
2 h(8)

2 · · · `
(k−1)
2 . Generally speaking, each pair

(
S(i)

1 , S(i)
2

)
, where

S(i)
1 = t(2i−1)

1 t(2·2i−1)
1 t(3·2i−1)

1 · · · t(k−2i−1+1)
1 and S(i)

2 = t(2i−1)
2 t(2·2i−1)

2 t(3·2i−1)
2 · · · t(k−2i−1+1)

2 ,

2The maximum length of these six strings is 42, which is smaller than 128, as required.
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(a) An initial alignment where the dj characters are not aligned.

(b) An alignment where the gap characters in Figure 6.2a are shifted such that the dj characters are
aligned. The objective function value of both alignments is the same.

Figure 6.2: Illustration of Claim 6.1.8: we can assume that each dj character in S(i)
1 is matched

to dj in S(i)
2 .

is made up of k+1
2i−1 − 1 subsequences. Since k + 1 is a power of two, this number of subsequences

is odd. We define the alignment of S(i)
1 to alternate between alignments of type `

(j)
1 and align-

ments of type h(j′)
1 , beginning and ending with alignments of the first type. Specifically, the

alignment S(i)
1 is `(2i−1)

1 h(2·2i−1)
1 `

(3·2i−1)
1 h(4·2i−1)

1 · · · `(k−2i−1+1)
1 . Similarly, we define the alignment of

S(i)
2 to be

`
(2i−1)
2 h(2·2i−1)

2 `
(3·2i−1)
2 h(4·2i−1)

2 · · · `(k−2i−1+1)
2 .

The N witnesses. We define the N values that witness the shattering of these N sequence
pairs to be z1 = z2 = · · · = zN = 3

4 .

Shattering the N sequence pairs. Our goal is to show that for any subset T ⊆ [N], there
exists an indel penalty parameter ρ[T] such that if i ∈ [T], then u0,ρ[T],0

(
S(i)

1 , S(i)
2

)
< 3

4 and if

i 6∈ [T], then u0,ρ[T],0

(
S(i)

1 , S(i)
2

)
≥ 3

4 . To prove this, we will use two helpful claims, Claims 6.1.8
and 6.1.9.

Claim 6.1.8. For any pair
(

S(i)
1 , S(i)

2

)
and indel parameter ρ[2] ≥ 0, there exists an alignment

L ∈ argmaxL′mt

(
S(i)

1 , S(i)
2 , L′

)
− ρ[2] · id

(
S(i)

1 , S(i)
2 , L′

)
such that each dj character in S(i)

1 is matched to dj in S(i)
2 .

Proof. Let L0 ∈ argmaxL′mt

(
S(i)

1 , S(i)
2 , L′

)
− ρ[2] · id

(
S(i)

1 , S(i)
2 , L′

)
be an alignment such that

some dj character in S(i)
1 is not matched to dj in S(i)

2 . Denote the alignment L0 as (τ1, τ2). Let j ∈
Z be the smallest integer such that for some indices `1 6= `2, τ1[`1] = dj and τ2[`2] = dj. Next,
let `0 be the maximum index smaller than `1 and `2 such that τ1[`0] = dj′ for some j′ 6= j. We
illustrate `0, `1, and `2 in Figure 6.2a. By definition of j, we know that τ1[`0] = τ2[`0] = dj′ . We
also know there is at least one gap character in {τ1[i] : `0 + 1 ≤ i ≤ `1}∪{τ2[i] : `0 + 1 ≤ i ≤ `2}
because otherwise, the dj characters would be aligned in L0. Moreover, we know there is at
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most one match among these elements between characters other than dj (namely, between the
character bj). If we rearrange all of these gap characters so that they fall directly after dj in
both sequences, as in Figure 6.2b, then we may lose the match between the character bj, but
we will gain the match between the character dj. Moreover, the number of indels remains the
same, and all matches in the remainder of the alignment will remain unchanged. Therefore,
this rearranged alignment has at least as high an objective function value as L0, so the claim
holds.

Based on this claim, we will assume, without loss of generality, that for any pair
(

S(i)
1 , S(i)

2

)
and indel parameter ρ[2] ≥ 0, under the alignment L = A0,ρ[2],0

(
S(i)

1 , S(i)
2

)
returned by the

algorithm A0,ρ[2],0, all dj characters in S(i)
1 are matched to dj in S(i)

2 .

Claim 6.1.9. Suppose that the character bj is in S(i)
1 and S(i)

2 . The bj characters will be matched in

L = A0,ρ[2],0

(
S(i)

1 , S(i)
2

)
if and only if ρ[2] ≤ 1

2j .

Proof. Since all dj characters are matched in L, in order to match bj, it is necessary to add exactly
2j gap characters: all 2j aj and cj characters must be matched with gap characters. Under the

objective function mt

(
S(i)

1 , S(i)
2 , L′

)
− ρ[2] · id

(
S(i)

1 , S(i)
2 , L′

)
, this one match will be worth the

2jρ[2] penalty if and only if 1 ≥ 2jρ[2], as claimed.

We now use Claims 6.1.8 and 6.1.9 to prove that we can shatter the N sequence pairs(
S(1)

1 , S(1)
2

)
, . . . ,

(
S(N)

1 , S(N)
2

)
.

Claim 6.1.10. There are k+1
2i−1 − 1 thresholds 1

2(k+1)−2i < 1
2(k+1)−2·2i < 1

2(k+1)−3·2i < · · · < 1
2i

such that as ρ[2] ranges from 0 to 1, when ρ[2] crosses one of these thresholds, u0,ρ[2],0

(
S(i)

1 , S(i)
2

)
switches from above 3

4 to below 3
4 , or vice versa, beginning with u0,0,0

(
S(i)

1 , S(i)
2

)
< 3

4 and ending with

u0,1,0

(
S(i)

1 , S(i)
2

)
> 3

4 .

Proof. Recall that

S(i)
1 = t(2i−1)

1 t(2·2i−1)
1 t(3·2i−1)

1 · · · t(k−2i−1+1)
1 and S(i)

2 = t(2i−1)
2 t(2·2i−1)

2 t(3·2i−1)
2 · · · t(k−2i−1+1)

2 ,

so in S(i)
1 and S(i)

2 , the bj characters are b2i−1 , b2·2i−1 , b3·2i−1 , . . . , bk−2i−1+1. Also, the reference

alignment of S(i)
1 is `

(2i−1)
1 h(2·2i−1)

1 `
(3·2i−1)
1 h(4·2i−1)

1 · · · `(k−2i−1+1)
1 and the reference alignment of S(i)

2
is

`
(2i−1)
2 h(2·2i−1)

2 `
(3·2i−1)
2 h(4·2i−1)

2 · · · `(k−2i−1+1)
2 .

We know that when the indel penalty ρ[2] is equal to zero, all dj characters will be aligned, as
will all bj characters. This means we will correctly align all dj characters and we will correctly

align all bj characters in the
(

h(j)
1 , h(j)

2

)
pairs, but we will incorrectly align the bj characters in

the
(
`

(j)
1 , `(j)

2

)
pairs. The number of

(
h(j)

1 , h(j)
2

)
pairs in this reference alignment is k+1

2i − 1 and
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the number of
(
`

(j)
1 , `(j)

2

)
pairs is k+1

2i . Therefore, the utility of the alignment that maximizes
the number of matches equals the following:

u0,0,0

(
S(i)

1 , S(i)
2

)
=

k+1
2i−1 − 1 + k+1

2i − 1
k+1
2i−2 − 2

=
3(k + 1)− 2i+1

4(k + 1)− 2i+1 <
3
4

,

where the final inequality holds because 2i+1 ≤ 2(k + 1) < 3(k + 1).
Next, suppose we increase ρ[2] to lie in the interval

(
1

2(k+1)−2i , 1
2(k+1)−2·2i

]
. Since it is no

longer the case that ρ[2] ≤ 1
2(k−2i−1+1)

, we know that the bk−2i−1+1 characters will no longer be
matched, and thus we will correctly align this character according to the reference alignment.
This means we will correctly align all dj characters and we will correctly align all bj characters

in the
(

h(j)
1 , h(j)

2

)
pairs, but we will incorrectly align all but one of the bj characters in the(

`
(j)
1 , `(j)

2

)
pairs. Therefore, the utility of the alignment that maximizes mt(S1, S2, L) − ρ[2] ·

id(S1, S2, L) is

u0,ρ[2],0

(
S(i)

1 , S(i)
2

)
=

k+1
2i−1 − 1 + k+1

2i

k+1
2i−2 − 2

=
3(k + 1)− 2i

4(k + 1)− 2i+1 >
3
4

,

where the final inequality holds because 2i+1 ≤ 2(k + 1) < 4(k + 1).
Next, suppose we increase ρ[2] to lie in the interval

(
1

2(k+1)−2·2i , 1
2(k+1)−3·2i

]
. Since it is

no longer the case that ρ[2] ≤ 1
2(k−2·2i−1+1)

, we know that the bk−2·2i−1+1 characters will no
longer be matched, and thus we will incorrectly align this character according to the reference
alignment. This means we will correctly align all dj characters and we will correctly align the

bj characters in all but one of the
(

h(j)
1 , h(j)

2

)
pairs, but we will incorrectly align all but one of

the bj characters in the
(
`

(j)
1 , `(j)

2

)
pairs. Therefore, the utility of the alignment that maximizes

mt(S1, S2, L)− ρ[2] · id(S1, S2, L) is

u0,ρ[2],0

(
S(i)

1 , S(i)
2

)
=

k+1
2i−1 − 1 + k+1

2i

k+1
2i−2 − 2

>
3
4

.

In a similar fashion, every time ρ[2] crosses one of the thresholds 1
2(k+1)−2i <

1
2(k+1)−2·2i <

1
2(k+1)−3·2i < · · · < 1

2i , the utility will shift from above 3
4 to below or vice versa, as claimed.

The above claim demonstrates that the N sequence pairs are shattered, each with the wit-
ness 3

4 . After all, for every i ∈ {2, . . . , N} and every interval
(

1
2(k+1)−j2i , 1

2(k+1)−(j+1)2i

)
where

u0,ρ[2],0

(
S(i)

1 , S(i)
2

)
is uniformly above or below 3

4 , there exists a subpartition of this interval into
the two intervals(

1
2(k + 1)− j2i ,

1
2(k + 1)− (2j + 1)2i−1

)
and

(
1

2(k + 1)− (2j + 1)2i−1 ,
1

2(k + 1)− (j + 1)2i

)
such that in the first interval, u0,ρ[2],0

(
S(i−1)

1 , S(i−1)
2

)
< 3

4 and in the second,

u0,ρ[2],0

(
S(i−1)

1 , S(i−1)
2

)
>

3
4

.
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Therefore, for any subset T ⊆ [N], there exists an indel penalty parameter ρ[T] such that if
i ∈ [T], then u0,ρ[T],0

(
S(i)

1 , S(i)
2

)
< 3

4 and if i 6∈ [T], then u0,ρ[T],0

(
S(i)

1 , S(i)
2

)
> 3

4 .

6.2 RNA folding

RNA molecules have many essential roles including protein coding and enzymatic functions
Holley et al. [1965]. RNA is assembled as a chain of bases denoted A, U, C, and G. It is
often found as a single strand folded onto itself with non-adjacent bases physically bound
together. RNA folding algorithms infer the way strands would naturally fold, shedding light
on their functions. Given a sequence S ∈ {A, U, C, G}n, we represent a folding by a set of pairs
φ ⊂ [n] × [n]. If (i, j) ∈ φ, then the ith and jth bases of S bind together. Typically, the bases
A and U bind together, as do C and G. Other matchings are likely less stable. We assume
that the foldings do not contain any pseudoknots, which are pairs (i, j), (i′, j′) that cross with
i < i′ < j < j′.

A well-studied algorithm returns a folding that maximizes a parameterized objective func-
tion Nussinov and Jacobson [1980]. At a high level, this objective function trades off between
global properties of the folding (the number of binding pairs |φ|) and local properties (the like-
lihood that bases would appear close together in the folding). Specifically, the algorithm Aρ

uses dynamic programming to return the folding Aρ(S) that maximizes

ρ |φ|+ (1− ρ) ∑
(i,j)∈φ

MS[i],S[j],S[i−1],S[j+1]I{(i−1,j+1)∈φ}, (6.5)

where ρ ∈ [0, 1] is a parameter and MS[i],S[j],S[i−1],S[j+1] ∈ R is a score for having neighboring
pairs of the letters (S[i], S[j]) and (S[i − 1], S[j + 1]). These scores help identify stable sub-
structures.

We assume there is a utility function that characterizes a folding’s quality, denoted u(S, φ).
For example, u(S, φ) might measure the fraction of pairs shared between φ and a “ground-
truth” folding, obtained via expensive computation or laboratory experiments. We then define
uρ (S) = u

(
S, Aρ (S)

)
to be the utility of the folding returned by the algorithm Aρ.

Lemma 6.2.1. For any RNA sequence S ∈ Σn, let uS : [0, 1]→ R denote the function uS(ρ) = uρ (S).
There is a set T ≤ (|Φ|2 ) ≤ n2 intervals [ρ1, ρ2), [ρ2, ρ3), . . . , [ρT, ρT+1] with ρ1 := 0 < ρ2 < · · · <
ρT < 1 := ρT+1 such that for any one interval I, across all ρ ∈ I, uS(ρ) is constant.

Proof. Fix a sequence S. Let Φ be the set of alignments that the algorithm returns as we range
over all parameters ρ ∈ R. In other words, Φ = {Aρ(S) | ρ ∈ [0, 1]}. We know that every
folding has length at most n/2. For any k ∈ {0, . . . , n/2}, let φk be the folding of length k that
maximizes the right-hand-side of Equation (6.5):

φk = argmaxφ:|φ|=k ∑
(i,j)∈φ

MS[i],S[j],S[i−1],S[j+1]I{(i−1,j+1)∈φ}.

The folding the algorithm returns will always be one of {φ0, . . . , φn/2}, so |Φ| ≤ n
2 + 1.

Fix an arbitrary folding φ ∈ Φ. We know that φ will be the folding returned by the algorithm
Aρ(S) if and only if

ρ |φ|+ (1− ρ) ∑
(i,j)∈φ

MS[i],S[j],S[i−1],S[j+1]I{(i−1,j+1)∈φ}

≥ ρ
∣∣φ′∣∣+ (1− ρ) ∑

(i,j)∈φ′
MS[i],S[j],S[i−1],S[j+1]I{(i−1,j+1)∈φ′}

(6.6)
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for all φ′ ∈ Φ \ {φ}. Since these functions are linear in ρ, this means there is a set of T ≤ (|Φ|2 ) ≤
n2 intervals [ρ1, ρ2), [ρ2, ρ3), . . . , [ρT, ρT+1] with ρ1 := 0 < ρ2 < · · · < ρT < 1 := ρT+1 such that
for any one interval I, across all ρ ∈ I, Aρ(S) is fixed. This means that for any one interval
[ρi, ρi+1), there exists a real value ci such that uρ(S) = ci for all ρ ∈ [ρi, ρi+1).

This fact implies the following pseudo-dimension bound. The proof is similar to that of
Theorem 3.0.3 from Chapter 3, and our general theorem from Chapter 7 implies the pseudo-
dimension bound as well.

Theorem 6.2.2. The pseudo-dimension of U =
{

uρ : ρ ∈ [0, 1]
}

is O(ln n).

6.3 Predicting topologically associating domains

Inside a cell, the linear DNA of the genome wraps into three-dimensional structures that in-
fluence genome function. Some regions of the genome are closer than others and thereby
interact more. Topologically associating domains (TADs) are contiguous segments of the genome
that fold into compact regions. More formally, given the genome length n, a TAD set is a set
T = {(i1, j1), . . . , (it, jt)} ⊂ [n]× [n] such that i1 < j1 < i2 < j2 < · · · < it < jt. If (i, j) ∈ T, the
bases within the corresponding substring physically interact more frequently with each other
than with other bases. Disrupting TAD boundaries can affect the expression of nearby genes,
which can trigger diseases such as congenital malformations and cancer Lupiáñez et al. [2016].

The contact frequency of any two genome locations, denoted by a matrix M ∈ Rn×n, can be
measured via experiments Lieberman-Aiden et al. [2009]. A dynamic programming algorithm
Aρ introduced by Filippova et al. [2014] returns the TAD set Aρ(M) that maximizes

∑
(i,j)∈T

sρ(i, j)− µρ(j− i), (6.7)

where ρ ≥ 0 is a parameter, sρ(i, j) = 1
(j−i)ρ ∑i≤p<q≤j Mpq is the scaled density of the subgraph

induced by the interactions between genomic loci i and j, and µρ(d) = 1
n−d ∑n−d−1

t=0 sρ(t, t + d)
is the mean value of sρ over all sub-matrices of length d along the diagonal of M. We note that
unlike the sequence alignment and RNA folding algorithms, the parameter ρ appears in the
exponent of the objective function.

We assume there is a utility function that characterizes the quality of a TAD set T, denoted
u(M, T) ∈ R. For example, u(M, T) might measure the fraction of TADs in T that are in the cor-
rect location with respect to a ground-truth TAD set. We then define uρ (M) = u

(
M, Aρ (M)

)
to be the utility of the TAD set returned by the algorithm Aρ.

We will use the following corollary of Rolle’s theorem to understand the structure of the
utility functions in this section.

Lemma 6.3.1 (Tossavainen [2006]). Let h be a polynomial-exponential sum of the form h(x) =

∑t
i=1 aibx

i , where bi > 0 and ai ∈ R. The number of roots of h is upper bounded by t.

Lemma 6.3.1 implies the following fact.

Corollary 6.3.2. Let h be a polynomial-exponential sum of the form

h(x) =
t

∑
i=1

ai

bx
i

,

where bi > 0 and ai ∈ R. The number of roots of h is upper bounded by t.
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Proof. Note that ∑t
i=1

ai
bx

i
= 0 if and only if(

n

∏
j=1

bx
i

)
t

∑
i=1

ai

bx
i

=
n

∑
i=1

ai

(
∏
j 6=i

bi

)x

= 0.

Therefore, the corollary follows from Lemma 6.3.1.

We now show that the TAD algorithm’s utility is a piecewise-constant function of its pa-
rameters.

Lemma 6.3.3. For any matrix M ∈ Rn×n, let uM : R≥0 → R denote the function uM(ρ) = uρ (M).
There is a set τ ≤ 2n24n2

+ 1 intervals [ρ1, ρ2), [ρ2, ρ3), . . . , [ρτ, ρτ+1) with ρ1 := 0 < ρ2 < · · · <
ρτ < ∞ := ρτ+1 such that for any one interval I, across all ρ ∈ I, uM(ρ) is constant.

Proof. Fix a matrix M. We begin by rewriting Equation (6.7) as follows:

Aρ(M) = argmax
T⊂[n]×[n]

∑
(i,j)∈T

(
1

(j− i)ρ

(
∑

i≤u<v≤j
Muv

)
− 1

n− j + i

n−j+i

∑
t=0

1
(j− i)ρ ∑

t≤p<q≤t+j−i
Mpq

)

= argmax ∑
(i,j)∈T

1
(j− i)ρ

((
∑

i≤u<v≤j
Muv

)
− 1

n− j + i

n−j+i

∑
t=0

∑
t≤p<q≤t+j−i

Mpq

)

= argmax ∑
(i,j)∈T

cij

(j− i)ρ
,

where

cij =

(
∑

i≤u<v≤j
Muv

)
− 1

n− j + i

n−j+i

∑
t=0

∑
t≤p<q≤t+j−i

Mpq

is a constant that does not depend on ρ.
Let T be the set of TAD sets that the algorithm returns as we range over all parameters

ρ ≥ 0. In other words, T = {Aρ(M) | ρ ∈ R≥0}. Since each TAD set is a subset of [n]× [n],
|T | ≤ 2n2

. For any TAD set T ∈ T , the algorithm Aρ will return T if and only if

∑
(i,j)∈T

cij

(j− i)ρ
> ∑

(i′,j′)∈T′

ci′ j′

(j′ − i′)ρ

for all T′ ∈ T \ {T}. This means that as we range ρ over the positive reals, the TAD set returned
by algorithm Aρ(M) will only change when

∑
(i,j)∈T

cij

(j− i)ρ
− ∑

(i′,j′)∈T′

ci′ j′

(j′ − i′)ρ
= 0 (6.8)

for some T, T′ ∈ T . As a result of Rolle’s Theorem (Corollary 6.3.2), we know that Equa-
tion (6.8) has at most |T|+ |T′| ≤ 2n2 solutions. This means there are t ≤ 2n2(|T |2 ) ≤ 2n24n2

intervals [ρ1, ρ2) , [ρ2, ρ3) , . . . , [ρt, ρt+1) with ρ1 := 0 < ρ2 < · · · < ρt < ∞ := ρt+1 that partition
R≥0 such that across all ρ within any one interval [ρi, ρi+1), the TAD set returned by algorithm
Aρ(M) is fixed. Therefore, there exists a real value ci such that uρ(M) = ci for all ρ ∈ [ρi, ρi+1).
By definition, this means that uM(ρ) = uρ(M) = ci as well.
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This fact implies the following pseudo-dimension bound. The proof is similar to that of
Theorem 3.0.3 from Chapter 3, and our general theorem from Chapter 7 implies the pseudo-
dimension bound as well.

Theorem 6.3.4. The pseudo-dimension of U =
{

uρ : ρ ≥ 0
}

is O(n2).
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Chapter 7

Pseudo-dimension bounds for
piecewise-structured performance
functions

In this section, we present a general theory which unifies our results so far in this thesis.
Throughout this thesis, we have analyzed algorithms parameterized by some set P ⊆ Rd of
vectors. We have bounded the pseudo-dimension of the class of functions uρ : Z → R that
measures, abstractly, the performance of the algorithm parameterized by ρ ∈ P on input
problem instances from a set Z . In turn, classic results from learning theory allow us to
use pseudo-dimension in order to derive sample complexity guarantees, as demonstrated in
Chapter 2.

As we have seen in the previous chapters, the class U =
{

uρ : ρ ∈ P
}

is gnarly, so bounding
its pseudo-dimension is not straight-forward. For example, in the case of integer programming
algorithm configuration (Chapter 4), the domain of every function in U consists of integer
programs, so it is unclear how to visualize or plot these functions, and there are no obvious
notions of Lipschitz continuity or smoothness to rely on.

Rather than analyze the functions uρ directly, we have seen that it can be enlightening to
analyze the algorithm’s performance as a function of ρ on a fixed input z. We refer to this func-
tion as a dual function. The dual functions have a simple, Euclidean domain (namely, P ⊆ Rd),
they are typically easy to visualize and plot, and they often have ample structure we can use to
bound the intrinsic complexity of the class U . For example, in most of the preceding chapters,
we have seen that the dual functions are piecewise-constant or -linear. Broadly speaking, these
dual functions are piecewise-structured. This structure has also been observed in contexts beyond
those studied in this thesis, including clustering and greedy algorithm configuration [Balcan
et al., 2017, 2018c, 2020a, Gupta and Roughgarden, 2017], and in the context of online algo-
rithm configuration [Balcan et al., 2018b, 2020b,c, Cohen-Addad and Kanade, 2017, Gupta and
Roughgarden, 2017, as we describe in Section 7.1]. In this chapter, we define what it means for
a dual function class to be piecewise-structured, and we provide pseudo-dimension guaran-
tees for any algorithm family exhibiting this structure. Surprisingly, this abstraction does not
introduce any slack: we are able to match all pseudo-dimension bounds proven thus far in this
thesis.

The results in this chapter are from a STOC’21 paper with Nina Balcan, Dan DeBlasio,
Travis Dick, Carl Kingsford, and Tuomas Sandholm [Balcan et al., 2021a].
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7.1 Related research

Research published before the results in this chapter [Balcan et al., 2018b, Cohen-Addad and
Kanade, 2017, Gupta and Roughgarden, 2017] as well as concurrent research [Balcan et al.,
2020b,c] provides provable guarantees for online algorithm configuration. Regret minimization
is impossible in the worst case [Gupta and Roughgarden, 2017], but prior research shows that
under some conditions, it is possible. Gupta and Roughgarden [2017] study online algorithm
configuration for the maximum weight independent set (MWIS) problem under a “smoothed
adversary”, where the adversary chooses a distribution per vertex from which its weight is
drawn. They prove that their approach has small constant per-round regret. Cohen-Addad
and Kanade [2017] provide no-regret algorithms for optimizing single-dimensional piecewise-
constant functions under a smoothed adversary, where the adversary chooses a distribution
per boundary from which that boundary is drawn. They show that this approach provides a
no-regret algorithm for Gupta and Roughgarden’s (2017) MWIS configuration problem under
a smoothed adversary, as well as other greedy algorithm configuration problems defined by a
single tunable parameter.

Balcan et al. [2018b, 2020b,c] provided no-regret algorithms for optimizing multi-dimensional
piecewise-Lipschitz functions when the boundaries between pieces do not concentrate. Balcan
et al. [2018b] also provided sample complexity bounds for the batch learning setting under
the same assumptions. These papers proved that across many parameterized algorithms, the
algorithm’s performance is a piecewise-Lipschitz function of the parameters, and under mild
assumptions, the boundaries do not concentrate. Therefore, their parameters can be optimized
online in a no-regret fashion. Online learning guarantees imply sample complexity guarantees
due to online-to-batch conversion, and Balcan et al. [2018b] also provide sample complexity
guarantees based on dispersion using Rademacher complexity.

To prove that dispersion holds, one typically needs to show that under the distribution over
problem instances, the dual functions’ discontinuities do not concentrate. This argument is
typically made by assuming that the distribution is sufficiently nice or—when applicable—by
appealing to the random nature of the parameterized algorithm. Thus, for arbitrary distri-
butions and deterministic algorithms, dispersion does not necessarily hold. In contrast, our
results hold even when the discontinuities concentrate, and thus are applicable to a broader set
of problems in the distributional learning model. In other words, the results from this chap-
ter cannot be recovered using the techniques of prior research [Balcan et al., 2018b, 2020b,c,
Cohen-Addad and Kanade, 2017, Gupta and Roughgarden, 2017]. The results in this chapter,
however, only apply to batch learning, not online learning.

7.2 Generalization guarantees for data-driven algorithm design

In data-driven algorithm design, there are two closely related function classes. First, for each
parameter setting ρ ∈ P , uρ : Z → R measures performance as a function of the input
z ∈ Z . Similarly, for each input z, there is a function uz : P → R defined as uz(ρ) = uρ(z)
that measures performance as a function of the parameter vector ρ. The set {uz | z ∈ Z} is
equivalent to Assouad’s notion of the dual class [Assouad, 1983].

Definition 7.2.1 (Dual class [Assouad, 1983]). For any domain Y and set of functions H ⊆ RY ,
the dual class ofH is defined asH∗ =

{
h∗y : H → R | y ∈ Y

}
where h∗y(h) = h(y). Each function
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Figure 7.1: Boundary functions partitioning R2. The arrows indicate on which side of each
function g(i)(ρ) = 0 and on which side g(i)(ρ) = 1. For example, g(1) (ρ1) = 1, g(1) (ρ2) = 1,
and g(1) (ρ3) = 0.

Figure 7.2: A piecewise-constant function over R2
≥0 with linear boundary functions g(1) and

g(2).

h∗y ∈ H∗ fixes an input y ∈ Y and maps each function h ∈ H to h(y). We refer to the class H as
the primal class.

The set of functions {uz | z ∈ Z} is equivalent to the dual class U ∗ = {u∗z : U → [0, H] |
z ∈ Z} in the sense that for every parameter vector ρ ∈ P and every problem instance z ∈ Z ,
uz(ρ) = u∗z

(
uρ

)
.

Many combinatorial algorithms share a clear-cut, useful structure: for each instance z ∈
Z , the function uz is piecewise structured. For example, each function uz might be piecewise
constant with a small number of pieces. Given the equivalence of the functions {uz | z ∈ Z}
and the dual class U ∗, the dual class exhibits this piecewise structure as well. We use this
structure to bound the pseudo-dimension of the primal class U .

Intuitively, a function h : Y → R is piecewise structured if we can partition the domain Y
into subsets Y1, . . . ,YM so that when we restrict h to one piece Yi, h equals some well-structured
function f : Y → R. In other words, for all y ∈ Yi, h(y) = f (y). We define the partition
Y1, . . . ,YM using boundary functions g(1), . . . , g(k) : Y → {0, 1}. Each function g(i) divides the
domain Y into two sets: the points it labels 0 and the points it labels 1. Figure 7.1 illustrates a
partition of R2 by boundary functions. Together, the k boundary functions partition the domain
Y into at most 2k regions, each one corresponding to a bit vector b ∈ {0, 1}k that describes on
which side of each boundary the region belongs. For each region, we specify a piece function
fb : Y → R that defines the function values of h restricted to that region. Figure 7.2 shows
an example of a piecewise-structured function with two boundary functions and four piece
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functions.
For many parameterized algorithms, every function in the dual class is piecewise struc-

tured. Moreover, across dual functions, the boundary functions come from a single, fixed class,
as do the piece functions. For example, the boundary functions might always be halfspace
indicator functions, while the piece functions might always be linear functions. The following
definition captures this structure.

Definition 7.2.2. A function class H ⊆ RY that maps a domain Y to R is (F ,G, k)-piecewise
decomposable for a class G ⊆ {0, 1}Y of boundary functions and a class F ⊆ RY of piece
functions if the following holds: for every h ∈ H, there are k boundary functions g(1), . . . , g(k) ∈
G and a piece function fb ∈ F for each bit vector b ∈ {0, 1}k such that for all y ∈ Y , h(y) =

fby (y) where by =
(

g(1)(y), . . . , g(k)(y)
)
∈ {0, 1}k.

Our main theorem shows that whenever the dual class U ∗ is (F ,G, k)-piecewise decom-
posable, we can bound the pseudo-dimension of U in terms of the VC-dimension of G∗ and
the pseudo-dimension of F ∗. Later, we show that for many common classes F and G, we can
easily bound the complexity of their duals.

Theorem 7.2.3. Suppose that the dual function class U ∗ is (F ,G, k)-piecewise decomposable with
boundary functions G ⊆ {0, 1}U and piece functions F ⊆ RU . The pseudo-dimension of U is bounded
as follows:

Pdim(U ) = O ((Pdim(F ∗) + VCdim(G∗)) ln (Pdim(F ∗) + VCdim(G∗)) + VCdim(G∗) ln k) .

To help make the proof of Theorem 7.2.3 succinct, we extract a key insight in the following
lemma. Given a set of functions H that map a domain Y to {0, 1}, Lemma 7.2.4 bounds the
number of binary vectors

(h1(y), . . . , hN(y)) (7.1)

we can obtain for any N functions h1, . . . , hN ∈ H as we vary the input y ∈ Y . Pictorially, if we
partition R2 using the functions g(1), g(2), and g(3) from Figure 7.1 for example, Lemma 7.2.4
bounds the number of regions in the partition. This bound depends not on the VC-dimension
of the classH, but rather on that of its dualH∗. We use a classic lemma by Sauer [1972] to prove
Lemma 7.2.4. Sauer’s lemma [Sauer, 1972] bounds the number of binary vectors of the form
(h (y1) , . . . , h (yN)) we can obtain for any N elements y1, . . . , yN ∈ Y as we vary the function
h ∈ H by (eN)VCdim(H). Therefore, it does not immediately imply a bound on the number of
vectors from Equation (7.1). In order to apply Sauer’s lemma, we must transition to the dual
class.

Lemma 7.2.4. LetH be a set of functions that map a domain Y to {0, 1}. For any functions h1, . . . , hN ∈
H, the number of binary vectors (h1(y), . . . , hN(y)) obtained by varying the input y ∈ Y is bounded as
follows:

|{(h1(y), . . . , hN(y)) | y ∈ Y}| ≤ (eN)VCdim(H∗). (7.2)

Proof. We rewrite the left-hand-side of Equation (7.2) as
∣∣∣{(h∗y (h1) , . . . , h∗y (hN)

) ∣∣∣ y ∈ Y
}∣∣∣ .

Since we fix N inputs and vary the function h∗y, the lemma follows from Sauer’s lemma.

We now prove Theorem 7.2.3.
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Proof of Theorem 7.2.3. Fix an arbitrary set of problem instances z1, . . . , zN ∈ Z and targets
t1, . . . , tN ∈ R. We bound the number of ways that U can label the problem instances z1, . . . , zN
with respect to the target thresholds t1, . . . , tN ∈ R. In other words we bound the size of the set∣∣∣∣∣∣∣


 sign

(
uρ (z1)− t1

)
...

sign
(
uρ (zN)− tN

)

∣∣∣∣∣∣∣ ρ ∈ P


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣

 sign

(
u∗z1

(
uρ

)
− t1

)
...

sign
(
u∗zN

(
uρ

)
− tN

)

∣∣∣∣∣∣∣ ρ ∈ P


∣∣∣∣∣∣∣ (7.3)

by (ekN)VCdim(G∗)(eN)Pdim(F ∗). Then solving for the largest N such that

2N ≤ (ekN)VCdim(G∗)(eN)Pdim(F ∗)

gives a bound on the pseudo-dimension of U . Our bound on Equation (7.3) has two main steps:

1. In Claim 7.2.5, we show that there are M < (ekN)VCdim(G∗) subsets P1, . . . ,PM partitioning
the parameter space P such that within any one subset, the dual functions u∗z1

, . . . , u∗zN
are

simultaneously structured. In particular, for each subset Pj, there exist piece functions
f1, . . . , fN ∈ F such that u∗zi

(
uρ

)
= fi

(
uρ

)
for all parameter settings ρ ∈ Pj and i ∈

[N]. This is the partition of P induced by aggregating all of the boundary functions
corresponding to the dual functions u∗z1

, . . . , u∗zN
.

2. We then show that for any region Pj of the partition, as we vary the parameter vector
ρ ∈ Pj, uρ can label the problem instances z1, . . . , zN in at most (eN)Pdim(F ∗) ways with
respect to the target thresholds t1, . . . , tN . It follows that the total number of ways that U
can label the problem instances z1, . . . , zN is bounded by (ekN)VCdim(G∗)(eN)Pdim(F ∗).

We now prove the first claim.

Claim 7.2.5. There are M < (ekN)VCdim(G∗) subsets P1, . . . ,PM partitioning the parameter space
P such that within any one subset, the dual functions u∗z1

, . . . , u∗zN
are simultaneously structured. In

particular, for each subset Pj, there exist piece functions f1, . . . , fN ∈ F such that u∗zi

(
uρ

)
= fi

(
uρ

)
for all parameter settings ρ ∈ Pj and i ∈ [N].

Proof of Claim 7.2.5. Let u∗z1
, . . . , u∗zN

∈ U ∗ be the dual functions corresponding to the problem
instances z1, . . . , zN . Since U ∗ is (F ,G, k)-piecewise decomposable, we know that for each
function u∗zi

, there are k boundary functions g(1)
i , . . . , g(k)

i ∈ G ⊆ {0, 1}U that define its piecewise

decomposition. Let Ĝ =
⋃N

i=1

{
g(1)

i , . . . , g(k)
i

}
be the union of these boundary functions across

all i ∈ [N]. For ease of notation, we relabel the functions in Ĝ, calling them g1, . . . , gkN . Let
M be the total number of kN-dimensional vectors we can obtain by applying the functions in
Ĝ ⊆ {0, 1}U to elements of U :

M :=

∣∣∣∣∣∣∣

 g1

(
uρ

)
...

gkN
(
uρ

)
 : ρ ∈ P


∣∣∣∣∣∣∣ . (7.4)

By Lemma 7.2.4, M < (ekN)VCdim(G∗) . Let b1, . . . , bM be the binary vectors in the set from
Equation (7.4). For each i ∈ [M], let Pj =

{
ρ |
(

g1
(
uρ

)
, . . . , gkN

(
uρ

))
= bj

}
. By construction,

for each set Pj, the values of all the boundary functions g1
(
uρ

)
, . . . , gkN

(
uρ

)
are constant
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as we vary ρ ∈ Pj. Therefore, there is a fixed set of piece functions f1, . . . , fN ∈ F so that
u∗zi

(
uρ

)
= fi

(
uρ

)
for all parameter vectors ρ ∈ Pj and indices i ∈ [N]. Therefore, the claim

holds.

Claim 7.2.5 and Equation (7.3) imply that for every subset Pj of the partition,∣∣∣∣∣∣∣

 sign

(
uρ (z1)− t1

)
...

sign
(
uρ (zN)− tN

)

∣∣∣∣∣∣∣ ρ ∈ Pj


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣

 sign

(
f1
(
uρ

)
− t1

)
...

sign
(

fN
(
uρ

)
− tN

)

∣∣∣∣∣∣∣ ρ ∈ Pj


∣∣∣∣∣∣∣ . (7.5)

Lemma 7.2.4 implies that Equation (7.5) is bounded by (eN)Pdim(F ∗). In other words, for
any region Pj of the partition, as we vary the parameter vector ρ ∈ Pj, uρ can label the prob-
lem instances z1, . . . , zN in at most (eN)Pdim(F ∗) ways with respect to the target thresholds
t1, . . . , tN . Because there are M < (ekN)VCdim(G∗) regions Pj of the partition, we can con-
clude that U can label the problem instances z1, . . . , zN in at most (ekN)VCdim(G∗)(eN)Pdim(F ∗)

distinct ways relative to the targets t1, . . . , tN . In other words, Equation (7.3) is bounded by
(ekN)VCdim(G∗)(eN)Pdim(F ∗). On the other hand, if U shatters the problem instances z1, . . . , zN ,
then the number of distinct labelings must be 2N . Therefore, the pseduo-dimension of U is at
most the largest value of N such that 2N ≤ (ekN)VCdim(G∗)(eN)Pdim(F ∗), which implies that

N = O ((Pdim(F ∗) + VCdim(G∗)) ln (Pdim(F ∗) + VCdim(G∗)) + VCdim(G∗) ln k) ,

as claimed.

We prove several lower bounds which show that Theorem 7.2.3 is tight up to logarithmic
factors.

Theorem 7.2.6. The following lower bounds hold:

1. There is a parameterized sequence alignment algorithm with Pdim(U ) = Ω(log n) for some n ≥
1. Its dual class U ∗ is (F ,G, n)-piecewise decomposable for classes F and G with Pdim (F ∗) =
VCdim (G∗) = 1.

2. There is a parameterized voting mechanism with Pdim(U ) = Ω(n) for some n ≥ 1. Its dual
class U ∗ is (F ,G, 2)-piecewise decomposable for classes F and G with Pdim (F ∗) = 1 and
VCdim (G∗) = n.

Proof. In Theorem 6.1.6, we prove the result for sequence alignment, in which case n is the
maximum length of the sequences, F is the set of constant functions, and G is the set of
threshold functions. In Theorem 5.2.3, we prove the result for voting mechanisms, in which
case n is the number of agents that participate in the mechanism, F is the set of constant
functions, and G is the set of homogeneous linear separators in Rn.

We now instantiate Theorem 7.2.3 in a general setting inspired by data-driven algorithm
design. Let U =

{
uρ | ρ ∈ R

}
be a set of utility functions defined over a single-dimensional

parameter space. We often find that the dual functions are piecewise constant, linear, or poly-
nomial. More generally, the dual functions are piecewise structured with piece functions that
oscillate a fixed number of times. In other words, the dual class U ∗ is (F ,G, k)-piecewise de-
composable where the boundary functions G are thresholds and the piece functions F oscillate
a bounded number of times, as formalized below.
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(a) Constant function
(zero oscillations).

(b) Linear function (one
oscillation).

(c) Inverse-quadratic function of the
form h(ρ) = a

ρ2 + bρ + c (two oscilla-
tions).

Figure 7.3: Each solid line is a function with bounded oscillations and each dotted line is
an arbitrary threshold. Many parameterized algorithms have piecewise-structured duals with
piece functions from these families.

Definition 7.2.7. A function h : R → R has at most B oscillations if for every z ∈ R, the
function ρ 7→ I{h(ρ)≥z} is piecewise constant with at most B discontinuities.

Figure 7.3 illustrates three common types of functions with bounded oscillations. In the
following lemma, we prove that if H is a class of functions that map R to R, each of which has
at most B oscillations, then Pdim(H∗) = O(ln B).

Lemma 7.2.8. Let H be a class of functions mapping R to R, each of which has at most B oscillations.
Then Pdim(H∗) = O(ln B).

Proof. Suppose that Pdim (H∗) = N. Then there exist functions h1, . . . , hN ∈ H and witnesses
t1, . . . , tN ∈ R such that for every subset T ⊆ [N], there exists a parameter setting ρ ∈ R such
that h∗ρ (hi) ≥ ti if and only if i ∈ T. We can simplify notation as follows: since h (ρ) = h∗ρ (h)
for every function h ∈ H, we have that for every subset T ⊆ [N], there exists a parameter
setting ρ ∈ R such that hi (ρ) ≥ ti if and only if i ∈ T. Let P∗ be the set of 2N parameter
settings corresponding to each subset T ⊆ [N]. By definition, these parameter settings induce
2N distinct binary vectors as follows:∣∣∣∣∣∣∣


 I{h1(ρ)≥t1}

...
I{hN(ρ)≥tN}

 : ρ ∈ P∗


∣∣∣∣∣∣∣ = 2N .

On the other hand, since each function hi has at most B oscillations, we can partition R into
M ≤ BN + 1 intervals I1, . . . , IM such that for every interval Ij and every i ∈ [N], the function
ρ 7→ I{hi(ρ)≥ti} is constant across the interval Ij. Therefore, at most one parameter setting ρ ∈ P∗
can fall within a single interval Ij. Otherwise, if ρ, ρ′ ∈ Ij ∩ P∗, then I{h1(ρ)≥t1}

...
I{hN(ρ)≥tN}

 =

 I{h1(ρ′)≥t1}
...

I{hN(ρ′)≥tN}

 ,

which is a contradiction. As a result, 2N ≤ BN + 1. The lemma then follows from Lemma 2.1.4
in Section 2.1.1.
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Lemma 7.2.8 implies the following pseudo-dimension bound when the dual function class
U ∗ is (F ,G, k)-piecewise decomposable, where the boundary functions G are thresholds and
the piece functions F oscillate a bounded number of times.

Lemma 7.2.9. Let U =
{

uρ | ρ ∈ R
}

be a set of utility functions and suppose the dual class U ∗ is
(F ,G, k)-decomposable, where the boundary functions G = {ga | a ∈ R} are thresholds ga : uρ 7→
I{a≤ρ}. Suppose for each f ∈ F , the function ρ 7→ f

(
uρ

)
has at most B oscillations. Then Pdim(U ) =

O((ln B) ln(k ln B)).

Proof. First, we claim that VCdim (G∗) = 1. For a contradiction, suppose G∗ can shatter two
functions ga, gb ∈ G∗, where a < b. There must be a parameter setting ρ ∈ R where g∗uρ

(ga) =

ga
(
uρ

)
= I{a≤ρ} = 0 and g∗uρ

(gb) = gb
(
uρ

)
= I{b≤ρ} = 1. Therefore, b ≤ ρ < a, which is a

contradiction, so VCdim (G∗) = 1.
Next, we claim that Pdim (F ∗) = O(ln B). For each function f ∈ F , let h f : R → R be

defined as h f (ρ) = f
(
uρ

)
. By assumption, each function h f has at most B oscillations. Let

H =
{

h f | f ∈ F
}

and let N = Pdim (H∗). By Lemma 7.2.8, we know that N = O(ln B). We
claim that Pdim(H∗) ≥ Pdim(F ∗). For a contradiction, suppose the class F ∗ can shatter N + 1
functions f1, . . . , fN+1 using witnesses t1, . . . , tN+1 ∈ R. By definition, this means that∣∣∣∣∣∣∣∣∣




I{
f ∗uρ ( f1)≥t1

}
...

I{
f ∗uρ ( fN+1)≥tN+1

}

 : ρ ∈ P


∣∣∣∣∣∣∣∣∣ = 2N+1.

For any function f ∈ F and any parameter setting ρ ∈ R, f ∗uρ
( f ) = f

(
uρ

)
= h f (ρ) = h∗ρ(h f ).

Therefore,∣∣∣∣∣∣∣∣



I{h∗ρ(h f1)≥t1}
...

I{h∗ρ(h fN+1)≥tN+1}

 : ρ ∈ P


∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣




I{
f ∗uρ ( f1)≥t1

}
...

I{
f ∗uρ ( fN+1)≥tN+1

}

 : ρ ∈ P


∣∣∣∣∣∣∣∣∣ = 2N+1,

which contradicts the fact that Pdim(H∗) = N. Therefore, Pdim(F ∗) ≤ N = O(ln B). The
corollary then follows from Theorem 7.2.3.
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Chapter 8

Data-dependent guarantees

In this chapter, we observe that for some configuration problems, the dual functions may not be
piecewise-structured themselves (as in the previous chapter), but can be closely approximated
by “simple” functions, as in Figure 8.1. This raises the question: can we exploit this structure to
provide strong generalization guarantees? We show that if the dual functions are approximated
by simple functions under the L∞-norm (meaning the maximum distance between the functions
is small), then we can provide strong generalization guarantees. However, this is no longer
true when the approximation only holds under the Lp-norm for p < ∞: we present a set of
functions whose duals are well-approximated by a simple constant function under the Lp-norm,
but which are not learnable.

We provide an algorithm that finds approximating simple functions in the following widely-
applicable setting: the dual functions are piecewise-constant with a large number of pieces, but
can be approximated by simpler piecewise-constant functions with few pieces, as in Figure 8.1.

In our experiments, we demonstrate significant practical implications of our analysis. We
configure CPLEX, one of the most widely-used integer programming solvers. In Chapter 4,
we showed that the dual functions associated with various CPLEX parameters are piecewise
constant and provide generalization bounds that grow with the number of pieces. However,
the number of pieces can be so large that these bounds can be quite loose. In this chapter, we
show that these dual functions can be approximated under the L∞-norm by simple functions
(as in Figure 8.1), this chapter’s theoretical results imply strong generalization guarantees. In
our experiments, we demonstrate that in order to obtain the same generalization bound, the
training set size required under our analysis is up to 700 times smaller than that of Chapter 4.
Improved sample complexity guarantees imply faster learning algorithms, since the learning
algorithm needs to analyze fewer training instances.

The results in this section are joint work with Nina Balcan and Tuomas Sandholm and
appeared in ICML 2020 [Balcan et al., 2020f].

8.1 Dual function approximability

Our goal is to provide generalization guarantees for the function class U =
{

uρ | ρ ∈ P
}

,
where P ⊆ Rd is a set of parameters and each function uρ maps a set of problem instances Z
to [0, 1]. As in Chapter 7, we use structure exhibited by dual function class, where each dual
function measures algorithmic performance as a function of the parameters. In this chapter, we
slightly simplify the notation from Section 7.2 of Chapter 7 as follows: every function in the
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Figure 8.1: Examples of dual functions uz : R → R (solid blue lines) which are approximated
by simpler functions wz (dotted black lines).

dual class is defined by an element z ∈ Z , denoted uz : P → [0, 1]. Naturally, uz(ρ) = uρ(z).
The dual class U ∗ = {uz | z ∈ Z} is the set of all dual functions.

In Chapter 7, we showed that when the dual functions are piecewise-simple—for example,
they are piecewise-constant with a small number of pieces—it is possible to provide strong
generalization bounds. In many settings, however, we find that the dual functions themselves
are not simple, but are approximated by simple functions, as in Figure 8.1. We formally define
this concept as follows.

Definition 8.1.1 ((γ, p)-approximate). Let U =
{

uρ | ρ ∈ P
}

and W =
{

wρ | ρ ∈ P
}

be two
sets of functions mapping Z to [0, 1]. We assume that all dual functions uz and wz are integrable
over the domain P . We say that the dual class W∗ (γ, p)-approximates the dual class U ∗ if for
every element z, the distance between the functions uz and wz is at most γ under the Lp-norm.

For p ∈ [1, ∞), this means that ‖uz − wz‖p := p
√∫

R |uz(ρ)− wz(ρ)|p dρ ≤ γ and when p = ∞,
this means that ‖uz − wz‖∞ := supρ∈P |uz(ρ)− wz(ρ)| ≤ γ.

8.2 Learnability and approximability

In this section, we investigate the connection between learnability and approximability. In Sec-
tion 8.2.1, we prove that when the dual functions are approximable under the L∞-norm by
simple functions, we can provide strong generalization bounds. In Section 8.2.2, we empiri-
cally evaluate these improved guarantees in the context of integer programming. Finally, in
Section 8.2.3, we prove that it is not possible to provide non-trivial generalization guarantees
(in the worst case) when the norm under which the dual functions are approximable is the
Lp-norm for p < ∞.

8.2.1 Data-dependent generalization guarantees

We now show that if the dual class U ∗ is (γ, ∞)-approximated by the dual of a “simple”
function class W , we can provide strong generalization bounds for the class U . Specifically,
we show that if the dual class U ∗ is (γ, ∞)-approximated by the dual of a class W with small
Rademacher complexity, then the Rademacher complexity of U is also small.

Theorem 8.2.1. Let U =
{

uρ | ρ ∈ P
}

and W =
{

wρ | ρ ∈ P
}

consist of functions mapping Z to
[0, 1]. For any S ⊆ Z , R̂S (U ) ≤ R̂S (W) + 1

|S| ∑z∈S ‖uz − wz‖∞ .
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Proof. Let S = {z1, . . . , zN} be an arbitrary subset of Z . Fix an arbitrary vector ρ ∈ P and
index i ∈ [N]. Suppose that σ[i] = 1. Since uzi (ρ) ≤ wzi (ρ) + ‖uzi − wzi‖∞, we have that

σ[i]uzi (ρ) ≤ σ[i]wzi (ρ) + ‖uzi − wzi‖∞ . (8.1)

Meanwhile, suppose σ[i] = −1. Since uzi (ρ) ≥ wzi (ρ)− ‖uzi − wzi‖∞, we have that

σ[i]uzi (ρ) = −uzi (ρ) ≤ −wzi (ρ) + ‖uzi − wzi‖∞ = σ[i]wzi (ρ) + ‖uzi − wzi‖∞ . (8.2)

Combining Equations (8.1) and (8.2), we have that

sup
ρ∈P

N

∑
i=1

σ[i]wρ (zi) ≥
N

∑
i=1

σ[i]wzi (ρ) ≥
N

∑
i=1

σ[i]uzi (ρ)− ‖uzi − wzi‖∞ . (8.3)

By definition of the supremum, Equation (8.3) implies that for every σ ∈ {−1, 1}N ,

sup
ρ∈P

N

∑
i=1

σ[i]wρ (zi) ≥ sup
ρ∈P

N

∑
i=1

σ[i]uρ (zi)−
N

∑
i=1
‖uzi − wzi‖∞ .

Therefore

E
σ∼{−1,1}N

[
sup
ρ∈P

N

∑
i=1

σ[i]wρ (zi)

]
≥ E

σ∼{−1,1}N

[
sup
ρ∈P

N

∑
i=1

σ[i]uρ (zi)

]
−

N

∑
i=1
‖uzi − wzi‖∞ ,

so the theorem statement holds.

If the class W∗ (γ, ∞)-approximates the class U ∗, then 1
|S| ∑z∈S ‖uz − wz‖∞ is at most γ. If

this term is smaller than γ for most sets S ∼ DN , then the bound on R̂S (U ) in Theorem 8.2.1
will often be even better than R̂S (W) + γ.

Theorems 2.1.6 and 8.2.1 imply that with probability 1− δ over the draw of the set S ∼ DN ,
for all parameter vectors ρ ∈ P , the difference between the empirical average value of uρ over

S and its expected value is at most Õ
(

1
N ∑z∈S ‖uz − wz‖∞ + R̂S (W) +

√
1
N

)
. In our integer

programming experiments, we show that this data-dependent generalization guarantee can be
much tighter than the best-known worst-case guarantee.

Algorithm for finding approximating functions. We provide a dynamic programming (DP)
algorithm for the widely-applicable case where the dual functions uz are piecewise constant
with a large number of pieces. Given an integer k, the algorithm returns a piecewise-constant
function wz with at most k pieces such that ‖uz − wz‖∞ is minimized, as in Figure 8.1. As
we describe in Section 8.2.2, when k and ‖uz − wz‖∞ are small, Theorem 8.2.1 implies strong
guarantees. We use this DP algorithm in our integer programming experiments.

Structural risk minimization. Theorem 8.2.1 illustrates a fundamental tradeoff in machine
learning. The simpler the classW , the smaller its Rademacher complexity, but (broadly speak-
ing) the worse functions from its dual will be at approximating functions in U ∗. In other words,
the simpler W is, the worse the approximation 1

|S| ∑z∈S ‖uz − wz‖∞ will likely be. Therefore,
there is a tradeoff between generalizability and approximability. It may not be a priori clear
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how to balance this tradeoff. Structural risk minimization (SRM) is a classic, well-studied ap-
proach for optimizing tradeoffs between complexity and generalizability which we use in our
experiments.

Our SRM approach is based on the following corollary of Theorem 8.2.1. LetW1,W2,W3, . . .
be a countable sequence of function classes where each Wj =

{
wj,ρ | ρ ∈ P

}
is a set of func-

tions mapping Z to [0, 1]. We use the notation wj,z to denote the duals of the functions in Wj,
so wj,z(ρ) = wj,ρ(z).

Corollary 8.2.2. With probability 1− δ over the draw of the set S ∼ DN , for all ρ ∈ P and all j ≥ 1,∣∣∣∣∣ 1
N ∑

z∈S
uρ(z)− E

z∼D

[
uρ(z)

]∣∣∣∣∣ = Õ

(
1
N ∑

z∈S

∥∥uz − wj,z
∥∥

∞ + R̂S
(
Wj
)

+

√
1
N

)
. (8.4)

Proof. We will prove that with probability at least 1− δ over the draw of the training set S =
{z1, . . . , zN} ∼ DN , for all parameter vectors ρ ∈ P and all j ∈N,∣∣∣∣∣ 1

N ∑
z∈S

uρ(z)− E
z∼D

[
uρ(z)

]∣∣∣∣∣ ≤ 2
N

N

∑
i=1

∥∥uzi − wj,zi

∥∥
∞ + 2R̂S

(
Wj
)

+ 3

√
1

2N
ln

(π j)2

3δ
.

For each integer j ≥ 1, let δj = 6δ
(π j)2 . From Theorems 2.1.6 and 8.2.1, we know that with

probability at least 1 − δj over the draw of the training set S = {z1, . . . , zN} ∼ DN , for all
parameter vectors ρ ∈ P ,∣∣∣∣∣ 1

N ∑
z∈S

uρ(z)− E
z∼D

[
uρ(z)

]∣∣∣∣∣ ≤ 2
N

N

∑
i=1

∥∥uzi − wj,zi

∥∥
∞ + 2R̂S

(
Wj
)

+ 3

√
1

2N
ln

2
δj

=
2
N

N

∑
i=1

∥∥uzi − wj,zi

∥∥
∞ + 2R̂S

(
Wj
)

+ 3

√
1

2N
ln

(π j)2

3δ
.

Since ∑∞
i=1 δj = δ, the corollary follows from a union bound over all j ≥ 1.

In our experiments, each dual class W∗j consists of piecewise-constant functions with at
most j pieces. This means that as j grows, the class W∗j becomes more complex, or in other

words, the Rademacher complexity R̂S
(
Wj
)

also grows. Meanwhile, the more pieces a piecewise-
constant function wz has, the better it is able to approximate the dual function uz. In other
words, as j grows, the approximation term 1

N ∑z∈S
∥∥uz − wj,z

∥∥
∞ shrinks. SRM is the process

of finding the level j in the nested hierarchy that minimizes the sum of these two terms, and
therefore obtains the best generalization guarantee via Equation (8.4).

Remark 8.2.3. We conclude by noting that the empirical average 1
N ∑z∈S

∥∥uz − wj,z
∥∥

∞ in Equa-
tion (8.4) can be replaced by the expectation Ez∼D

[∥∥uz − wj,z
∥∥

∞

]
.

8.2.2 Improved integer programming guarantees

In this section, we demonstrate that our data-dependent generalization guarantees from Sec-
tion 8.2.1 can be much tighter than worst-case generalization guarantees provided in prior
research. We demonstrate these improvements in the context of integer programming algo-
rithm configuration. Our formal model is the same as that from Chapter 4, where we studied
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worst-case generalization guarantees. Each element of the set Z is an IP. The set P consists
of CPLEX parameter settings. We define uρ(z) to be the size of the B&B tree CPLEX builds
given the parameter setting ρ and input IP z, normalized to fall in [0, 1]. We assume there is an
upper bound κ on the size of the largest tree we allow B&B to build before we terminate, as in
prior research [Balcan et al., 2018a, Hutter et al., 2009, Kleinberg et al., 2017, 2019]. Later in this
section, we describe our methodology for choosing κ.

We tune the parameter of B&B’s variable selection policy (VSP), as described in Section 4.2
of Chapter 4. We study score-based VSPs, as defined in Section 4.2: Definition 4.2.3. We study
how to learn a high-performing convex combination of any two scoring rules. We focus on four
scoring rules—first defined in Chapter 4—in our experiments. To recall these scoring rules, we
first revisit some notation from Chapter 4. For an IP z with objective function c · x, we denote
an optimal solution to the LP relaxation of z as x̆z = (x̆z[1], . . . x̆z[n]). We also use the notation
c̆z = c · x̆z. Finally, we use the notation z+

i (resp., z−i ) to denote the IP z with the additional
constraint that x[i] = 1 (resp., x[i] = 0).1

We study four scoring rules scoreL, scoreS, scoreA, and scoreP:

• scoreL(T , z, i) = max
{

c̆z − c̆z+
i

, c̆z − c̆z−i

}
. Under scoreL, B&B branches on the variable

leading to the Largest change in the LP objective value.

• scoreS(T , z, i) = min
{

c̆z − c̆z+
i

, c̆z − c̆z−i

}
. Under scoreS, B&B branches on the variable

leading to the Smallest change.

• scoreA(T , z, i) = 1
6scoreL(T , z, i) + 5

6scoreS(T , z, i). This is a scoring rule that Achterberg
[2009] recommended. It balances the optimistic approach to branching under scoreL with
the pessimistic approach under scoreS.

• scoreP(T , z, i) = max
{

c̆z − c̆z+
i

, 10−6
}
·max

{
c̆z − c̆z−i

, 10−6
}

. This is known as the Product

scoring rule. Comparing c̆z− c̆z−i
and c̆z− c̆z+

i
to 10−6 allows the algorithm to compare two

variables even if c̆z − c̆z−i
= 0 or c̆z − c̆z+

i
= 0. After all, suppose the scoring rule simply

calculated the product
(

c̆z − c̆z−i

)
·
(

c̆z − c̆z+
i

)
without comparing to 10−6. If c̆z − c̆z−i

= 0,
then the score equals 0, canceling out the value of c̆z− c̆z+

i
and thus losing the information

encoded by this difference.

Fix any two scoring rules score1 and score2. We define uρ(z) to be the size of the tree CPLEX
builds, capped at κ, divided by κ (this way, uρ(z) ∈ [0, 1]) when it uses the score-based VSP
defined by (1− ρ)score1 + ρscore2. Our goal is to learn the best convex combination of the two
scoring rules.

Lemma 4.3.18 from Chapter 4 implies the following worst-case generalization bound: with
probability 1− δ over the draw of N samples S ∼ DN , for all ρ ∈ [0, 1],∣∣∣∣∣ 1

N ∑
z∈S

uρ(z)− E
z∼D

[
uρ(z)

]∣∣∣∣∣ ≤ 2

√
2 ln(N

(
n2(κ+1) − 1

)
+ 1)

N
+ 3

√
1

2N
ln

2
δ

. (8.5)

This worst-case bound can be large when κ is large. We find that although the duals uz are
piecewise-constant with many pieces, they can be approximated piecewise-constant functions

1If z+
i (resp., z−i ) is infeasible, then we define c̆z − c̆z+

i
(resp., c̆z − c̆z−i

) to be some large number greater than
||c||1.
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with few pieces, as in Figure 8.1. As a result, we improve over Equation (8.5) via Theorem 8.2.1,
our data-dependent bound.

To make use of Theorem 8.2.1, we now formally define the function class whose dual (γ, ∞)-
approximates U ∗. We first define the dual class, then the primal class. To this end, fix some
integer j ≥ 1 and let Hj be the set of all piecewise-constant functions mapping [0, 1] to [−1, 0]
with at most j pieces. For every IP z, we define wj,z ∈ argminh∈Hj

‖uz − h‖∞, breaking ties in
some fixed but arbitrary manner. The function wj,z can be found via dynamic programming, as
we describe later in this section. We define the dual class W∗j =

{
wj,z | z ∈ Z

}
. Therefore, the

dual classW∗j is consists of piecewise-constant functions with at most j pieces. In keeping with
the definition of primal and dual functions from Section 8.1, for every parameter ρ ∈ [0, 1] and
IP z, we define wj,ρ(x) = wj,z(ρ). Finally, we define the primal classWj =

{
wj,ρ | ρ ∈ [0, 1]

}
.

To apply our results from Section 8.2.1, we must bound the Rademacher complexity of the
setWj. Doing so is simple due to the structure of the dual classW∗j .

Lemma 8.2.4. For any set S ⊆ Z of integer programs, R̂S
(
Wj
)
≤
√

2 ln(|S|(j−1)+1)
|S| .

This lemma together with Remark 8.2.3 and Corollary 8.2.2 imply that with probability
1− δ over S ∼ DN , for all parameters ρ ∈ [0, 1] and j ≥ 1,

∣∣ 1
N ∑z∈S uρ(z)−Ez∼D

[
uρ(z)

]∣∣ is
upper-bounded by the minimum of Equation (8.5) and

2γj + 2

√
2 ln(N(j− 1) + 1)

N
+

√
2
N

ln
2(π j)2

3δ
, (8.6)

where γj = Ez∼D
[∥∥uz − wj,z

∥∥
∞

]
. As j grows, R̂S

(
Wj
)

grows, but the dual class W∗j is better
able to approximate U ∗. In our experiments, we optimize this tradeoff between generalizability
and approximability.

Experiments. As in Section 4.4 of Chapter 4, we analyze distributions over IPs formulating the
combinatorial auction winner determination problem under the OR-bidding language [Sand-
holm, 2002], which we generate using the Combinatorial Auction Test Suite (CATS) [Leyton-
Brown et al., 2000]. We use the “arbitrary” generator with 200 bids and 100 goods, resulting in
IPs with 200 variables, and the “regions” generator with 400 bids and 200 goods, resulting in
IPs with 400 variables.

We use the same code as in Chapter 4 to compute the functions uz. It overrides the default
VSP of CPLEX 12.8.0.0 using the C API. All experiments were run on a 64-core machine with
512 GB of RAM.

In Figures 8.2a-8.2c, we select score1, score2 ∈ {scoreL, scoreS, scoreA, scoreP} and compare
the worst-case and data-dependent bounds. First, we plot the worst-case bound from Equa-
tion (8.5), with δ = 0.01, as a function of the number of training examples N. This is the black,
dotted line in Figures 8.2a-8.2c.

Next, we plot the data-dependent bound, which is the red, solid line in Figures 8.2a-8.2c. To
calculate the data-dependent bound in Equation (8.6), we have to estimate Ez∼D

[∥∥uz − wj,z
∥∥

∞

]
for all j ∈ [1600].2 To do so, we draw M = 6000 IPs z1, . . . , zM from the distribution D.

2We choose the range j ∈ [1600] because under these distributions, the functions uz generally have at most 1600

pieces.
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(a) Results using SRM on the CATS “regions”
generator with score1 = scoreL and score2 =
scoreS.

(b) Results using SRM on the CATS “arbitrary”
generator with score1 = scoreL and score2 =
scoreS.

(c) Results using SRM on the CATS “arbitrary”
generator with score1 = scoreP and score2 =
scoreA.

Figure 8.2: Experimental results.

We estimate Ez∼D
[∥∥uz − wj,z

∥∥
∞

]
via the empirical average 1

M ∑M
i=1

∥∥uzi − wj,zi

∥∥
∞. A Hoeffding

bound guarantees that with probability 0.995, for all j ∈ [1600],

E
[∥∥uz − wj,z

∥∥
∞

]
≤ 1

M

M

∑
i=1

∥∥uzi − wj,zi

∥∥
∞ +

1
40

. (8.7)

With thereby estimate our data-dependent bound Equation (8.6) using Equation (8.8), below:

min
j∈[1600]

{
2

(
1
M

M

∑
i=1

∥∥uzi − wj,zi

∥∥
∞ +

1
40

)
+ 2

√
2 ln(N(j− 1) + 1)

N
+

√
2
N

ln
(20π j)2

3

}
. (8.8)

The only difference between these bounds is that Equation (8.6) relies on the left-hand-side
of Equation (8.7) and Equation (8.8) relies on the right-hand-side of Equation (8.7) and sets
δ = 0.005.3 In Figures 8.2a-8.2c, the red solid line equals the minimum of Equations (8.5) and
(8.8) as a function of the number of training examples N.

3Like the worst-case bound, Equation (8.8) holds with probability 0.99, because with probability 0.995, Equa-
tion (8.7) holds, and with probability 0.995, the bound from Equation (8.6) holds.
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In Figures 8.2a, 8.2b, and 8.2c, we see that our bound significantly beats the worst-case
bound up until the point there are approximately 100,000,000 training instances. At this point,
the worst-case guarantee is better than the data-dependent bound, which makes sense because
it goes to zero as N goes to infinity, whereas the term 1

M ∑M
i=1

∥∥uzi − wj,zi

∥∥
∞ + 1

40 in our bound
(Equation (8.8)) is a constant.

Figures 8.2a-8.2c also demonstrate that even when there are only 105 training instances, our
bound provides a generalization guarantee of approximately 0.1. Meanwhile, in Figure 8.2a,
7 · 107 training instances are necessary to provide a generalization guarantee of 0.1 under the
worst-case bound, so the sample complexity implied by our analysis is 700 times better. Sim-
ilarly, in Figure 8.2b, our sample complexity is 500 times better, and in Figure 8.2c, it is 250

times better.

Selecting a tree size upper bound. As we described in Section 8.2.2, we assume there is an
upper bound κ on the size of the largest tree we allow branch-and-bound to build before we
terminate, as in prior research [Balcan et al., 2018a, Hutter et al., 2009, Kleinberg et al., 2017,
2019]. Given a parameter setting ρ ∈ [0, 1] and an integer program z ∈ Z , we define uρ(z) to
be the size of the tree CPLEX builds, capped at κ, divided by κ (this way, uρ(z) is normalized,
contained in the interval [0, 1]).

We use a data-dependent approach to select κ. For any parameter ρ ∈ [0, 1] and in-
teger program z ∈ Z , let fρ(z) be the size of the tree CPLEX builds (unnormalized). We
draw N = 6000 integer programs z1, . . . , zN from the underlying distribution D and set κ =
maxρ∈[0,1],i∈[N] fρ (zi). Classic results from learning theory guarantee that with high probability,
for at most 8% of the integer programs sampled from D, CPLEX will build a tree of size larger
than κ when parameterized by some ρ ∈ [0, 1]. Specifically, since the VC dimension of thresh-
old functions is 1, we have that with probability at least 0.99 over the draw of the N samples,
Prz∼D

[
maxρ∈[0,1] uρ(z) > κ

]
< 0.08.

For the “arbitrary” distribution, when score1 = scoreL and score2 = scoreS, κ = 6341, and
when score1 = scoreP and score2 = scoreA, κ = 2931. For the “regions” distribution, when
score1 = scoreL and score2 = scoreS, κ = 7314.

Dynamic programming. For any k ∈ N, let Wk be the set of piecewise-constant functions
with k pieces mapping an interval P ⊆ R to R. In this section, we provide a dynamic pro-
gramming algorithm which takes as input a piecewise-constant dual function uz : P → R

and a value k ∈ N and returns the value minw∈Wk ‖uz − w‖∞. Since uz is piecewise-constant,
the domain P can be partitioned into intervals [a1, a2) , [a2, a3) . . . , [at, at+1) such that for any
interval [ai, ai+1), there exists a value ci ∈ R such that uz(ρ) = ci for all ρ ∈ [ai, ai+1).

We now provide an overview of the algorithm. See Algorithm 6 for the pseudo-code. The
algorithm takes as input the partition [a1, a2) , . . . , [at, at+1) of the parameter space P and values
c1, . . . , ct such that for any interval [ai, ai+1), uz(ρ) = ci for all ρ ∈ [ai, ai+1). The algorithm
begins by calculating upper and lower bounds on the value of the function uz across various
subsets of its domain. In particular, for each i, i′ ∈ [t] such that i ≤ i′, the algorithm calculates
the lower bound `i,i′ = min {ci, ci+1, . . . , ci′} and the upper bound hi,i′ = max {ci, ci+1, . . . , ci′}.
Algorithm 6 performs these calculations in O(t2) time.

Next, for each i ∈ [t] and j ∈ [k], the algorithm calculates a value C(i, j) which equals the
smallest `∞ norm between any piecewise constant function with j pieces and the function uz
when restricted to the interval [a1, ai+1). Since P = [a1, at+1), we have that C(t, k)—the value
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Algorithm 6 Piecewise-constant function fitting via dynamic programming

1: Input: Partition [a1, a2) , . . . , [at, at+1) of P , values c1, . . . , ct, and desired number of pieces
k ∈N.

2: for i ∈ [t] do
3: Set hi,i = ci and `i,i = ci.
4: for i′ ∈ {i + 1, . . . , t} do
5: if ci′ < `i,i′−1 then
6: Set `i,i′ = ci′ and hi,i′ = hi,i′−1.
7: else if ci′ > hi,i′−1 then
8: Set `i,i′ = `i,i′−1 and hi,i′ = ci′ .
9: else

10: Set `i,i′ = `i,i′−1 and hi,i′ = hi,i′−1.

11: for i ∈ [t] do
12: Set C(i, 1) =

h1,i−`1,i
2

13: for j ∈ {2, . . . , k} do
14: for i ∈ [t] do
15: Set C(i, j) = min

{
C(i, 1), mini′∈[i−1]

{
C(i′, j− 1) +

hi′+1,i−`i′+1,i
2

}}
16: Output: C(t, k).

our algorithm returns—equals minw∈Wk ‖uz − w‖∞, as claimed. For all i ∈ [t], C(i, 1) =
h1,i−`1,i

2
and for all j ≥ 2,

C(i, j) = min
{

C(i, 1), min
i′∈[i−1]

{
C(i′, j− 1) +

hi′+1,i − `i′+1,i

2

}}
.

Algorithm 6 performs these calculations in O(kt2) time.

8.2.3 Rademacher complexity lower bound

In this section, we show that (γ, p)-approximability with p < ∞ does not necessarily imply
strong generalization guarantees of the type we saw in Section 8.2.1. We show that it is possible
for a dual class U ∗ to be well-approximated by the dual of a class W with R̂S (W) = 0, yet for
the primal U to have high Rademacher complexity.

Figures 8.3 and 8.4 help explain why there is this sharp constrast between the L∞- and
Lp-norms for p < ∞. Figure 8.3 illustrates two dual functions uz1 (the blue solid line) and uz2

(the grey dotted line). Let W be the extremely simple function class W =
{

wρ : ρ ∈ R
}

where
wρ(z) = 1

2 for every z ∈ Z . It is easy to see that R̂S (W) = 0 for any set S . Moreover, every
dual function wz is also simple, because wz(ρ) = wρ(z) = 1

2 . From Figure 8.3, we can see that
the functions uz1 and uz2 are well approximated by the constant function wz1(ρ) = wz2(ρ) = 1

2
under, for example, the L1-norm because the integrals

∫
P
∣∣uzi (ρ)− 1

2

∣∣ dρ are small. However,
the approximation is not strong under the L∞-norm, since maxρ∈P

∣∣uzi (ρ)− 1
2

∣∣ = 1
2 for i ∈

{1, 2}.
Moreover, despite the fact that R̂S (W) = 0, we have that R̂S (U ) = 1

2 when S = {z1, z2},
which makes Theorem 2.1.6 meaningless. At a high level, this is because when σ[1] = 1, we
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Figure 8.3: The dual functions uz1 and uz2 are well-approximated by the constant function ρ 7→
1
2 under, for example, the L1-norm because the integrals

∫
P
∣∣uzi (ρ)− 1

2

∣∣ dρ are small; for most ρ,
uzi (ρ) = 1

2 . The approximation is not strong under the L∞-norm, since maxρ∈P
∣∣uzi (ρ)− 1

2

∣∣ = 1
2 .

The function class U corresponding to these duals has a large Rademacher complexity.

Figure 8.4: The dual functions uz1 and uz2 are well-approximated by the constant function ρ 7→
1
2 under the L∞-norm since maxρ∈P

∣∣uzi (ρ)− 1
2

∣∣ is small. The function class U corresponding
to these duals has a small Rademacher complexity.

can ensure that σ[1]uρ (z1) = σ[1]uz1 (ρ) = 1 by choosing ρ ∈ {ρ0, ρ1} and when σ[1] = −1, we
can ensure that σ[1]uρ (z1) = 0 by choosing ρ ∈ {ρ2, ρ3}. A similar argument holds for σ[2]. In
summary, (γ, p)-approximability for p < ∞ does not guarantee low Rademacher complexity.

Meanwhile, in Figure 8.4, wzi (ρ) = 1
2 and uzi (ρ) are close under the L∞-norm for every

parameter ρ. As a result, for any noise vector σ ∈ {−1, 1}2, supρ∈R {σ[1]uz1(ρ) + σ[2]uz2(ρ)}
is close to supρ∈R {σ[1]wz1(ρ) + σ[2]wz2(ρ)}. This implies that the Rademacher complexities

R̂S (W) and R̂S (U ) are close. This illustration exemplifies Theorem 8.2.1: (γ, ∞)-approximability
implies strong Rademacher bounds.

We now prove that (γ, p)-approximability by a simple class for p < ∞ does not guarantee
low Rademacher complexity.

Theorem 8.2.5. For any γ ∈ (0, 1/4) and any p ∈ [1, ∞), there exist function classes U ,W ⊂ [0, 1]Z

such that the dual classW∗ (γ, p)-approximates U ∗ and for any N ≥ 1, supS :|S|=N R̂S (W) = 0 and
supS :|S|=N R̂S (U ) = 1

2 .

Proof. We begin by defining the classes U and W . Let P = (0, γp], and Z = [γ−p/2, ∞). For
any ρ ∈ P and z ∈ Z , let uρ(z) = 1

2 (1 + cos(ρz)) and U =
{

uρ | ρ ∈ P
}

. These sinusoidal
functions are based on the intuition from Figure 8.3. As in Figure 8.3, for any ρ and z, let
wρ(z) = 1

2 and W =
{

wρ | ρ ∈ P
}

. Since W consists of identical copies of a single function,
R̂S (W) = 0 for any set S ⊆ Z . Meanwhile, in Lemma 8.2.9, we prove that for any N ≥ 1,
supS :|S|=N R̂S (U ) = 1

2 .
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In Lemma 8.2.8, we prove that the dual classW∗ (γ, p)-approximates U ∗. To prove this, we

first show that ‖uz − wz‖2 ≤ 1
4

√
2γp + 1

z . When p = 2, we know 1
z ≤ 2γ2, so ‖uz − wz‖2 < γ.

Otherwise, we use our bound on ‖uz − wz‖2, Hölder’s inequality, and the log-convexity of the
Lp-norm to prove that ‖uz − wz‖p ≤ γ.

To prove Theorem 8.2.5, we rely on the following two well-known results.

Theorem 8.2.6 (Hölder’s inequality). Let p0 and p1 be two values in [1, ∞] such that 1
p0

+ 1
p1

= 1.
Then for all functions u and w, ‖uw‖1 ≤ ‖u‖p0

‖w‖p1
.

Theorem 8.2.7 (Interpolation). Let p and q be two values in (0, ∞] and let θ be a value in (0, 1). Let
pθ be defined such that 1

pθ
= θ

p1
+ 1−θ

p0
. Then for all functions u, ‖u‖pθ

≤ ‖u‖θ
p1
‖u‖1−θ

p0
.

We now prove Lemma 8.2.8, which guarantees that the dual class W∗ (γ, p)-approximates
U ∗.

Lemma 8.2.8. For any γ ∈
(
0, 1

4

)
and p ∈ [1, ∞), let U and W be the function classes defined in

Theorem 8.2.5. The dual classW∗ (γ, p)-approximates the dual class U ∗.

Proof. For ease of notation, let t = γp, a = 1
2γp , P = (0, t], and X =

[
1

2γp , ∞
)

. Throughout this
proof, we will use the following inequality:

‖uz − wz‖2 =

√∫ t

0
(uz(ρ)− wz(ρ))2 dρ =

√∫ t

0

(
1
2

cos(ρz)

)2

dρ =
1
4

√
2t +

sin(2tz)

z

≤ 1
4

√
2t +

1
z

. (8.9)

First, suppose p = 2. Since t = γ2 and 1
z ≤ 2γ2, Equation (8.9) implies that ‖uz − wz‖2 ≤

1
4

√
4γ2 < γ.
Next, suppose p < 2. We know that

∥∥(uz − wz)
p∥∥

1 =
∫ t

0

∣∣(uz(ρ)− wz(ρ))p∣∣ dρ =
∫ t

0
|uz(ρ)− wz(ρ)|p dρ = ‖uz − wz‖p

p . (8.10)

From Equation (8.10) and Hölder’s inequality (Theorem 8.2.6) with u = (uz − wz)
p, w the

constant function w : ρ 7→ 1, p0 = 2
p , and p1 = 2

2−p , we have that

‖uz − wz‖p
p =

∥∥(uz − wz)
p∥∥

1

≤ ‖w‖ 2
2−p

∥∥(uz − wz)
p∥∥

2
p

=

(∫ t

0
dρ

) 2−p
2 ∥∥(uz − wz)

p∥∥
2
p

= t
2−p

2
∥∥(uz − wz)

p∥∥
2
p

= t
2−p

2

(∫ t

0
(uz(ρ)− wz(ρ))2 dρ

) p
2

= t
2−p

2 ‖uz − wz‖p
2 .
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Therefore,

‖uz − wz‖p ≤ t
1
p−

1
2 ‖uz − wz‖2

≤ t
1
p−

1
2

4

√
2t +

1
z

(Equation (8.9))

=
t

1
p

4

√
2 +

1
zt

=
γ

4

√
2 +

1
zγp (t = γp)

< γ,
(

z ≥ 1
2γp

)
Finally, suppose p > 2. Let θ = 1− 2

p , p0 = 2, and p1 = ∞. By Theorem 8.2.7,

‖uz − wz‖p ≤ ‖uz − wz‖1−θ
2

= ‖uz − wz‖
2
p
2

≤ p

√
t
8

+
1

16z
(Equation (8.9))

=
p

√
γp

8
+

1
16z

(t = γp)

≤ p

√
γp

4

(
z ≥ 1

2γp

)
< γ.

Therefore, for all p ∈ [1, ∞) and all z ∈ X , ‖uz − wz‖p ≤ γ, so the dual class W∗ (γ, p)-
approximates the dual class U ∗.

Finally, we prove Lemma 8.2.9, which guarantees that for any N ≥ 1, supS :|S|=N R̂S (U ) = 1
2 .

Lemma 8.2.9. For any γ ∈
(
0, 1

4

)
and p ∈ [1, ∞), let U =

{
uρ | ρ ∈ (0, γp]

}
be a class of functions

with domain
[

1
2γp , ∞

)
such that for all ρ ∈ (0, γp] and z ∈

[
1

2γp , ∞
)

, uρ(z) = 1
2 (1 + cos(ρz)). For

every N ≥ 1, supS :|S|=N R̂S (U ) = 1
2 .

Proof. This proof is similar to the proof that the VC-dimension of the function class {z 7→
sign(sin(ρz)) | ρ ∈ R} ⊆ {−1, 1}R is infinite (see, for example, Lemma 7.2 in the textbook by
Anthony and Bartlett [2009]). To prove this lemma, we will show that for every c ∈ (0, 1/2),
RN(U ) := supS :|S|=N R̂S (U ) ≥ c (Claim 8.2.10). We also show that RN(U ) ≤ 1

2 (Claim 8.2.11).
Therefore, the lemma statement follows.

Claim 8.2.10. For every c ∈ (0, 1/2), RN(U ) ≥ c.

Proof of Claim 8.2.10. Let N be an arbitrary positive integer. We begin by defining several vari-
ables that we will use throughout this proof. Let P = (0, γp] and let α be any positive power
of 1

2 smaller than min
{

1
2π+1 , arccos(2c)

π+arccos(2c)

}
. Since 2c ∈ (0, 1), arccos(2c)

π+arccos(2c)
is well-defined. Also,
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since α ≤ arccos(2c)
π+arccos(2c)

, we have that πα
1−α ≤ arccos(2c) < π

2 . Finally, since the function cos is

decreasing on the interval [0, π/2], we have that 1
2 cos πα

1−α ≥ c. Let zi = α−i

2γp for i ∈ [N]. Since

α < 1, we have that zi ≥ 1
2γp , so each zi is an element of the domain

[
1

2γp , ∞
)

of the functions
in U .

We will show that for every assignment of the variables σ[1], . . . , σ[N] ∈ {−1, 1}, there
exists a parameter ρ0 ∈ (0, γp] such that

1
N

sup
ρ∈(0,γp]

N

∑
i=1

σ[i]uρ (zi) ≥
1
N

N

∑
i=1

σ[i]uρ0 (zi) =
1

2N

N

∑
i=1

σ[i] (1 + cos (ρ0zi)) ≥ c +
1
2

N

∑
i=1

σ[i].

This means that when S = {z1, . . . , zN},

RN(U ) ≥ R̂S (U ) =
1
N E

σ

[
sup
ρ∈P

N

∑
i=1

σ[i]uρ (zi)

]
≥ c +

1
2 E

σ

[
N

∑
i=1

σ[i]

]
= c.

To this end, given an assignment of the variables σ[1], . . . , σ[N] ∈ {−1, 1}, let (b1, . . . , bN) ∈
{0, 1}N be defined such that

bi =

{
0 if σ[i] = 1
1 otherwise

and let

ρ0 = 2πγp

(
N

∑
j=1

αjbj + αN+1

)
.

Since 0 < ρ0 < 2πγp ∑∞
j=1 αj = 2πγpα

1−α ≤ γp, ρ0 is an element of the parameter space (0, γp]. The

inequality 2πγpα
1−α ≤ γp holds because α ≤ 1

2π+1 , so 2πα
1−α ≤ 1.

Next, we evaluate uρ0(zi) = 1
2 (1 + cos(ρ0zi)):

1
2

(1 + cos(ρ0zi)) =
1
2

+
1
2

cos

(
2πγp

(
N

∑
j=1

αjbj + αN+1

)
α−i

2γp

)

=
1
2

+
1
2

cos

(
π

(
N

∑
j=1

αjbj + αN+1

)
α−i

)

=
1
2

+
1
2

cos

(
i−1

∑
j=1

αj−iπbj + πbi +
N

∑
j=i+1

αj−iπbj + αN+1−iπ

)

=
1
2

+
1
2

cos

(
π

(
bi +

N−i

∑
j=1

αjbi+j + αN+1−i

))
. (8.11)

The final equality holds because for every j < i, αj−i is a positive power of 2, so αj−iπbj is a
multiple of 2π. We will use the following fact: since

0 <
N−i

∑
j=1

αjbi+j + αN+1−i ≤
N−i+1

∑
j=1

αj <
∞

∑
j=1

αj =
α

1− α
,

the argument of cos(·) in Equation (8.11) lies strictly between πbi and πbi + πα
1−α .
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Suppose bi = 0. Since α ≤ 1
2 , we know that πα

1−α ≤ π. Therefore, cos(·) is monotone
decreasing on the interval

[
0, πα

1−α

]
. Moreover, we know that 1

2 cos πα
1−α ≥ c. Therefore, uρ0(zi) =

1
2 (1 + cos(ρ0zi)) ≥ 1

2 + c. Since bi = 0, it must be that σ[i] = 1, so σ[i]uρ0(zi) ≥ c + 1
2 =

c + σ[i]
2 . Meanwhile, suppose bi = 1. The function cos(·) is monotone increasing on the interval[

π, π + πα
1−α

]
. Moreover, 1

2 cos
(
π + πα

1−α

)
= − 1

2 cos πα
1−α ≤ −c. Therefore,

uρ0(zi) =
1
2

(1 + cos(ρ0zi)) ≤
1
2
− c.

Since bi = 1, it must be that σ[i] = −1, so σ[i]uρ0(zi) ≥ c− 1
2 = c + σ[i]

2 . Since this is true for
any i ∈ [N], we have that

1
2N

N

∑
i=1

σ[i] (1 + cos (ρ0zi)) ≥ c +
1
2

N

∑
i=1

σ[i],

as claimed.

We conclude this proof by showing that RN(U ) ≤ 1
2 .

Claim 8.2.11. For any N ≥ 1, RN(U ) ≤ 1
2 .

Proof of Claim 8.2.11. Let S = {z1, . . . , zN} ⊂
[

1
2γp , ∞

)
be an arbitrary set of points. For any

assignment of the variables σ[1], . . . , σ[N] ∈ {−1, 1}, since uρ (zi) ∈ [0, 1],

sup
ρ∈(0,γp]

N

∑
i=1

σ[i]uρ (zi) ≤
N

∑
i=1

1{σ[i]=1}.

Therefore,

RN(U ) = sup
z1,...,zN

1
N E

σ

[
sup

ρ∈(0,γp]

N

∑
i=1

σ[i]uρ (zi)

]
≤ 1

N E
σ

[
N

∑
i=1

1{σ[i]=1}

]
=

1
2

,

as claimed.

Together, Claims 8.2.10 and 8.2.11 imply that for every N ≥ 1, RN(U ) = 1
2 .

Remark 8.2.12. Suppose, for example, that P = [0, 1]d. Theorem 8.2.5 implies that even if the
difference |uz(ρ)− wz(ρ)| is small for all z in expectation over ρ ∼ Uniform(P), the function
class U may not have Rademacher complexity close toW .
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Chapter 9

Portfolio-based algorithm selection

In practice, the best parameter setting for one problem is rarely optimal for another. Algo-
rithm portfolios—which are finite sets of parameter settings—are used in practice to deal with
this variability. A portfolio is often used in conjunction with an algorithm selector, which is
a function that determines which parameter setting in the portfolio to employ on any input
problem instance. Portfolio-based algorithm selection has seen tremendous empirical success,
fueling breakthroughs in combinatorial auction winner determination [Leyton-Brown, 2003,
Sandholm, 2013], SAT [Xu et al., 2008], integer programming [Kadioglu et al., 2010, Xu et al.,
2010], planning [Cenamor et al., 2016, Núñez et al., 2015], and many other domains.

Both the portfolio and the algorithm selector are often chosen using a training set of prob-
lem instances from the application domain at hand. The portfolio and algorithm selector are
chosen to have strong average performance over the training set. In this chapter, we investi-
gate the learned algorithm selector’s generalization error, which is the difference between the
performance of the configurations it selects on average over the training set and the expected
performance of the configuration selects on a freshly-drawn instance.

There are multiple reasons the generalization error might be large in this setting: 1) the
learning-theoretic complexity of the algorithm selector, 2) the size of the portfolio, and 3) the
learning-theoretic complexity of the algorithm’s performance as a function of its parameters.
We provide end-to-end bounds on generalization error in terms of all three elements simulta-
neously. The variety of factors impacting generalization error differentiates this chapter from
prior results in this thesis on generalization guarantees in algorithm configuration. That re-
search focuses on bounding the generalization error of learning a single good parameter setting
for the entire problem instance distribution, rather than a portfolio together with an algorithm
selector that selects an algorithm (e.g., its parameter values) from the portfolio for the specific
instance at hand. In the former case, generalization error only grows with (3)—just one of the
sources of error we must contend with.

Our bounds apply to the setting where on any fixed input, the dual function measuring the
algorithm’s performance as a function of its parameters is piecewise constant with at most t
pieces, for some t ∈ Z. We observed this structure in the earlier chapters of this thesis in the
contexts of integer programming and computational biology. Given a training set of size N, we

prove that the generalization error is bounded1 by Õ
(√(

d̄ + κ log t
)

/N
)

, where κ is the size

of the portfolio and d̄ measures the intrinsic complexity of the algorithm selector, as we define in

1Here we assume that algorithmic performance is a quantity in [0, 1], an assumption we relax in Section 9.1.
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Section 9.2. We also prove that this bound is tight up to logarithmic factors: the generalization

error can be as large as Ω̃
(√(

d̄ + κ
)

/N
)

. This implies that even if the algorithm selector is

extremely simple (d̄ is small), overfitting cannot be avoided in the worst case when the portfolio
size κ is large. Moreover, we instantiate our guarantees for several commonly-used families of
algorithm selectors [Hutter et al., 2014, Kadioglu et al., 2010, Xu et al., 2008].

Finally, via experiments in the context of integer programming configuration, we illustrate
the inherent tradeoff our theory exposes: as we increase the portfolio size, we can hope to
include a high-performing parameter setting for any given instance, but it become increasingly
difficult to avoid overfitting. We incrementally increase the size of the portfolio and with each
addition we train an algorithm selector using regression forest performance models. As the
portfolio size increases, the algorithm selector’s training performance continues to improve, but
there comes a point where the test performance begins to worsen, meaning that the algorithm
selector is overfitting to the training set.

The results in this section are joint work with Nina Balcan and Tuomas Sandholm and
appeared in AAAI 2021 [Balcan et al., 2021c].

Additional related research. Gupta and Roughgarden [2017] also provide generalization guar-
antees for algorithm portfolios, though that paper focuses on the problem of learning a single
parameter setting with high expected performance on the underlying distribution. They do
provide guarantees for the more general problem of learning a mapping from instances to pa-
rameter settings in a few special cases, but do not study the problem of learning a portfolio in
conjunction with learning a selector, which we do. They study settings where for each problem
instance, a domain expert has defined a number of relevant features, as do we in Section 9.3.
Their first result applies to learning an algorithm selector when the set of features is finite. In
contrast, our results apply to infinite feature spaces. Their second set of results is tailored to
the problem of learning empirical performance models and applies when the feature space is
infinite. An empirical performance model is meant to predict how long a particular algorithm
will take to run on a given input. An algorithm selector can use an empirical performance
model by selecting the parameter setting with best predicted performance. Gupta and Rough-
garden [2017] provide guarantees that bound the difference between the empirical performance
model’s expected error and average error over the training set. Their guarantees can be applied
once the portfolio is already chosen. They do not study the problem of learning the portfolio
itself, whereas we study the composite problem of learning the portfolio and the algorithm
selector.

9.1 Problem formulation and road map

Notation. Our theoretical guarantees apply to algorithms parameterized by a real value ρ ∈
R. We use the notation Z to denote the set of problem instances the algorithm may take as
input. For example, Z might consist of integer programs (IPs) if we are configuring an IP
solver. There is an unknown distribution D over problem instances in Z .

To describe the performance of a parameterized algorithm, we adopt the notation pre-
viously introduced in this thesis. For every parameter setting ρ ∈ R, there is a function
uρ : Z → [0, H] that measures, abstractly, the performance of the algorithm parameterized
by ρ given an input z ∈ Z . For example, uρ might measure runtime or the quality of the
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algorithm’s output. We use the notation U =
{

uρ : ρ ∈ R
}

to denote the set of all performance
functions.

Our bounds apply to the setting where on any fixed input z, the dual function uz : R→ R

measuring the algorithm’s performance as a function of the tunable parameter is piecewise
constant with at most t pieces, for some t ∈ Z.

Problem formulation. A portfolio-based algorithm selection procedure relies on two key
components: a portfolio and an algorithm selector. A portfolio is a set P = {ρ1, . . . , ρκ} ⊆ R

of κ parameter settings. An algorithm selector is a mapping f : Z → P from problem instances
z ∈ Z to parameter settings f (z) ∈ P . In practice [Kadioglu et al., 2010, Sandholm, 2013,
Xu et al., 2010], the portfolio and algorithm selector are typically learned using the following
high-level procedure:

1. Choose a class F of algorithm selectors, each of which maps Z to R. (In Section 9.3, we
provide several examples of classes F used in practice.)

2. Draw a training set S = {z1, . . . , zN} ∼ DN of problem instances from the unknown
distribution D.

3. Use S to learn a portfolio P̂ = {ρ1, . . . , ρκ} ⊆ R.

4. Use S to learn an algorithm selector f̂ ∈ F that maps to parameter settings in the portfolio
P̂ .

Given an instance z ∈ Z , the performance of the parameter setting selected by f̂ is u f̂ (z)(z).

We bound the expected quality Ez∼D
[
u f̂ (z)(z)

]
of the learned algorithm selector.

Road map. We first analyze to what extent the average performance of the selector f̂ over
the training set generalizes to its expected performance on the distribution. We then use this
analysis to relate the performance of the learned selector f̂ and the optimal selector under the
optimal choice of a portfolio. In particular, we bound the difference between Ez∼D

[
u f̂ (z)(z)

]
and maxP :|P|≤κ Ez∼D

[
maxρ∈P uρ(z)

]
. (Equivalently, if our goal is to minimize uρ(z), we may

replace each max with a min.)

9.2 Sample complexity bounds

In this section, we bound the difference between the average performance of any selector f ∈ F
over the training set S ∼ DN and its expected performance. Formally, we bound∣∣∣∣∣ 1

N ∑
z∈S

u f (z)(z)− E
z∼D

[
u f (z)(z)

]∣∣∣∣∣ (9.1)

for any choice of an algorithm selector f ∈ F . This will serve as a building block for our
general analysis of portfolio-based algorithm selection.

Our bounds depend on both the number of dual function pieces t and on the intrinsic
complexity of the class of algorithm selectors F . We use the following notion of the multi-class
projection of F to define the class’s intrinsic complexity.
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Definition 9.2.1. Given a selector f ∈ F , let ρ1 < ρ2 < · · · < ρκ̄ be the parameter settings f
maps to, with κ̄ ≤ κ. The function f defines a partition Z1, . . . , Zκ̄ of the problem instances Z
where for any z ∈ Z , if f (z) = ρi, then z ∈ Zi. For each function f ∈ F there is therefore
a corresponding multi-class function f̄ : Z → [κ] that indicates which set of the partition the
instance z belongs to: f̄ (z) = i when z ∈ Zi. We use the notation F̄ =

{
f̄ : f ∈ F

}
to denote

the set of all such multi-class functions.

Defining this set of multi-class functions allows us to use classic tools from multi-class
learning to reason about the algorithm selectors F . In particular, our bounds depend on the
Natarajan [1989] dimension of the class F̄ , which is a natural extension of the classic VC dimen-
sion [Vapnik and Chervonenkis, 1971] to multi-class functions.

Definition 9.2.2 (Natarajan dimension). The set F̄ multi-class shatters a set of problem instances
z1, . . . , zN if there exist labels y1, . . . , yN ∈ [κ] and y′1, . . . , y′N ∈ [κ] such that:

1. For every i ∈ [N], yi 6= y′i, and

2. For any subset C ⊆ [N], there exists a function f̄ ∈ F̄ such that f̄ (zi) = yi if i ∈ C and
f̄ (zi) = y′i otherwise.

The Natarajan dimension of F̄ is the cardinality of the largest set that can be multi-class shattered
by F̄ .

In Section 9.3, we bound the Natarajan dimension of F̄ for several commonly-used classes
of algorithm selectors F . We use Natarajan dimension to quantify the intrinsic complexity of
the class of selectors, which in turn allows us to bound Equation (9.1) for every function f ∈ F .
To do so, we relate the Natarajan dimension of F̄ to the pseudo-dimension of the function class
UF =

{
z 7→ u f (z)(z) : f ∈ F

}
. Every function in UF is defined by an algorithm selector f ∈ F .

On input z ∈ Z , u f (z)(z) equals the utility of the algorithm parameterized by f (z) on input z.
We now prove a general bound on Pdim (UF ), which allows us to bound Equation (9.1).

Theorem 9.2.3. Suppose each dual function u∗z is piecewise-constant with at most t pieces. Let d̄ be the
Natarajan dimension of F̄ . Then Pdim (UF ) = Õ

(
d̄ + κ log t

)
.

At a high level, the Õ
(
d̄
)

term accounts for the intrinsic complexity of the algorithm se-
lectors F . The O (κ log t) term accounts for the complexity of composing selectors f with the
performance functions uρ. In Theorem 9.2.4, we prove this bound is tight up to logarithmic
factors.

Proof of Theorem 9.2.3. Let z1, . . . , zN ∈ Z be a set of problem instances that is shattered by UF ,
as witnessed by the points t1, . . . , tN ∈ R. By definition, this means that

2N =

∣∣∣∣∣∣∣∣



1{u f (z1)(z1)≤t1}
...

1{u f (zN )(zN)≤tN}

 : f ∈ F


∣∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣

 u f (z1)(z1)

...
u f (zN)(zN)

 : f ∈ F


∣∣∣∣∣∣∣ . (9.2)

Since each dual function u∗zi
is piecewise-constant with at most t pieces, we know there are

M ≤ Nt intervals I1, . . . , IM partitioning R where for any interval Ij and any problem instance
zi, u∗zi

(ρ) is constant across all ρ ∈ Ij. We assume that the intervals are ordered so that if j < j′,
then the points in Ij are smaller than the points in Ij′
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Let J = (j1, . . . , jκ̄) ∈ [M]κ̄ be a vector of κ̄ ≤ κ interval indices with j1 ≤ j2 ≤ · · · ≤ jκ̄. Let
FJ ⊆ F be the set of functions f ∈ F with the following property: letting ρ1 < ρ2 < · · · < ρκ̄

be the parameter settings f maps to (i.e., { f (z) : z ∈ Z} = {ρ1, . . . ρκ̄}), we have that the ith

parameter setting is in the ith interval: ρ1 ∈ Ij1 , . . . , ρκ̄ ∈ Ijκ̄ . Since I1, . . . , IM partition R and
since each function f ∈ F maps to at most κ parameter settings, F = ∪JFJ . Together with
Equation (9.2), this means that

2N ≤
κ

∑̄
κ=1

∑
J∈[M]κ̄

∣∣∣∣∣∣∣

 u f (z1)(z1)

...
u f (zN)(zN)

 : f ∈ FJ


∣∣∣∣∣∣∣ . (9.3)

Fix a particular set J = (j1, . . . , jκ̄) ∈ [M]κ̄ as defined above. For each algorithm selector
f ∈ FJ , let f0 : Z → J be a function that indicates which of the κ̄ intervals Ij1 , . . . , Ijκ̄ the
parameter setting f (z) falls in. In other words, f0(z) = j if and only if f (z) ∈ Ij. Recall that
for any i ∈ [N] and j ∈ J, u f (zi)(zi) is constant across all f ∈ FJ with f (zi) ∈ Ij. Therefore,
even if we only know which of the κ̄ intervals f (zi) falls in and not the function f itself, we can
correctly infer the value u f (zi) (zi). Said another way, if we only know the value f0 (zi) ∈ [κ̄],
we can infer the value u f (zi) (zi). Aggregating this logic across all N problem instances, given

a vector ( f0 (z1) , . . . , f0(zN)) we can directly infer the vector
(

u f (z1)(z1), . . . , u f (zN)(zN)
)

. This
implies that ∣∣∣∣∣∣∣


 u f (z1)(z1)

...
u f (zN)(zN)

 : f ∈ FJ


∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣

 f0(z1)

...
f0(zN)

 : f ∈ FJ


∣∣∣∣∣∣∣ . (9.4)

Next, we use a similar logic to show that∣∣∣∣∣∣∣

 f0(z1)

...
f0(zN)

 : f ∈ FJ


∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣

 f̄ (z1)

...
f̄ (zN)

 : f ∈ FJ


∣∣∣∣∣∣∣ . (9.5)

To see why, suppose we only know the value f̄ (zi) and not the function f itself. For ease of
notation, say ` = f̄ (zi). By definition of f̄ , we know that f (zi) is the `th-smallest parameter
setting that the function f maps to. By definition of the function f0, this implies that f0 (zi) = j`.
Therefore, if we only know the value f̄ (zi) and not the function f itself, we can correctly
infer the value f0 (zi). Again, aggregating this logic across all N problem instances, given a
vector

(
f̄ (z1) , . . . , f̄ (zN)

)
we can directly infer the vector ( f0 (z1) , . . . , f0(zN)). This implies

that Equation (9.5) holds.
Combining Equations 9.4 and (9.5) with Natarajan’s lemma [Natarajan, 1989], we have that∣∣∣∣∣∣∣


 u f (z1)(z1)

...
u f (zN)(zN)

 : f ∈ FJ


∣∣∣∣∣∣∣ ≤ Nd̄κ̄2d̄.

Combining this fact, the fact that M ≤ Nt, and Equation (9.3), we have that 2N ≤ κ(Nt)κ Nd̄κ2d̄,
which implies that N = O

((
κ + d̄

)
log
(
κ + d̄

)
+ κ log t

)
.
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Theorem 9.2.3 implies that with probability 1− δ over the draw S ∼ DN , for any selector
f ∈ F , ∣∣∣∣∣ 1

N ∑
z∈S

u f (z)(z)− E
z∼D

[
u f (z)(z)

]∣∣∣∣∣ = O

(
H

√
1
N

(
d̄ + κ log t + log

1
δ

))
. (9.6)

This theorem quantifies a fundamental tradeoff: as the portfolio size increases, we can hope
to obtain better and better empirical performance ∑z∈S u f (z)(z) but the generalization error

Õ
(

H
√(

d̄ + κ
)

/N
)

will worsen.
We now prove that Theorem 9.2.3 is tight up to logarithmic factors. The following theorem

illustrates that even if the class of algorithm selectors is extremely simple (in that the Natarajan
dimension of F̄ is 0), if the portfolio size (that is, the number κ of parameters mapped to) is
large, we cannot hope to avoid overfitting.

Theorem 9.2.4. For any κ, d̄ ≥ 2, there is a class of functions U =
{

uρ : ρ ∈ R
}

and a class of selectors
F such that:

1. Each selector f ∈ F maps to ≤ κ parameter settings.

2. Each dual function u∗z is piecewise-constant with 1 discontinuity,

3. The Natarajan dimension of F̄ is at most d̄, and

4. The pseudo-dimension of UF is Ω
(
κ + d̄

)
.

Proof. Let Z = (0, 1]. For each parameter setting ρ ∈ R, define uρ(z) = 1{z≤ρ}. As claimed, each
dual function u∗z : R → R is piecewise-constant with 1 discontinuity. In this case, the function
in UF map Z to {0, 1}. In the special case where the range of the function class is {0, 1},
pseudo-dimension is typically referred to as VC dimension, which we denote as VCdim (UF ) .

Let κ, d̄ ≥ 2 be two arbitrary integers. We split this proof into two cases: d̄ ≥ κ and κ > d̄.
In both cases, we exhibit a class of selectors F that satisfies the properties in the theorem
statement and we prove that VCdim (UF ) ≥ max

{
κ, d̄
}

= Ω
(
κ + d̄

)
.

Claim 9.2.5. Suppose d̄ ≥ κ. There exists a class of selectors F that satisfies the properties in the
theorem statement and VCdim (UF ) = d̄.

Proof of Claim 9.2.5. Let F ⊆ {0, 1}Z be any set of binary functions with VC dimension d̄. As
required, each selector f ∈ F maps to at most κ parameter settings (|{ f (z) : z ∈ Z}| ≤ 2 ≤ κ).
Moreover, F̄ = F , so the Natarajan dimension of F̄ equals the VC dimension of F , which is d̄.

For any instance z ∈ Z and function f ∈ F ,

u f (z)(z) =

{
1 if z ≤ f (z)

0 if z > f (z).

Since z ∈ (0, 1] and f (z) ∈ {0, 1}, this implies that u f (z)(z) = f (z). Therefore, VCdim (UF ) =

VCdim(F ) = d̄.

Claim 9.2.6. Suppose κ > d̄. There exists a class of selectors F that satisfies the properties in the
theorem statement and VCdim (UF ) ≥ κ.
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Proof of Claim 9.2.6. We begin by partitioning Z = (0, 1] into κ intervals Z1, . . . , Zκ, where Zi =( i−1
κ , i

κ

]
. For each set T ⊆ [κ], define an selector fT : Z → R as follows. For any z ∈ Z = (0, 1],

let i ∈ [κ] be the index of the interval z lies in, i.e., z ∈ Zi. We define

fT(z) =

{
i
κ if i ∈ T
i
κ −

1
2κ if i 6∈ T.

Let F = { fT : T ⊆ [κ]}. For every function f ∈ F , f̄ (z) equals the index i ∈ [κ] such that z ∈ Zi.
Therefore,

∣∣F̄ ∣∣ = 1, so the Natarajan dimension of F̄ is 0 < d̄.
Define S =

{ 1
κ , 2

κ , . . . , κ−1
κ , 1

}
⊂ Z . We prove that S is shattered by UF . Let T ⊆ [κ] be an

arbitrary subset. If i ∈ T, then fT
( i

κ

)
= i

κ , so

u fT( i
κ )

(
i
κ

)
= u i

κ

(
i
κ

)
= 1{ i

κ≤
i
κ} = 1.

If i 6∈ T, then fT
( i

κ

)
= i

κ −
1

2κ , so

u fT( i
κ )

(
i
κ

)
= u i

κ−
1

2κ

(
i
κ

)
= 1{ i

κ≤
i
κ−

1
2κ} = 0.

Therefore, S is shattered by UF , so the VC dimension of UF is at least κ.

These two claims illustrate that VCdim (UF ) ≥ max
{

κ, d̄
}

= Ω
(
κ + d̄

)
.

In the proof of Theorem 9.2.4, each performance function uρ maps to {0, 1}, so we effec-
tively prove a lower bound on the VC dimension of UF . Classic results from learning the-
ory imply the generalization error of learning a selector f ∈ F can therefore be as large as

Ω̃
(

H
√(

d̄ + κ
)

/N
)

, which matches Equation (9.6) up to logarithmic factors.

9.3 Application of theory to algorithm selectors

We now instantiate Theorem 9.2.3 for several commonly-used classes of algorithm selectors. In
each of the case studies, there is a feature mapping φ : Z → Rm that assigns feature vectors
φ(z) ∈ Rm to problem instances z ∈ Z .

9.3.1 Linear performance models

We begin by providing guarantees for algorithm selectors that use a linear performance model.
These have been used extensively in computational research [Xu et al., 2008, 2010]. To define
this type of selector, let ρ = (ρ1, . . . ρκ) be a set of κ distinct parameter settings. For each i ∈ [κ],
define a vector wi ∈ Rm and let

W =

 . . .

w1
. . . wκ

. . .


be a matrix containing all κ weight vectors. The dot product wi · φ(z) is meant to estimate
the performance of the algorithm parameterized by ρi on instance z. We define the algo-
rithm selector fρ,W(z) = ρi where i = argmaxj∈[κ]

{
wj · φ(z)

}
, which selects the parameter
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setting with best predicted performance. We define the class of algorithm selectors FL ={
fρ,W : W ∈ Rm×κ, ρ ∈ Rκ

}
. To define the class F̄L, for each matrix W ∈ Rm×κ, let gW : Z → [κ]

be a function where gW(z) = argmaxi∈[κ] {wi · φ(z)} . By definition, F̄L = {gW : W ∈ Rm×κ}, so
F̄L is the well-studied m-dimensional linear class which has a Natarajan dimension of O(mκ) [Shalev-
Shwartz and Ben-David, 2014]. This fact implies the following corollary.

Corollary 9.3.1. Suppose the dual functions are piecewise-constant with at most t pieces. The pseudo-
dimension of UFL =

{
z 7→ u f (z) : f ∈ FL

}
is O(κm log(κm) + κ log t).

9.3.2 Regression tree performance models

We now analyze algorithm selectors that use a regression tree as the performance model. These
have proven powerful in computational research [Hutter et al., 2014]. A regression tree T’s leaf
nodes partition the feature space Rm into disjoint regions R1, . . . , R`. In each region Ri, a
constant value ci is used to predict the algorithm’s performance on instances in the region.
The internal nodes of the tree define this partition: each performs an inequality test on some
feature of the input. We use the notation hT(z) to denote tree T’s prediction of the algorithm’s
performance on instance z. Formally, hT(z) equals the constant value corresponding to the
region of the tree’s partition to which φ(z) belongs.

An algorithm selector can be defined using a regression tree performance model as follows.
Let ρ = (ρ1, . . . , ρκ) be a set of κ distinct parameter settings. For each parameter setting ρi,
let Ti be a tree that is meant to predict the performance of the algorithm parameterized by ρi,
and let T = (T1, . . . , Tκ) be the set of all κ trees. We define the algorithm selector fρ,T(z) = ρi

where i = argmaxj∈[κ]

{
hTj (z)

}
. The class of algorithm selectors FR consists of all functions

fρ,T across all parameter vectors ρ ∈ Rκ and all κ-tuples of regression trees T = (T1, . . . , Tκ).

Lemma 9.3.2. Suppose we limit ourselves to building regression trees with at most ` leaves. Then the
Natarajan dimension of F̄R is O(`κ log(`κm)).

Proof. We first sketch the proof of this lemma. For each κ-tuple of regression trees T =
(T1, . . . , Tκ), let gT : Z → [κ] be a function where gT(z) = argmaxi∈[κ] {hTi (z)}. By defini-
tion, the set F̄R consists of the functions gT across all κ-tuples of regression trees T with at
most ` leaves. Let z1, . . . , zN ∈ Z be a set of problem instances. Our goal is to bound the
number of ways the functions gT can label these instances. A single regression tree induces a
partition of these N problem instances defined by which leaf each instance is mapped to as we
apply the tree’s inequality tests. The key step in this proof is bounding the total number of
partitions we can induce by varying the tree’s inequality tests. We then generalize this intuition
to bound the number of partitions κ regression trees can induce as we vary all their parameters.
Once the partition of each regression tree is fixed, the tree with the largest prediction for each
problem instance depends on the relative ordering of the constants at the trees’ leaves. There
is a bounded number of possible relative orderings, and we aggregate all of these bounds to
prove the lemma statement.

We now move on to the full proof of the lemma. In this proof, to simplify notation, we will
denote the feature vector φ(z) as z ∈ Rm. For each κ-tuple of regression trees T = (T1, . . . , Tκ),
let gT : Z → [κ] be a function where gT(z) = argmaxi∈[κ] {hTi (z)}. By definition, the set F̄R
consists of the functions gT across all κ-tuples of regression trees T with at most ` leaves. We
will assume, without loss of generality, that all trees are full.
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Let N be the the Natarajan dimension of F̄R and let z1, . . . , zN ∈ Z be a set of N problem
instances that are multi-class shattered by F̄R. This implies that

2N ≤

∣∣∣∣∣∣∣

 gT(z1)

...
gT(zN)

 : T is a κ-tuple of regression trees


∣∣∣∣∣∣∣ . (9.7)

In this proof, we show that the right-hand-side of this inequality is bounded by mκ(`−1)(N`)`κ(κ`)κ`,
which implies that N = O(`κ log(`κm)).

To this end, we begin by focusing on a single regression tree T. We analyze the number
of ways the tree can partition the instances z1, . . . , zN as we vary the parameters of T. Each
internal node of T performances an inequality test on some feature of the input, so it is defined
by a feature index i ∈ [m] and a threshold θ ∈ R. Since there are ` leaves, there are ` − 1
internal nodes. First, we fix the indices of all internal nodes, which leaves ` − 1 real-valued
thresholds to analyze. At a particular internal node ν, let j be the index of the feature on which
the node performs an inequality test and let θν be the threshold (where the index j is fixed by
the threshold θν is not fixed). Whether or not the instance zi would be sorted into the left or
right child of the node depends on whether or not

zi[j] ≤ θν (9.8)

(where zi[j] is the jth coordinate of the vector zi). For each problem instance zi, there are
therefore `− 1 hyperplanes splitting the set of thresholds R`−1 into regions where if we use
thresholds from within any one region, the path that the instance zi takes through the tree
(from root to leaf) is constant. The same holds for all N problem instances, leading to a total
of N(` − 1) hyperplanes in R`−1. In total, these hyperplanes split R`−1 into at most (N`)`

regions where if we use the thresholds from within any one region, the path that each of the N
problem instances takes through the tree is constant [Buck, 1943]. Since this is true no matter
how we fix the feature indices of each interval node, tuning all parameters of the tree T (both
the feature indices and the thresholds) can induce at most m`−1(N`)` different partitions of the
N problem instances.

Said another way, for any tree T and instance z ∈ Z , let λT(z) ∈ [`] be the index of the
leaf that the instance z is mapped to as we apply the inequality tests defined by the internal
nodes of T. As we vary the tree T, the vector (λT (z1) , . . . , λT (zN)) ∈ [`]N will take on at most
m`−1(N`)` different values.

We now aggregate this reasoning across all κ regression trees. For any instance z ∈ Z
and any κ-tuple of regression trees T = (T1, . . . , Tκ), let ΛT(z) ∈ [`]κ be a vector where for each
j ∈ [κ], the jth component of ΛT(z) is the index of the leaf that the instance z is mapped to as we
apply the inequality tests defined by the tree Tj. In other words, ΛT(z) = (λT1(z), . . . , λTκ (z)).
As we vary T , the matrix

(
ΛT (z1) . . . ΛT (zN)

)
=

λT1 (z1) · · · λT1 (zN)
...

. . .
...

λTκ (z1) · · · λTκ (zN)


will take on at most m(`−1)κ(N`)`κ different values. After all, the first row of the matrix can
take on at most m`−1(N`)` different values as we vary the tree T1, the second row can take on
at most m`−1(N`)` different values as we vary T2, and so on.
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Now, consider the set of all κ-tuples of regression trees T where (ΛT (z1) , . . . , ΛT (zN))
is constant. Across all such T = (T1, . . . , Tκ), we know exactly which leaf each instance zi
maps to for all κ trees. For each each instance zi, the tree with the largest label—or in other
words, the value of the multi-class function gT(zi)—only depends on the relative order of the
leaves’ predictions. Since there is a total of κ` leaves, there are at most (κ`)κ` such orderings.
Combining this bound with the bound from the previous paragraph, we have that∣∣∣∣∣∣∣


 gT(z1)

...
gT(zN)

 : T is a κ-tuple of regression trees


∣∣∣∣∣∣∣ ≤ m(`−1)κ(N`)`κ(κ`)κ`.

From Equation (9.7), we have that 2N ≤ m(`−1)κ(N`)`κ(κ`)κ`, so N = O(`κ log(`κm)).

Corollary 9.3.3. Suppose the dual functions are piecewise-constant with at most t pieces and we limit
ourselves to building regression trees with at most ` leaves. Then Pdim (UFR ) = O(`κ log(`κm) +
κ log t).

This pseudo-dimension bound reflects the end-to-end nature of our analysis, since the guar-
antee bounds the generalization error of both selecting the portfolio and training the regression
tree performance model. This is why the bound grows with both the size of the portfolio (κ)
and the complexity of the regression trees (` and m).

9.3.3 Clustering-based algorithm selectors

We now provide guarantees for clustering-based algorithm selectors, which have also been
used in prior research [Kadioglu et al., 2010]. This type of selector clusters the feature vectors
φ(z1), . . . , φ(zN) ∈ Rm and chooses a good parameter setting for each cluster. On a new instance
z, the selector determines which cluster center is closest to φ(z) and runs the algorithm using
the parameter setting assigned to that cluster. More formally, let ρ = (ρ1, . . . , ρκ) be a set of
parameter settings and let x1, . . . , xκ ∈ Rm be a set of vectors. We define the matrix

X =

 . . .

x1
. . . xκ

. . .

 ,

where each column xi is meant to represent a cluster center. We define the algorithm selector
fρ,X(z) = ρi where i = argminj∈[κ]

{∥∥xj − φ(z)
∥∥

p

}
, for some `p-norm with p ≥ 1. The class of

algorithm selectors is FC =
{

fρ,X : ρ ∈ Rκ, X ∈ Rm×κ
}

.

Lemma 9.3.4. For any p ∈ [1, ∞), the Natarajan dimension of F̄C is O(mκ log(mκp)).

Proof. We begin with a proof sketch. For each matrix X, let gX : Z → [κ] be defined such that

gX(z) = argmini∈[κ]

{
‖xi − φ(z)‖p

p

}
.

By definition, F̄C = {gX : X ∈ Rm×κ}. Let z1, . . . , zN ∈ Z be a set of problem instances. Our
goal is to bound the number of ways the functions gX can label these instances as we vary
X ∈ Rm×κ. We do so by analyzing, for each instance zi, the boundaries in Rm×κ where if we
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shift X from one side of the boundary to the other, the column in X closest to φ (zi) changes. We
show that these boundaries are defined by multi-dimensional polynomials. We bound the total
number of regions these boundaries induce in Rm×κ, which implies a bound on the Natarajan
dimension of F̄C.

We now move the full proof of the lemma. In this proof, to simplify notation, we will denote
the feature vector φ(z) as z ∈ Rm. For each matrix X ∈ Rm×κ, let gX : Z → [κ] be a function
where

gX(z) = argmini∈[κ]

{
‖xi − z‖p

p

}
.

By definition, F̄C = {gX : X ∈ Rm×κ}. Let N be the Natarajan dimension of F̄C and let
z1, . . . , zN ∈ Z be a set of N problem instances that are multi-class shattered by F̄C. This
implies that

2N ≤

∣∣∣∣∣∣∣

 gX(z1)

...
gX(zN)

 : X ∈ Rm×κ


∣∣∣∣∣∣∣ . (9.9)

In this proof, we analyze the partition of the parameter space Rm×κ into regions where in any
one region R ⊆ Rm×κ, across all matrices X ∈ R, the vector (gX(z1), . . . , gX(zN)) is constant.

We begin by subdividing Rm×κ into regions P1, . . . , PT ⊆ Rm×κ where in any one region P,
across all X ∈ P, either the `th component of zq is smaller than the `th component of xj, i.e.
zq[`] ≤ xj[`], or vice versa (but not both) for all q ∈ [N], j ∈ [κ], and ` ∈ [m]. This is partition is
defined by Nκm hyperplanes in Rmκ, so there are T ≤ (Nκm + 1)mκ such regions [Buck, 1943].

Next, fix one of these T regions P ⊆ Rm×κ. Without loss of generality, assume that the `th

component of zq is smaller than the `th component of xj, i.e. zq[`] ≤ xj[`] for all q ∈ [N], j ∈ [κ],
and ` ∈ [m]. For any two labels i, j ∈ [κ] and any q ∈ [N], whether or not∥∥xi − zq

∥∥p
p ≥

∥∥xj − zq
∥∥p

p (9.10)

directly depends on the sign of the polynomial

hq,i,j(X) :=
m

∑
`=1

(
xi[`]− zq[`]

)p −
(
xj[`]− zq[`]

)p .

We know there are at most
(

Nκ2 p
)mκ regions partitioning P so that in any one region R, across

all X ∈ R, either hq,i,j(X) ≤ 0 or hq,i,j(X) > 0 (but not both) for all q ∈ [N] and i, j ∈ [κ] [Anthony
and Bartlett, 2009]. For any such region R, across all X ∈ R, all pairwise comparisons as in
Equation (9.10) are fixed, so the vector (gX(z1), . . . , gX(zN)) is constant. In total, there are at
most (Nκm + 1)mκ

(
Nκ2 p

)mκ ≤ (2N2κ3 p`)mκ regions, which implies that∣∣∣∣∣∣∣

 gX(z1)

...
gX(zN)

 : X ∈ Rm×κ


∣∣∣∣∣∣∣ ≤ (2N2κ3 p`)mκ.

Combining this inequality with Equation (9.9), we have that 2N ≤ (2N2κ3 p`)mκ, so N =
O(mk log(mκp)).

Lemma 9.3.4 and Theorem 9.2.3 imply the following bound.

Corollary 9.3.5. Suppose the dual functions are piecewise-constant with at most t pieces. Then the
pseudo-dimension of UFC is Õ (mκ + κ log t).
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9.4 Learning procedure with guarantees

In this section, we use the results from the previous section to provide guarantees for the
high-level learning procedure outlined in Section 9.1:

1. Draw a training set of problem instances S ∼ DN .

2. Use the training set S to select a set of κ or fewer parameter settings P̂ ⊆ R.

3. Use S to learn an algorithm selector f̂ ∈ F that maps problem instances z ∈ Z to
parameter settings f̂ (z) ∈ P̂ .

Our guarantees depend on the quality of the portfolio P̂ and selector f̂ , as formalized by
the following definition.

Definition 9.4.1. Given a training set S ⊆ ZN and parameters α ∈ (0, 1], β ∈ [0, 1], and
ε ∈ [0, 1], we say the portfolio P̂ and the algorithm selector f̂ are (α, β, ε)-optimal if:

1. The portfolio P̂ is nearly optimal over the training set in the sense that

1
N ∑

z∈S
max
ρ∈P̂

uρ(z) ≥ α max
P⊂R:|P|≤κ

1
N ∑

z∈S
max
ρ∈P

uρ(z)− β.

(The maximization means that performance is measured with respect to an oracle that
selects an optimal algorithm parameter ρ from the portfolio for each instance.)

2. The algorithm selector f̂ returns high-performing parameter settings from the set P̂ in
the sense that

1
N ∑

z∈S
u f̂ (z)(z) ≥ 1

N ∑
z∈S

max
ρ∈P̂

uρ(z)− ε. (9.11)

For example, when algorithmic performance as a function of the parameters is piecewise
constant, there are only a finite number of meaningfully different parameter values to choose
among, one per piece. Then, since ∑z∈S maxρ∈P̂ uρ(z) is a submodular function of the portfolio
P̂ , we can use a greedy algorithm to select the portfolio P̂ , and we obtain α = 1− 1

e and β = 0.
Alternatively, an integer programming technique could be used to select the optimal portfolio
from the finite set of candidate parameter values, in which case we would obtain α = 1 and
β = 0. Moreover, the value ε can be calculated directly from the training set.

The following theorem bounds the difference between the expected performance of the
chosen selector f̂ and an oracle that selects an optimal selector and an optimal portfolio.

Theorem 9.4.2. Suppose that each dual function u∗z is piecewise constant with at most t pieces. Given
a training set S ⊆ Z of size N, suppose we learn an (α, β, ε)-optimal portfolio P̂ ⊂ R and algorithm
selector f̂ : Z → P̂ in F . With probability 1− δ over the draw of the training set S ∼ DN ,

E
z∼D

[
u f̂ (z)(z)

]
≥ α max

P :|P|≤κ
E

[
max
ρ∈P

uρ(z)

]
− ε− β− Õ

H

√
d̄ + κ

N

 ,

where d̄ is the Natarajan dimension of F̄ .
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Proof. First, let

P∗ = argmaxP⊂R:|P|≤κ E
z∼D

[
max
ρ∈P

uρ(z)

]
.

A Hoeffding bound implies that with probability 1− δ,

E
z∼D

[
max
ρ∈P∗

uρ(z)

]
≤ 1

N ∑
z∈S

max
ρ∈P∗

uρ(z) + Õ

(
H

√
1
N

)
.

Combining this inequality with Definition 9.4.1, we have that

E
z∼D

[
max
ρ∈P∗

uρ(z)

]
≤ 1

α

(
1
N ∑

z∈S
max
ρ∈P̂

uρ(z) + β

)
+ O

(
H

√
1
N

log
1
δ

)

≤ 1
α

(
1
N ∑

z∈S
u f̂ (z)(z) + ε + β

)
+ O

(
H

√
1
N

log
1
δ

)
.

From Theorem 9.2.3, we know that with probability 1− δ,

E
z∼D

[
max
ρ∈P∗

uρ(z)

]
≤ 1

α

 E
z∼D

[
u f̂ (z)(z)

]
+ Õ

H

√
d̄ + κ

N

+ ε + β

 .

Therefore, the theorem statement holds.

By a parallel argument, we can obtain symmetric guarantees when our goal is to minimize
rather than maximize a performance measure.

9.5 Experiments

We provide experiments that illustrate the tradeoff we investigated from a theoretical per-
spective in the previous sections: as we increase the portfolio size, we can hope to include a
well-suited parameter setting for any problem instance, but it becomes increasingly difficult to
avoid overfitting. We illustrate this in the context of integer programming algorithm configu-
ration. We configure CPLEX, one of the most widely used commercial solvers. CPLEX uses
the branch-and-cut (B&C) algorithm (branch-and-bound with cutting planes, primal heuristics,
preprocessing, etc.) to solve integer programs (IPs). We tune a parameter ρ ∈ [0, 1] of CPLEX
that controls its variable selection policy2. Specifically, ρ parameterizes the linear scoring rule intro-
duced in Section 4.2. As in Chapters 4 and 8, our goal is to find parameter settings leading to
small trees, so we define uρ(z) to be the size of the tree B&C builds. We aim to learn a portfolio

P̂ and selector f̂ resulting in small expected tree size E

[
u f̂ (z)(z)

]
.

2We override the default variable selection of CPLEX 12.8.0.0 using the C API. All experiments were run on a
64-core machine with 512 GB of RAM, a m4.16xlarge Amazon AWS instance, and a cluster of m4.xlarge Amazon
AWS instances.
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Distribution over IPs. As in Chapters 4 and 8, we analyze a distribution over IPs formu-
lating the combinatorial auction winner determination problem under the OR-bidding lan-
guage [Sandholm, 2002], which we generate using the Combinatorial Auction Test Suite [Leyton-
Brown et al., 2000]. We use the “arbitrary” generator with 200 bids and 100 goods, resulting in
IPs with around 200 variables, and the “regions” generator with 400 bids and 200 goods, result-
ing in IPs with around 400 variables. We define a heterogeneous distribution D as follows: with
equal probability, we draw an instance from the “arbitrary” or “regions” distribution. To assign
features to these IPs, we use all the features developed in prior research by Leyton-Brown et al.
[2000] and Hutter et al. [2014], resulting in 140 features.

Experimental procedure. We first learn a portfolio of size 10 in the following way. We draw
a training set of M = 1000 IPs z1, . . . , zM ∼ D and solve for the dual functions u∗z1

, . . . , u∗zM
—

which measure tree size as a function of the parameter ρ—using the algorithm described in
Section 4.3.3. These functions are piecewise-constant with at most t pieces, for some t ∈ N.
Therefore, there are at most Mt parameter settings leading to different algorithmic perfor-
mance over the training set. Let P̄ be this set of parameter settings. We use a greedy al-
gorithm to select 10 parameter settings from P̄ . First, we find a parameter setting ρ1 which
minimizes average tree size over the training set: ρ1 ∈ argmin ∑M

i=1 uz∗i (ρ). Then, we find
a parameter setting ρ2 that minimizes average tree size when the better of ρ1 or ρ2 is used:
ρ2 ∈ argmin ∑M

i=1 min
{

uz∗i (ρ), uz∗i (ρ1)
}

. We continue greedily until we have a portfolio P̂ =

{ρ1, . . . , ρ10}.
We then use a regression forest to select among parameter settings in the portfolio P̂ .

Prior research [Hutter et al., 2014] has illustrated that regression forests can be strong pre-
dictors of B&C runtime. Here, we use them to predict B&C tree size. A regression forest
is a set F = {T1, . . . , TM} of regression trees (which we reviewed in Section 9.3.2). On an
input IP z, the regression forest’s prediction, denoted hF(z), is the average of the trees’ pre-
dictions: hF(z) = 1

M ∑M
i=1 hTi (z). We learn regression forests F1, . . . , F10 for each of the 10 pa-

rameter settings in the portfolio P̂ . We then define the algorithm selector f̂ (z) = ρi where
i = argmin {hF1(z), . . . , hF10(z)}.

To learn the regression forest, we draw a training set z1, . . . , zN ∼ D of IPs (with N specified
below). For each parameter setting ρi ∈ P̂ and IP zj, we compute uρi

(
zj
)
, the size of the tree

B&C builds using the parameter setting ρi. We then train the regression forest Fi corresponding
to the parameter setting ρi using the labeled training set {(z1, uz1 (ρi)) , . . . , (zN , uzN (ρi))}. We
use Python’s scikit-learn regression forest implementation [Pedregosa et al., 2011] with the
default parameter settings.

In Figure 9.1a, we plot the performance of the regression forests as we increase the sizes of
both the training set and the portfolio. We denote the training set size as N, which ranges from
100 to 200,000. For a given choice of N, we first train the 10 regression forests F1, . . . , F10 using
the method described above. We then evaluate performance as a function of the portfolio size.
Specifically, for each portfolio size κ ∈ [10], we define an algorithm selector f̂κ(z) = ρi where
i = argmin {hF1(z), . . . , hFκ (z)}. We draw Nt = 104 test instances St ∼ DNt and evaluate the
performance of f̂κ on the test set. We denote the average test performance as

v̂κ =
1

Nt
∑

z∈St

u f̂κ(z) (z) . (9.12)

In Figure 9.1a, we plot the multiplicative performance improvement we obtain as we increase
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(a) Plot with portfolio sizes 1

through 10.
(b) Legend for Figures 9.1a
and 9.1c.

(c) Plot with portfolio sizes 1

through 20.

Figure 9.1: In Figures 9.1a and 9.1c, we plot the multiplicative tree size improvement we obtain
as we increase both the portfolio size along the horizontal axis and the size of the training set,
denoted N. Fixing a training set size and letting v̂κ be the average tree size we obtain over
the test set using a portfolio of size κ (see Equation (9.12)), we plot v̂κ/v̂1. In Figure 9.1a, the
portfolio size ranges from 1 to 10 and the training set size N ranges from 100 to 200,000. In
Figure 9.1c, the portfolio size ranges from 1 to 20 and the training set size ranges from 100

to 1000. In Figure 9.1a, we also plot a similar curve for the test performance of the oracle
algorithm selector, as well as the training performance of the learned algorithm selector when
N = 2 · 105.

κ. Specifically, we plot v̂κ/v̂1. These are the blue solid (N = 102), orange dashed (N = 103),
green dotted (N = 104), and purple dashed (N = 2 · 105) lines. By the iterative fashion we
constructed the portfolio, v̂1 is the performance of the best single parameter setting for the
particular distribution, so v̂1 is already highly optimized.

We plot a similar curve for the test performance of the oracle algorithm selector which
always selects the optimal parameter setting from the portfolio. Specifically, for each portfolio
size κ ∈ [10], let f ∗κ be the oracle algorithm selector f ∗κ (z) = argminρ1,...,ρκ

uρi (z). Given a test set
St ∼ DNt , we define the average test performance of f ∗κ as

v∗κ =
1

Nt
∑

z∈St

u f ∗κ (z) (z) .

The blue dotted line equals v∗κ/v∗1 as a function of κ.
Finally, when the training set is of size N = 2 · 105, we provide a similar curve for the

training performance of the learned algorithm selectors f̂κ. Letting z1, . . . , zN be the training
set, we denote the average training performance as

ṽκ =
1
N

N

∑
i=1

u f ∗κ (zi) (zi) .

The yellow solid line equals ṽκ/ṽ1 as a function of the portfolio size κ.
In Figure 9.1c, we plot v̂κ/v̂1 as a function of the portfolio size κ for larger portfolio sizes

ranging from 1 to 20. We greedily extend the portfolio P̂ to include an additional 20 parameter
settings. We then train 20 regression forests using freshly drawn training sets of size 100 and
1000. This plot illustrates the fact that as we increase the portfolio size, overfitting causes test
performance to worsen.

151



Discussion. Focusing first on test performance using the largest training set size N = 2 · 105,
we see that test performance continues to improve as we increase the portfolio size, though
training and test performance steadily diverge. This illustrates the tradeoff we investigated
from a theoretical perspective in this chapter: as we increase the portfolio size, we can hope
to include a well-suited parameter setting for every instance, but the generalization error will
worsen. Figure 9.1c shows that for a given training set size, there is a portfolio size after which
test performance actually starts to get strictly worse, as our theory predicts. In other words,
we observe overfitting: the learned algorithm selector has strong average performance over the
training set but poor test performance.
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Chapter 10

Estimating approximate incentive
compatibility

In this chapter, we return to sample complexity questions in the context of mechanism design,
though in a new context. In Chapter 5, we analyzed the number of samples sufficient to learn an
incentive compatible mechanism with high revenue, profit, or social welfare. The mechanisms
used in practice, however, are often not incentive compatible; they are manipulable. This is the
case in many settings for selling, buying, matching (such as school choice), voting, and so on.
In this chapter, we present techniques for estimating how far a mechanism is from incentive
compatible. Given samples from the agents’ type distribution, we show how to estimate the
extent to which an agent can improve his utility by misreporting his type.

Examples of manipulable mechanisms abound in practice. For example, most real-world
auctions are implemented using the first-price mechanism. In multi-unit sales settings, the U.S.
Treasury has used discriminatory auctions, a variant of the first-price auction, to sell treasury
bills since 1929 [Krishna, 2002]. Similarly, electricity generators in the U.K. use discriminatory
auctions to sell their output [Krishna, 2002]. Sponsored search auctions are typically imple-
mented using variants of the generalized second-price auction [Edelman et al., 2007, Varian,
2007]. Many major display ad exchanges including Google and Index Exchange have tran-
sitioned to first-price auctions, driven by ad buyers who believe it offers a higher degree of
transparency [Despotakis et al., 2019, Harada, 2018, Parkin, 2018, Sluis, 2019]. Finally, nearly
all fielded combinatorial auctions are manipulable. Essentially all combinatorial sourcing auc-
tions are implemented using the first-price mechanism [Sandholm, 2013]. Combinatorial spec-
trum auctions are conducted using a variety of manipulable mechanisms. Even the “incentive
auction” [Leyton-Brown et al., 2017] used to source spectrum licenses back from low-value
broadcasters—which has sometimes been hailed as obviously incentive compatible—is ma-
nipulable once one takes into account the fact that many owners own multiple broadcasting
stations, or the fact that stations do not only have the option to keep or relinquish their license,
but also the option to move to (two) less desirable spectrum ranges [Nguyen and Sandholm,
2015].

A variety of reasons have been suggested to help explain why manipulable mechanisms are
used in practice. To name a few,

1. Oftentimes, the rules are easier to explain, as exemplified by the exceptionally simple
first-price auction.
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2. Incentive compatibility can cease to hold when determining one’s own valuation is costly
(for example, due to computation or information gathering effort), even for the classic
Vickrey auction [Sandholm, 2000]. This is also true of the Vickrey-Clarke-Groves (VCG)
mechanism, which requires bidders to submit bids for every bundle, a task that generally
requires a prohibitive amount of valuation computation or information acquisition [Co-
nen and Sandholm, 2001, Parkes, 1999, Sandholm, 1993, Sandholm and Boutilier, 2006].

3. Single-shot incentive compatible mechanisms are generally not incentive compatible when
the bid-taker uses bids from one auction to adjust the parameters of later auctions [Ac-
quisti and Varian, 2005, Amin et al., 2013, Sandholm, 2013].

4. Incentive compatible mechanisms may leak the agents’ private information [Rothkopf
et al., 1990].

5. Incentive compatibility typically ceases to hold if agents are not risk neutral (i.e., the
utility functions are not quasi-linear).

Due in part to the ubiquity of manipulable mechanisms, a growing body of additional re-
search has explored mechanisms that are not incentive compatible [Archer et al., 2004, Azevedo
and Budish, 2018, Conitzer and Sandholm, 2007, Dekel et al., 2010, Dütting et al., 2015, 2019,
Feng et al., 2018, Golowich et al., 2018, Kothari et al., 2003, Lubin and Parkes, 2012, Mennle and
Seuken, 2014]. A popular and widely-studied relaxation of incentive compatibility is γ-incentive
compatibility [Archer et al., 2004, Azevedo and Budish, 2018, Dekel et al., 2010, Dütting et al.,
2015, Kothari et al., 2003, Lubin and Parkes, 2012, Mennle and Seuken, 2014], which requires
that no agent can improve his utility by more than γ when he misreports his type.

The results in this section are joint work with Nina Balcan and Tuomas Sandholm [Balcan
et al., 2019]. Our current results were published in EC 2019.

10.1 Our contributions

Much of the literature on γ-incentive compatibility rests on the strong assumption that the
agents’ type distribution is known. In reality, this information is rarely available. We relax
this assumption and instead assume we only have samples from the distribution [Likhodedov
and Sandholm, 2004, 2005, Sandholm and Likhodedov, 2015]. We present techniques with
provable guarantees that the mechanism designer can use to estimate how far a mechanism
is from incentive compatible. We analyze both the ex-interim and ex-ante1 settings: in the ex-
interim case, we bound the amount any agent can improve his utility by misreporting his type,
in expectation over the other agents’ types, no matter his true type. In the weaker ex-ante
setting, the expectation is also over the agent’s true type as well. In the ex-interim case, we
adopt the common assumption that each agent’s type is drawn independently from the other
agents’ types. In the ex-ante case, we drop this assumption: the agents’ types may be arbitrarily
correlated.

Our estimate is simple: it measures the maximum utility an agent can gain by misreporting
his type on average over the samples, whenever his true and reported types are from a finite

1We do not study ex-post or dominant-strategy approximate incentive compatibility because they are worst-case,
distribution-independent notions. Therefore, we cannot hope to measure the ex-post or dominant-strategy approxi-
mation factors using samples from the agents’ type distribution.
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Mechanisms Upper bound on estimation error

First-price single-item auction Õ
(

κ−1+n√
N

)
First-price combinatorial auction over ` items Õ

(
κ−1+(n+1)2`

√
`√

N

)
Generalized second-price auction Õ

(
κ−1+n3/2
√

N

)
Discriminatory auction over m units of a single good Õ

(
κ−1+nm2
√

N

)
Uniform-price auction over m units of a single good Õ

(
κ−1+nm2
√

N

)
Second-price auction with spiteful bidders Õ

(
κ−1+n√

N

)
Table 10.1: Our estimation error upper bounds. The value κ is defined such that [0, κ] contains
the range of the density functions defining the agents’ type distribution. There are n buyers
and N samples.

subset of the type space. We bound the difference between our incentive compatibility estimate
and the true incentive compatibility approximation factor γ.

Accurately estimating the approximation factor γ provides the mechanism designer with
a data-dependent metric for choosing among manipulable mechanisms, which can be used in
conjunction with other metrics such as expected revenue. When the distribution over agents’
types is unknown, as we assume it is, one cannot use a distribution-dependent, analytic ap-
proach to deriving the approximation factor γ. However, a distribution-independent bound
on the approximation factor that holds even for a worst-case distribution over types may be
uninformative when the underlying distribution is not worst case. The estimate of the dis-
tribution’s incentive compatibility approximation factor that we provide allows a mechanism
designer to make a more informed decision when selecting a manipulable mechanism to field.
As a concrete example, deep learning is increasingly being used to learn mechanisms from
within classes of manipulable mechanisms [Dütting et al., 2019, Feng et al., 2018, Golowich
et al., 2018, Shen et al., 2019]. Our guarantees can be used to better understand how suscepti-
ble the resulting mechanism is to strategic manipulation.

We apply our estimation technique to a variety of auction classes, summarized in Ta-
ble 10.1. We begin with the first-price auction, in both single-item and combinatorial set-
tings. Our guarantees can be used by display ad exchanges, for instance, to measure the extent
to which incentive compatibility will be compromised if the exchange transitions to using
first-price auctions [Harada, 2018, Parkin, 2018]. In the single-item setting, we prove that the
difference between our estimate and the true incentive compatibility approximation factor is
Õ
((

n + κ−1) /
√

N
)

, where n is the number of bidders, N is the number of samples, and [0, κ]

contains the range of the density functions defining the agents’ type distribution. We prove the
same bound for the second-price auction with spiteful bidders [Brandt et al., 2007, Morgan et al.,
2003, Sharma and Sandholm, 2010, Tang and Sandholm, 2012b], where each bidder’s utility not
only increases when his surplus increases but also decreases when the other bidders’ surpluses
increase.

In a similar direction, we analyze the class of generalized second-price auctions [Edelman
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et al., 2007], where m sponsored search slots are for sale. The mechanism designer assigns a
real-valued weight per bidder, collects a bid per bidder indicating their value per click, and
allocates the slots in order of the bidders’ weighted bids. In this setting, we prove that the
difference between our incentive compatibility estimate and the true incentive compatibility
approximation bound is Õ

((
n3/2 + κ−1) /

√
N
)

.

We also analyze multi-parameter mechanisms beyond the first-price combinatorial auction,
namely, the uniform-price and discriminatory auctions, which are used extensively in markets
around the world [Krishna, 2002]. In both, the auctioneer has m identical units of a single good
to sell. Each bidder submits m bids indicating their value for each additional unit of the good.
The number of goods the auctioneer allocates to each bidder equals the number of bids that
bidder has in the top m bids. Under a discriminatory auction, each agent pays the amount she
bid for the number of units she is allocated. Under a uniform-price auction, the agents pay the
market-clearing price, meaning the total amount demanded equals the total amount supplied.
In both cases, we prove that the difference between our incentive compatibility estimate and
the true incentive compatibility approximation bound is Õ

((
nm2 + κ−1) /

√
N
)

.

A strength of our estimation techniques is that they are application-agnostic. For example,
they can be used as a tool in incremental mechanism design [Conitzer and Sandholm, 2007], a
subfield of automated mechanism design [Conitzer and Sandholm, 2002, Sandholm, 2003], where
the mechanism designer gradually adds incentive compatibility constraints to her optimization
problem until she has met a desired incentive compatibility guarantee.

Key challenges. To prove our guarantees, we must estimate the value γ defined such that
no agent can misreport his type in order to improve his expected utility by more than γ, no
matter his true type. We propose estimating γ by measuring the extent to which an agent can
improve his utility by misreporting his type on average over the samples, whenever his true
and reported types are from a finite subset G of the type space. We denote this estimate as γ̂.
The challenge is that by searching over a subset of the type space, we might miss pairs of types
θ and θ̂ where an agent with type θ can greatly improve his expected utility by misreporting
his type as θ̂. Indeed, utility functions are often volatile in mechanism design settings. For
example, under the first- and second-price auctions, nudging an agent’s bid from below the
other agents’ largest bid to above will change the allocation, causing a jump in utility. Thus,
there are two questions we must address: which finite subset should we search over and how
do we relate our estimate γ̂ to the true approximation factor γ?

We provide two approaches to constructing the cover G. The first is to run a greedy pro-
cedure based off a classic algorithm from theoretical machine learning. This approach is ex-
tremely versatile: it provides strong guarantees no matter the setting. However, it may be
difficult to implement.

Meanwhile, implementing our second approach is straightforward: the cover is simply a
uniform grid over the type space (assuming the type space equals [0, 1]m for some integer
m). The efficacy of this approach depends on a “niceness” property that holds under mild
assumptions. To analyze this second approach, we must understand how the edge-length of
the grid effects our error bound relating the estimate γ̂ to the true approximation factor γ.
To do so, we rely on the notion of dispersion [Balcan et al., 2018b]. Roughly speaking, a set of
piecewise Lipschitz functions is (w, k)-dispersed if every ball of radius w in the domain contains
at most k of the functions’ discontinuities. Given a set of N samples from the distribution over
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agents’ types, we analyze the dispersion of function sequences from two related families. In
both families, the function sequences are of length N: each function is defined by one of the
N samples. In the first family, each sequence is defined by a true type θ and measures a fixed
agent’s utility as a function of her reported type θ̂, when the other agents’ bids are defined by
the samples. In the second family, each sequence is defined by a reported type θ̂ and measures
the agent’s utility as a function of her true type θ. We show that if all function sequences from
both classes are (w, k)-dispersed, then we can use a grid with edge-length w to discretize the
agents’ type space.

We show that for a wide range of mechanism classes, dispersion holds under mild assump-
tions. As we describe more in Section 10.4.1, this requires us to prove that with high probability,
each function sequence from several infinite families of sequences is dispersed. This facet of our
analysis is notably different from prior research by Balcan et al. [2018b]: in their applications, it
is enough to show that with high probability, a single, finite sequence of functions is dispersed.
Our proofs thus necessitate that we carefully examine the structure of the utility functions
that we analyze. In particular, we prove that across all of the infinitely-many sequences, the
functions’ discontinuities are invariant. As a result, it is enough to prove dispersion for single
generic sequence in order to guarantee dispersion for all of the sequences.

Finally, we prove that for both choices of the cover G, so long as the intrinsic complex-
ities of the agents’ utility functions are not too large (as measured by the learning-theoretic
notion of pseudo-dimension [Pollard, 1984]), then our estimate γ̂ quickly converges to the true
approximation factor γ as the number of samples grows.

10.2 Additional related research

10.2.1 Prior and contemporaneous research

Strategy-proofness in the large. Azevedo and Budish [2018] propose a variation on approx-
imate incentive compatibility called strategy-proofness in the large (SP-L). SP-L requires that it is
approximately optimal for agents to report their types truthfully in sufficiently large markets.
As in this chapter, SP-L is a condition on ex-interim γ-incentive compatibility. The authors argue
that SP-L approximates, in large markets, attractive properties of a mechanism such as strategic
simplicity and robustness. They categorize a number of mechanisms as either SP-L or not. For
example, they show that the discriminatory auction is manipulable in the large whereas the
uniform-price auction is SP-L. Measuring a mechanism’s SP-L approximation factor requires
knowledge of the distribution over agents’ types, whereas we only require sample access to
this distribution. Moreover, we do not make any large-market assumptions: our guarantees
hold regardless of the number of agents.

Comparing mechanisms by their vulnerability to manipulation. Pathak and Sönmez [2013]
analyze ex-post incentive compatibility without any connection to approximate incentive com-
patibility. They say that one mechanism M is at least as manipulable as another M′ if every type
profile that is vulnerable to manipulation under M is also vulnerable to manipulation under M′.
They apply their formalism in the context of school assignment mechanisms, the uniform-price
auction, the discriminatory auction, and several keyword auctions. We do not study ex-post ap-
proximate incentive compatibility because it is a worst-case, distribution-independent notion.
Therefore, we cannot hope to measure an ex-post approximation factor using samples from the
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agents’ type distribution. Rather, we are concerned with providing data-dependent bounds on
the ex-interim and ex-ante approximation factors. Another major difference is that our work
provides quantitative results on manipulability while theirs provides boolean comparisons as
to the relative manipulability of mechanisms. Finally, our measure applies to all mechanisms
while theirs cannot rank all mechanisms because in many settings, pairs of mechanisms are
incomparable according to their boolean measure.

Mechanism design via deep learning. In mechanism design via deep learning [Dütting et al.,
2019, Feng et al., 2018, Golowich et al., 2018, Shen et al., 2019], the learning algorithm receives
samples from the distribution over agents’ types. The resulting allocation and payment func-
tions are characterized by neural networks, and thus the corresponding mechanism may not be
incentive compatible. In an attempt to make these mechanisms nearly incentive compatible, the
authors of these works add constraints to the deep learning optimization problem enforcing
that the resulting mechanism be incentive compatible over a set of buyer values sampled from
the underlying, unknown distribution.

In research that was conducted simultaneously, Dütting et al. [2019] provide guarantees on
the extent to which the resulting mechanism—characterized by a neural network—is approxi-
mately incentive compatible, in the sense of expected ex-post incentive compatibility: in expectation
over all agents’ types, what is the maximum amount that an agent can improve her utility by
misreporting her type? This is a different notion of approximate incentive compatibility than
those we study. In short, we bound the maximum expected change in utility an agent can
induce by misreporting her type (Definition 10.3.1), no matter her true type, where the ex-
pectation is over the other agents’ types. In contrast, Dütting et al. [2019] bound the expected
maximum change in utility an agent can induce, where the expectation is over all agents’ types.
As a result, our bounds are complementary, but not overlapping. Moreover, the sets of mech-
anisms we analyze and Dütting et al. [2019] analyze are disjoint: Dütting et al. [2019] provide
bounds for mechanisms represented as neural networks, whereas we instantiate our guaran-
tees for single-item and combinatorial first-price auctions, generalized second-price auction,
discriminatory auction, uniform-price auction, and second-price auction with spiteful bidders.

Sample complexity of revenue maximization. A long line of research has studied revenue
maximization via machine learning from a theoretical perspective, focusing on incentive com-
patible mechanism classes (cited in Section 5.1). In this model, the mechanism designer receives
samples from the type distribution which she uses to find a mechanism with high average em-
pirical revenue over the samples. These papers provided generalization guarantees that bound
the generalization error of this approach, which is the difference between a mechanism’s aver-
age revenue over the samples and its expected revenue.

By contrast, in this chapter, the estimation error of our IC approximation factor has two
sources: 1) our discretization of the type space and 2) the fact that we do not know the type
distribution, but only have samples from it. To bound the first source of error, we cannot
rely on generalization bounds, which is why we rely on the notion of dispersion, as discussed
in Section 10.1. Dispersion was originally introduced in a very different context: online and
private optimization of piecewise-Lipschitz functions [Balcan et al., 2018b]. We demonstrate its
utility in this context as well.

In a related direction, Chawla et al. [2014, 2016, 2017] study counterfactual revenue estima-
tion. Given two auctions, they provide techniques for estimating one of the auction’s equilib-
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rium revenue from the other auction’s equilibrium bids. They also study social welfare in this
context. Thus, their research is tied to selling mechanisms, whereas we study more general
mechanism design problems from an application-agnostic perspective.

Incentive compatibility from a buyer’s perspective. Lahaie et al. [2018] also provide tools
for estimating approximate incentive compatibility, but from the buyer’s perspective rather
than the mechanism designer’s perspective. As such, the type of information available to their
estimation tools versus ours is different. Moreover, they focus on ad auctions, whereas we
study mechanism design in general and apply our techniques to a wide range of settings and
mechanisms.

10.2.2 Subsequent research

Sample complexity of learning interim utilities. In closely-related follow-up research, Fu
and Lin [2020] bound the sample complexity of learning agents’ interim utilities when the
agents follow any monotone bidding strategy, complete with nearly-matching lower bounds.
Their guarantees apply to the first-price and all-pay auctions.

New incentive compatibility metrics. Deng et al. [2020] propose a new metric to measure
how far from incentive compatible a manipulable mechanism is. It applies to single-parameter
mechanism design problems in both static and dynamic settings. They argue that their metric
can often be calculated more efficiently than traditional incentive compatibility approximation
factors.

Certifying the approximate incentive compatibility of auction networks. Drawing inspira-
tion from the neural network verification and adversarial learning literature, Curry et al. [2020]
propose a technique for providing a certifiable upper bound on the utility an agent can gain by
misreporting their bid under the RegretNet architecture of Dütting et al. [2019].

10.3 Preliminaries and notation

There are n agents who each have a type. We denote agent i’s type as θi, which is an element
of a (potentially infinite) set Θi. A mechanism takes as input the agents’ reported types, which
it uses to choose an outcome. We denote agent i’s reported type as θ̂i ∈ Θi. We denote all n
agents’ types as θ = (θ1, . . . , θn) and reported types as θ̂ =

(
θ̂1, . . . , θ̂n

)
. For i ∈ [n], we use

the standard notation θ−i ∈ ×j 6=iΘj to denote all n− 1 agents’ types except agent i. Using this
notation, we denote the type profile θ representing all n agents’ types as θ = (θi, θ−i). Similarly,
θ̂ =

(
θ̂i, θ̂−i

)
. We assume there is a distribution D over all n agents’ types, and thus the support

of D is contained in ×n
i=1Θi. We use D|θi to denote the conditional distribution given θi, so

the support of D|θi is contained in ×j 6=iΘj. We assume that we can draw samples θ(1), θ(2), . . .
independently from D.

Given a mechanism M and agent i ∈ [n], we use the notation ui,M
(
θ, θ̂
)

to denote the utility
agent i receives when the agents have types θ and reported types θ̂. We assume2 it maps to

2Our estimation error only increases by a multiplicative factor of H if the range of the utility functions is [−H, H]
instead of [−1, 1].
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[−1, 1]. When θ−i = θ̂−i, we use the simplified notation ui,M
(
θi, θ̂i, θ−i

)
:= ui,M

(
(θi, θ−i) ,

(
θ̂i, θ−i

))
.

At a high level, a mechanism is incentive compatible if no agent can ever increase her utility
by misreporting her type. A mechanism is γ-incentive compatible if each agent can increase
her utility by an additive factor of at most γ by misreporting her type [Archer et al., 2004,
Azevedo and Budish, 2018, Conitzer and Sandholm, 2007, Dekel et al., 2010, Dütting et al.,
2015, 2019, Feng et al., 2018, Golowich et al., 2018, Kothari et al., 2003, Lubin and Parkes, 2012,
Mennle and Seuken, 2014]. In this chapter, we concentrate on ex-interim approximate incentive
compatibility [Azevedo and Budish, 2018, Lubin and Parkes, 2012].

Definition 10.3.1. A mechanism M is ex-interim γ-incentive compatible if for each i ∈ [n] and
all θi, θ̂i ∈ Θi, agent i with type θi can increase her expected utility by an additive factor of at
most γ by reporting her type as θ̂i, so long as the other agents report truthfully. In other words,
Eθ−i∼D|θi

[ui,M (θi, θi, θ−i)] ≥ Eθ−i∼D|θi

[
ui,M

(
θi, θ̂i, θ−i

)]
− γ.

In our EC 2019 paper [Balcan et al., 2019], we also study ex-ante approximate incentive
compatibility, where the above definition holds in expectation over the draw of the types θ ∼ D.

We do not study ex-post3 or dominant-strategy4 approximate incentive compatibility because
they are worst-case, distribution-independent notions. Therefore, we cannot hope to measure
the ex-post or dominant-strategy approximation factors using samples from the agents’ type
distribution.

10.4 Estimating approximate ex-interim incentive compatibility

In this section, we show how to estimate the ex-interim incentive compatibility approximation
guarantee using data. We assume there is an unknown distribution D over agents’ types, and
we operate under the common assumption [Azevedo and Budish, 2018, Babaioff et al., 2017,
Cai and Daskalakis, 2017a, Cai et al., 2016, Goldner and Karlin, 2016, Hart and Nisan, 2012,
Lubin and Parkes, 2012, Yao, 2014] that the agents’ types are independently distributed. In
other words, for each agent i ∈ [n], there exists a distribution φi over their type space Θi such
that D = ×n

i=1φi. For each agent i ∈ [n], we receive a set S−i of samples independently drawn
from D−i = ×j 6=iφj. For each mechanism M ∈ M, we show how to use the samples to estimate
a value γ̂M such that:

With probability 1− δ over the draw of the n sets of samples S−1, . . . ,S−n, for any agent
i ∈ [n] and all pairs θi, θ̂i ∈ Θi, Eθ−i∼D−i

[
ui,M

(
θi, θ̂i, θ−i

)
− ui,M (θi, θi, θ−i)

]
≤ γ̂M.

To this end, one simple approach, informally, is to estimate γ̂M by measuring the extent
to which any agent i with any type θi can improve his utility by misreporting his type, av-
eraged over all profiles in S−i. In other words, we can estimate γ̂M by solving the following
optimization problem:

max
θi ,θ̂i∈Θi

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
. (10.1)

3A mechanism M is ex-post incentive compatible if for each i ∈ [n] and all θi, θ̂i ∈ Θi, and all θ−i ∈ ×j 6=iΘj, agent i
with type θi cannot increase her utility by reporting her type as θ̂i, so long as the other agents report truthfully. In
other words, ui,M (θi, θi, θ−i) ≥ ui,M

(
θi, θ̂i, θ−i

)
.

4A mechanism M is dominant-strategy incentive compatible if for each i ∈ [n] and all θi, θ̂i ∈ Θi, agent i with type
θi cannot increase her utility by reporting her type as θ̂i, no matter which types the other agents report. In other
words, for all θ−i, θ̂−i ∈ ×j 6=iΘj, ui,M

(
(θi, θ−i) ,

(
θi, θ̂−i

))
≥ ui,M

(
(θi, θ−i) ,

(
θ̂i, θ̂−i

))
.
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Unfortunately, in full generality, there might not be a finite-time procedure to solve this op-
timization problem, so in Section 10.4.1, we propose more nuanced approaches based on op-
timizing over finite subsets of Θi × Θi. As a warm-up and a building block for our main
theorems in that section, we prove that with probability 1− δ, for all mechanisms M ∈ M,

max
θi ,θ̂i∈Θi

{
E

θ−i∼D−i

[
ui,M

(
θi, θ̂i, θ−i

)
− ui,M (θi, θi, θ−i)

]}
≤ max

θi ,θ̂i∈Θi

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
+ εM(N, δ), (10.2)

where εM(N, δ) is an error term that converges to zero as the number N of samples grows. Its
convergence rate depends on the intrinsic complexity of the utility functions corresponding to
the mechanisms in M, which we formalize using the learning-theoretic tool pseudo-dimension.
We define pseudo-dimension below for an abstract class A of functions mapping a domain X
to [−1, 1].

We now use Theorem 2.1.3 to prove that the error term εM(N, δ) in Equation (10.2) con-
verges to zero as N increases. To this end, for any mechanism M, any agent i ∈ [n], and any
pair of types θi, θ̂i ∈ Θi, let ui,M,θi ,θ̂i

: ×j 6=iΘj → [−1, 1] be a function that maps the types θ−i

of the other agents to the utility of agent i with type θi and reported type θ̂i when the other
agents report their types truthfully. In other words, ui,M,θi ,θ̂i

(θ−i) = ui,M
(
θi, θ̂i, θ−i

)
. Let Fi,M

be the set of all such functions defined by mechanisms M from the class M. In other words,
Fi,M =

{
ui,M,θi ,θ̂i

∣∣∣ θi, θ̂i ∈ Θi, M ∈ M
}

. We now analyze the convergence rate of the error term
εM(N, δ).

Theorem 10.4.1. With probability 1− δ over the draw of the n sets S−i =
{

θ
(1)
−i , . . . , θ

(N)
−i

}
∼ DN

−i,
for all mechanisms M ∈ M and agents i ∈ [n],

max
θi ,θ̂i∈Θi

{
E

θ−i∼D−i

[
ui,M

(
θi, θ̂i, θ−i

)
− ui,M (θi, θi, θ−i)

]}
≤ max

θi ,θ̂i∈Θi

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
+ εM(N, δ),

where εM(N, δ) = 2
√

2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim (Fi,M).

Proof. Fix an arbitrary agent i ∈ [n]. By Theorem 2.1.3, we know that with probability at least
1− δ/n over the draw of S−i, for all mechanisms M ∈ M and all θi, θ̂i ∈ Θi,

E
θ−i∼D−i

[
ui,M

(
θi, θ̂i, θ−i

)]
− 1

N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
≤

√
2di

N
ln

eN
di

+

√
1

2N
ln

2n
δ

and

1
N

N

∑
j=1

ui,M

(
θi, θi, θ

(j)
−i

)
− E

θ−i∼D−i

[ui,M (θi, θi, θ−i)] ≤

√
2di

N
ln

eN
di

+

√
1

2N
ln

2n
δ

.
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Therefore,

E
θ−i∼D−i

[
ui,M

(
θi, θ̂i, θ−i

)]
− E

θ−i∼D−i

[ui,M (θi, θi, θ−i)]

= E
θ−i∼D−i

[
ui,M

(
θi, θ̂i, θ−i

)]
− 1

N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
+

1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)
+

1
N

N

∑
j=1

ui,M

(
θi, θi, θ

(j)
−i

)
− E

θ−i∼D−i

[ui,M (θi, θi, θ−i)]

≤ max
θi ,θ̂i∈Θi

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
+ εM(N, δ).

Since the above inequality holds for all i ∈ [n] with probability 1− δ/n, a union bound
implies that with probability 1− δ, for all i ∈ [n] and all mechanism M ∈ M,

E
θ−i∼D−i

[
ui,M

(
θi, θ̂i, θ−i

)
− ui,M (θi, θi, θ−i)

]
≤ max

θi ,θ̂i∈Θi

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
+ εM(N, δ),

where εM(N, δ) = 2
√

2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim (Fi,M).

10.4.1 Incentive compatibility guarantees via finite covers

In the previous section, we presented an empirical estimate of the ex-interim incentive compat-
ibility approximation factor (Equation (10.1)) and we showed that it quickly converges to the
true approximation factor. However, there may not be a finite-time procedure for computing
Equation (10.1) in its full generality, restated below:

max
θi ,θ̂i∈Θi

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
. (10.3)

In this section, we address that challenge. A simple alternative approach is to fix a finite cover
of Θi ×Θi, which we denote as G ⊂ Θi ×Θi, and approximate Equation (10.3) by measuring
the extent to which any agent i can improve his utility by misreporting his type when his true
and reported types are elements of the cover G, averaged over all profiles in S−i. In other
words, we estimate Equation (10.3) as:

max
(θi ,θ̂i)∈G

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
. (10.4)

This raises two natural questions: how do we select the cover G and how close are the opti-
mal solutions to Equations (10.3) and (10.4)? We provide two simple, intuitive approaches to
selecting the cover G. The first is to run a greedy procedure (see Section 10.4.1) and the second
is to create a uniform grid over the type space (assuming Θi = [0, 1]m for some integer m; see
Section 10.4.1).
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Algorithm 7 Greedy cover construction

Input: Mechanism M ∈ M, set of samples S−i =
{

θ
(1)
−i , . . . , θ

(N)
−i

}
, accuracy parameter ε > 0.

1: Let U be the set of vectors U ←


1
N


ui,M

(
θi, θ̂i, θ

(1)
−i

)
− ui,M

(
θi, θi, θ

(1)
−i

)
...

ui,M

(
θi, θ̂i, θ

(N)
−i

)
− ui,M

(
θi, θi, θ

(N)
−i

)
 : θi, θ̂i ∈ Θi

 .

2: Let V ← ∅ and G ← ∅.
3: while U \ (

⋃
v∈V B1 (v, ε)) 6= ∅ do

4: Select an arbitrary vector v′ ∈ U \ (
⋃

v∈V B1 (v, ε)).

5: Let θi, θ̂i ∈ Θi be the types such that v′ = 1
N


ui,M

(
θi, θ̂i, θ

(1)
−i

)
− ui,M

(
θi, θi, θ

(1)
−i

)
...

ui,M

(
θi, θ̂i, θ

(N)
−i

)
− ui,M

(
θi, θi, θ

(N)
−i

)
 .

6: Add v′ to V and
(
θi, θ̂i

)
to G.

Output: The cover G ⊆ Θi ×Θi.

Covering via a greedy procedure

In this section, we show how to construct the cover G of Θi × Θi greedily, based off a classic
learning-theoretic algorithm. We then show that when we use the cover G to estimate the incen-
tive compatibility approximation factor (via Equation (10.4)), the estimate quickly converges to
the true approximation factor. This greedy procedure is summarized by Algorithm 7. For any
v ∈ RN , we use the notation B1 (v, ε) = {v′ : ‖v′ − v‖1 ≤ ε}. To simplify notation, let U be the
set of vectors defined in Algorithm 7:

U =


1
N


ui,M

(
θi, θ̂i, θ

(1)
−i

)
− ui,M

(
θi, θi, θ

(1)
−i

)
...

ui,M

(
θi, θ̂i, θ

(N)
−i

)
− ui,M

(
θi, θi, θ

(N)
−i

)
 : θi, θ̂i ∈ Θi

 .

Note that the solution to Equation (10.3) equals maxv∈U ∑N
i=1 v[i]. The algorithm greedily selects

a set of vectors V ⊆ U, or equivalently, a set of type pairs G ⊆ Θi × Θi as follows: while
U \ (

⋃
v∈V B1 (v, ε)) is non-empty, it chooses an arbitrary vector v′ in the set, adds it to V,

and adds the pair
(
θi, θ̂i

)
∈ Θi × Θi defining the vector v′ to G. Classic results from learning

theory [Anthony and Bartlett, 2009] guarantee that this greedy procedure will repeat for at
most (8eN/(εdi))

2di iterations, where di = Pdim (Fi,M).
We now relate the true incentive compatibility approximation factor to the solution to Equa-

tion (10.4) when the cover is constructed using Algorithm 7.

Theorem 10.4.2. Given a set S−i =
{

θ
(1)
−i , . . . , θ

(N)
−i

}
, a mechanism M ∈ M, and accuracy parameter

ε > 0, let G (S−i, M, ε) be the cover returned by Algorithm 7. With probability 1− δ over the draw of
the n sets S−i ∼ DN

−i, for every mechanism M ∈ M and every agent i ∈ [n],

max
θi ,θ̂i∈Θi

{
E

θ−i∼D−i

[
ui,M

(
θi, θ̂i, θ−i

)
− ui,M (θi, θi, θ−i)

]}
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≤ max
(θi ,θ̂i)∈G(S−i ,M,ε)

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
+ ε + Õ

(√
di

N

)
, (10.5)

where di = Pdim (Fi,M). Moreover, with probability 1, |G (S−i, M, ε)| ≤ (8eN/ (εdi))
2di .

Proof. Let θ∗i and θ̂∗i be the types in Θi that maximize

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)
.

By definition of the set G (S−i, M, ε), we know there exists a pair
(
θ′i , θ̂′i

)
∈ G (S−i, M, ε) such

that

max
θi ,θ̂i∈Θi

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}

=
1
N

N

∑
j=1

ui,M

(
θ∗i , θ̂∗i , θ

(j)
−i

)
− ui,M

(
θ∗i , θ∗i , θ

(j)
−i

)
≤ 1

N

N

∑
j=1

ui,M

(
θ′i , θ̂′i , θ

(j)
−i

)
− ui,M

(
θ′i , θ′i , θ

(j)
−i

)
+ ε

≤ max
θi ,θ̂i∈G(S−i ,M,ε)

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
+ ε.

Therefore, by this inequality and Theorem 10.4.1, we know that with probability at least 1− δ,

E
θ−i∼D−i

[
ui,M

(
θi, θ̂i, θ−i

)
− ui,M (θi, θi, θ−i)

]
− max

(θi ,θ̂i)∈G(S−i ,M,ε)

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
= E

θ−i∼D−i

[
ui,M

(
θi, θ̂i, θ−i

)
− ui,M (θi, θi, θ−i)

]
− max

θi ,θ̂i∈Θi

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}

+ max
θi ,θ̂i∈Θi

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}

− max
(θi ,θ̂i)∈G(S−i ,M,ε)

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}

≤ ε + Õ

(√
di

N

)
.

The bound on |G (S−i, M, ε)| follows from Lemma 10.4.3.
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Lemma 10.4.3. For any G returned by Algorithm 7, |G| ≤ (8eN/ (εdi))
2di , where di = Pdim (Fi,M).

Proof. Let N1(ε, U) be the ε-covering number of U and let P1(ε, U) be the ε-packing number of
U. In other words, N1(ε, U) is the size of the smallest set V ′ ⊆ RN such that for all v ∈ U, there
is a vector v′ ∈ V ′ such that ‖v− v′‖1 ≤ ε, and P1(ε, U) is the size of the largest set P ⊆ U
such that for all v, v′ ∈ P, if v 6= v′, then ‖v− v′‖1 ≥ ε. As Anthony and Bartlett [2009] prove,
P(ε, U) ≤ N (ε/2, U).

By construction, for every pair of vectors v and v′ in the set V defined in Algorithm 7, we
know that ‖v− v′‖1 ≥ ε. Therefore, |V| ≤ P(ε, U) ≤ N (ε/2, U). In the following claim, we
prove that N (ε/2, U) ≤ (8eN/ (εdi))

2di , which proves the lemma.

Claim 10.4.4. N (ε/2, U) ≤ (8eN/ (εdi))
2di .

Proof. Let U′ be the set of vectors

U′ =


1
N


ui,M

(
θi, θ̂i, θ

(1)
−i

)
...

ui,M

(
θi, θ̂i, θ

(N)
−i

)
 : θi, θ̂i ∈ Θi

 .

Note that U ⊆ {v− v′ : v, v′ ∈ U′}. We claim that N (ε/2, U) ≤ N (ε/4, U′)2 ≤ (8eN/ (εdi))
2di ,

where the second inequality follows from a theorem by Anthony and Bartlett [2009]. To
see why the first inequality holds, suppose C′ is an ε

4 -cover of U′ with minimal size. Let
C = {c− c′ : c, c′ ∈ C′}. Then for all v ∈ U, we know that v = v′ − v′′ for some v′, v′′ ∈
U′. Moreover, we know that there are vectors c′, c′′ ∈ C′ such that ‖v′ − c′‖1 ≤ ε/4 and
‖v′′ − c′′‖1 ≤ ε/4. Therefore, ‖v− (c′ − c′′)‖1 = ‖(v′ − v′′)− (c′ − c′′)‖1 ≤ ε/2. Since c′ −
c′′ ∈ C, we have that C is a cover of U. Therefore, N (ε/2, U) ≤ |C| ≤ |C′|2 = N (ε/4, U′)2 ≤
(8eN/ (εdi))

2di .

Therefore, the lemma holds.

Covering via a uniform grid

The greedy approach in Section 10.4.1 is extremely versatile: no matter the type space Θi,
when we use the resulting cover to estimate the incentive compatibility approximation factor
(via Equation (10.4)), the estimate quickly converges to the true approximation factor. How-
ever, implementing the greedy procedure (Algorithm 7) might be computationally challenging
because at each round, it is necessary to check if U \ (

⋃
v∈V B1 (v, ε)) is nonempty and if so,

select a vector from the set. In this section, we propose an alternative, extremely simple ap-
proach to selecting a cover G: using a uniform grid over the type space. The efficacy of this
approach depends on a “niceness” assumption that holds under mild assumptions, as we prove
in Section 10.4.3. Throughout this section, we assume that Θi = [0, 1]m for some integer m. We
propose covering the type space using a w-grid Gw over [0, 1]m, by which we mean a finite
set of vectors in [0, 1]m such that for all p ∈ [0, 1]m, there exists a vector p′ ∈ Gw such that
‖p− p′‖1 ≤ w. For example, if m = 1, we could define Gw =

{
0, 1
b1/wc ,

2
b1/wc , . . . , 1

}
. We will

estimate the expected incentive compatibility approximation factor using Equation (10.4) with
G = Gw × Gw. Throughout the rest of this chapter, we discuss how the choice of w effects the
error bound. To do so, we will use the notion of dispersion, defined below.
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(a) Average of dispersed functions. (b) Average of functions that are not dispersed.

Figure 10.1: Illustration of Example 10.4.6. The lines in Figure 10.1a depict the average of four
utility functions corresponding to the first-price auction. The maximum of this average falls at
the top of the blue region. We evaluate the function in Figure 10.1a on the grid

{
0, 1

4 , 1
2 , 3

4 , 1
}

,
as depicted by the dots. The maximum over the grid falls at the bottom of the blue region. In
Figure 10.1b, we illustrate the same concepts but for a different set of utility functions that are
not as dispersed as those in Figure 10.1a. As illustrated by the blue regions, the approximation
over the grid is better for the dispersed functions than the non-dispersed functions.

Definition 10.4.5 (Balcan et al. [2018b]). Let a1, . . . , aN : Rd → R be a set of functions where
each ai is piecewise Lipschitz with respect to the `1-norm over a partition Pi of Rd. We say
that Pi splits a set A ⊆ Rd if A intersects with at least two sets in Pi. The set of functions is
(w, k)-dispersed if for every point p ∈ Rd, the ball

{
p′ ∈ Rd : ‖p− p′‖1 ≤ w

}
is split by at most

k of the partitions P1, . . . ,PN .

The smaller w is and the larger k is, the more “dispersed” the functions’ discontinuities
are. Moreover, the more jump discontinuities a set of functions has, the more difficult it is
to approximately optimize its average using a grid. We illustrate this phenomenon in Exam-
ple 10.4.6.

Example 10.4.6. Suppose there are two agents and M is the first-price single-item auction. For
any trio of types θ1, θ2, θ̂1 ∈ [0, 1], u1,M

(
θ1, θ̂1, θ2

)
= 1{θ̂1>θ2}

(
θ1 − θ̂1

)
. Suppose θ1 = 1. Fig-

ure 10.1a displays the function 1
4 ∑θ2∈S2

u1,M
(
1, θ̂1, θ2

)
where S2 =

{ 1
5 , 2

5 , 3
5 , 4

5

}
and Figure 10.1b

displays the function 1
4 ∑θ2∈S ′2 u1,M

(
1, θ̂1, θ2

)
where S ′2 =

{ 31
40 , 32

40 , 33
40 , 34

40

}
.

In Figure 10.1, we evaluate each function on the grid G =
{

0, 1
4 , 1

2 , 3
4 , 1
}

. In Figure 10.1a, the
maximum over G better approximates the the maximum over [0, 1] compared to Figure 10.1b.
In other words,

max
θ̂1∈[0,1]

∑
θ2∈S2

u1,M
(
1, θ̂1, θ2

)
−max

θ̂1∈G
∑

θ2∈S2

u1,M
(
1, θ̂1, θ2

)
(10.6)

< max
θ̂1∈[0,1]

∑
θ2∈S ′2

u1,M
(
1, θ̂1, θ2

)
−max

θ̂1∈G
∑

θ2∈S ′2

u1,M
(
1, θ̂1, θ2

)
. (10.7)

Intuitively, this is because the functions we average over in Figure 10.1a are more dispersed than
the functions we average over in Figure 10.1b. The differences described by Equations (10.6)
and (10.7) are represented by the shaded regions in Figures 10.1a and 10.1b, respectively.

We now state a helpful lemma which we use to prove this section’s main theorem. Infor-
mally, it shows that we can measure the average amount that any agent can improve his utility
by misreporting his type, even if we discretize his type space, so long as his utility function
applied to the samples demonstrates dispersion.
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Lemma 10.4.7. Suppose that for each agent i ∈ [n], there exist Li, ki, wi ∈ R such that with probability
1− δ over the draw of the n sets S−i =

{
θ

(1)
−i , . . . , θ

(N)
−i

}
∼ DN

−i, for each mechanism M ∈ M and
agent i ∈ [n], the following conditions hold:

1. For any type θi ∈ [0, 1]m, the functions ui,M

(
θi, ·, θ

(1)
−i

)
, . . . , ui,M

(
θi, ·, θ

(N)
−i

)
are piecewise

Li-Lipschitz and (wi, ki)-dispersed.

2. For any reported type θ̂i ∈ [0, 1]m, the functions ui,M

(
·, θ̂i, θ

(1)
−i

)
, . . . , ui,M

(
·, θ̂i, θ

(N)
−i

)
are piece-

wise Li-Lipschitz and (wi, ki)-dispersed.

Then with probability 1− δ over the draw of the n sets S−i ∼ DN
−i, for all mechanisms M ∈ M and

agents i ∈ [n],

max
θi ,θ̂i∈[0,1]m

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}

≤ max
θi ,θ̂i∈Gwi

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
+ 4Liwi +

8ki

N
. (10.8)

Proof. By definition of dispersion, the following conditions hold with probability 1− δ:

Condition 1. For all mechanisms M ∈ M, agents i ∈ [n], types θi ∈ [0, 1]m, and pairs of
reported types θ̂i, θ̂′i ∈ [0, 1]m, if

∥∥θ̂i − θ̂′i
∥∥

1 ≤ wi, then∣∣∣∣∣ 1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θ̂′i, θ

(j)
−i

)∣∣∣∣∣ ≤ Liwi +
2ki

N
. (10.9)

Condition 2. For all mechanisms M ∈ M, agents i ∈ [n], reported types θ̂i ∈ [0, 1]m, and
pairs of types θi, θ′i ∈ [0, 1]m, if ‖θi − θ′i‖1 ≤ wi, then∣∣∣∣∣ 1

N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θ′i, θ̂i, θ

(j)
−i

)∣∣∣∣∣ ≤ Liwi +
2ki

N
. (10.10)

We claim that Inequality (10.8) holds so long as Conditions 1 and 2 hold. To see why,
suppose they do both hold, and fix an arbitrary agent i ∈ [n], mechanism M ∈ M, and pair of
types θi, θ̂i ∈ [0, 1]m. Consider the average amount agent i with type θi can improve his utility
by misreporting his type as θ̂i:

1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)
. (10.11)

By definition of the grid Gwi , we know there are points p, p̂ ∈ Gwi such that ‖θi − p‖1 ≤ wi
and

∥∥θ̂i − p̂
∥∥

1 ≤ wi. Based on Conditions 1 and 2, in the following claim, we show that if we
“snap” θi to p and θ̂i to p̂, we will not increase Equation (10.11) by more than an additive factor
of O (Liwi + ki/N).

167



Claim 10.4.8. If Conditions 1 and 2 hold, then for all M ∈ M and i ∈ [n],

max
θi ,θ̂i∈[0,1]m

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}

≤ max
θi ,θ̂i∈Gwi

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
+ 4Liwi +

8ki

N
.

Proof of Claim 10.4.8. Fix an agent i ∈ [n] and let θi and θ̂i be two fixed, arbitrary vectors in
[0, 1]m. By definition of Gw, there must be a point p ∈ Gw such that ‖θi − p‖1 ≤ wi. By
Equation (10.9), ∣∣∣∣∣ 1

N

N

∑
j=1

ui,M

(
θi, θi, θ

(j)
−i

)
− ui,M

(
θi, p, θ

(j)
−i

)∣∣∣∣∣ ≤ Liwi +
2ki

N

and by Equation (10.10),∣∣∣∣∣ 1
N

N

∑
j=1

ui,M

(
θi, p, θ

(j)
−i

)
− ui,M

(
p, p, θ

(j)
−i

)∣∣∣∣∣ ≤ Liwi +
2ki

N
.

Similarly, there must be a point p̂ ∈ Gw such that
∥∥p̂− θ̂i

∥∥
1 ≤ wi. By Equation (10.9),∣∣∣∣∣ 1

N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, p̂, θ

(j)
−i

)∣∣∣∣∣ ≤ Liwi +
2ki

N

and by Equation (10.10),∣∣∣∣∣ 1
N

N

∑
j=1

ui,M

(
θi, p̂, θ

(j)
−i

)
− ui,M

(
p, p̂, θ

(j)
−i

)∣∣∣∣∣ ≤ Liwi +
2ki

N
.

Therefore, ∣∣∣∣∣ 1
N

N

∑
j=1

ui,M

(
θi, θi, θ

(j)
−i

)
− ui,M

(
θi, θ̂i, θ

(j)
−i

)∣∣∣∣∣
≤
∣∣∣∣∣ 1

N

N

∑
j=1

ui,M

(
θi, θi, θ

(j)
−i

)
− ui,M

(
θi, p, θ

(j)
−i

)∣∣∣∣∣
+

∣∣∣∣∣ 1
N

N

∑
j=1

ui,M

(
θi, p, θ

(j)
−i

)
− ui,M

(
p, p, θ

(j)
−i

)∣∣∣∣∣
+

∣∣∣∣∣ 1
N

N

∑
j=1

ui,M

(
p, p, θ

(j)
−i

)
− ui,M

(
p, p̂, θ

(j)
−i

)∣∣∣∣∣
+

∣∣∣∣∣ 1
N

N

∑
j=1

ui,M

(
p, p̂, θ

(j)
−i

)
− ui,M

(
θi, p̂, θ

(j)
−i

)∣∣∣∣∣
+

∣∣∣∣∣ 1
N

N

∑
j=1

ui,M

(
θi, p̂, θ

(j)
−i

)
− ui,M

(
θi, θ̂i, θ

(j)
−i

)∣∣∣∣∣
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≤
∣∣∣∣∣ 1

N

N

∑
j=1

ui,M

(
p, p, θ

(j)
−i

)
− ui,M

(
p, p̂, θ

(j)
−i

)∣∣∣∣∣+ 4Liwi +
8ki

N
.

Since p, p̂ ∈ Gwi , the claim holds.

Since p and p̂ are elements of Gwi , Inequality (10.8) holds so long as Conditions 1 and 2

hold. Since Conditions 1 and 2 hold with probability 1− δ, the lemma statement holds.

In Section 10.4.3, we prove that under mild assumptions, for a wide range of mechanisms,
Conditions 1 and 2 in Lemma 10.4.7 hold with Li = 1, wi = O

(
1/
√

N
)

, and ki = Õ
(√

N
)

,
ignoring problem-specific multiplicands. Thus, we find that 4Liwi + 8ki/N quickly converges
to 0 as N grows.

Theorem 10.4.1 and Lemma 10.4.7 immediately imply this section’s main theorem. At a
high level, it states that any agent’s average utility gain when restricted to types on the grid is
a close estimation of the true incentive compatibility approximation factor, so long as his utility
function applied to the samples demonstrates dispersion.

Theorem 10.4.9. Suppose that for each agent i ∈ [n], there exist Li, ki, wi ∈ R such that with probabil-
ity 1− δ over the draw of the n sets S−i =

{
θ

(1)
−i , . . . , θ

(N)
−i

}
∼ DN

−i, for each mechanism M ∈ M and
agent i ∈ [n], the following conditions hold:

1. For any θi ∈ [0, 1]m, the functions ui,M

(
θi, ·, θ

(1)
−i

)
, . . . , ui,M

(
θi, ·, θ

(N)
−i

)
are piecewise Li-

Lipschitz and (wi, ki)-dispersed.

2. For any θ̂i ∈ [0, 1]m, the functions ui,M

(
·, θ̂i, θ

(1)
−i

)
, . . . , ui,M

(
·, θ̂i, θ

(N)
−i

)
are piecewise Li-

Lipschitz and (wi, ki)-dispersed.

Then with probability 1− 2δ, for every mechanism M ∈ M and every agent i ∈ [n],

max
θi ,θ̂i∈Θi

{
E

θ−i∼D−i

[
ui,M

(
θi, θ̂i, θ−i

)
− ui,M (θi, θi, θ−i)

]}
≤ max

θi ,θ̂i∈Gwi

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
+ ε,

where ε = 4Liwi + 8ki
N + 2

√
2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim (Fi,M).

Proof. Theorem 10.4.1 guarantees that with probability at most δ, the extent to which any agent
i can improve his utility by misreporting his type, averaged over all profiles in S−i, does not
approximate the true incentive compatibility approximation factor, as summarized below:

Bad event 1. For some mechanism M ∈ M and agent i ∈ [n],

max
θi ,θ̂i∈Θi

{
E

θ−i∼D−i

[
ui,M

(
θi, θ̂i, θ−i

)
− ui,M (θi, θi, θ−i)

]}
> max

θi ,θ̂i∈[0,1]m

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
+ εM(N, δ), (10.12)
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where εM(N, δ) = 2
√

2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim (Fi,M).
By Lemma 10.4.7, we also know that with probability at most δ, we cannot approximate

Equation (10.12) by discretizing the agent’s type space, as summarized by the following bad
event:

Bad event 2. For some mechanism M ∈ M and agent i ∈ [n],

max
θi ,θ̂i∈[0,1]m

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}

> max
θi ,θ̂i∈Gwi

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
+ 4Liwi +

8ki

N
.

By a union bound, the probability that either Bad Event 1 or Bad Event 2 occurs is at most
2δ. Therefore, the probability that neither occurs is at least 1− 2δ. If neither occurs, then for
every mechanism M ∈ M and every agent i ∈ [n],

max
θi ,θ̂i∈[0,1]m

{
E

θ−i∼D−i

[
ui,M

(
θi, θ̂i, θ−i

)
− ui,M (θi, θi, θ−i)

]}
≤ max

θi ,θ̂i∈Gwi

{
1
N

N

∑
j=1

ui,M

(
θi, θ̂i, θ

(j)
−i

)
− ui,M

(
θi, θi, θ

(j)
−i

)}
+ ε,

where ε = 4Liwi + 4ki
N + 2

√
2di
N ln eN

di
+ 2
√

1
2N ln 2n

δ and di = Pdim (Fi,M).

We conclude with one final comparison of the greedy approach in Section 10.4.1 and the
uniform grid approach in this section. In Section 10.4.1, we use the functional form of the utility
functions in order to bound the cover size, as quantified by pseudo-dimension. When we use
the approach based on dispersion, we do not use these functional forms to the fullest extent
possible; we only use simple facts about the functions’ discontinuities and Lipschitz continuity.

10.4.2 Delineable utility functions

To prove some of our pseudo-dimension guarantees, we use the notion of delineability intro-
duced in Section 5.1. There, we used it in the context of profit-maximization, so here we adapt
it to our setting.

Given a mechanism M and agent i ∈ [n], let Fi,M =
{

ui,M,θi ,θ̂i

∣∣∣ θi, θ̂i ∈ Θi

}
, where ui,M,θi ,θ̂i

is the function introduced in Section 10.4. Moreover, for a fixed type profile θ−i ∈ ×j 6=iΘj, let
uθ−i : Θ2

i → [−1, 1] be a function that maps a pair of types θi, θ̂i ∈ Θi to ui,M,θi ,θ̂i
(θ−i).

Definition 10.4.10 ((m, t)-delineable). Given a mechanism M and agent i ∈ [n], we say the
function class Fi,M is (m, t)-delineable if:

1. Each agent’s type space is a subset of [0, 1]m; and

2. For any θ−i ∈ [0, 1]m(n−1), there is a set H of t hyperplanes such that for any connected
component C of [0, 1]2m \ H, the function uθ−i

(
θi, θ̂i

)
is linear over C.
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The following theorem is a parallel of Theorem 5.1.4 from Section 5.1, though we have
adapted it to our setting.

Theorem 10.4.11. If Fi,M is (m, t)-delineable, the pseudo dimension of Fi,M is O (m log (mt)).

10.4.3 Dispersion and pseudo-dimension guarantees

We now provide dispersion and pseudo-dimension guarantees for a variety of mechanism
classes. The theorems in this section allow us to instantiate the bounds from the previous
section and thus understand how well our empirical incentive compatibility approximation
factor matches the true approximation factor. We summarize our guarantees in Table 10.1.

Given an agent i ∈ [n], a true type θi ∈ [0, 1]m, and a set of samples θ
(1)
−i , . . . , θ

(N)
−i ∼ D−i,

we often find that the discontinuities of each function ui,M

(
θi, ·, θ

(j)
−i

)
are highly dependent

on the vector θ
(j)
−i . For example, under the first-price single-item auction, the discontinuities

of the function ui,M

(
θi, ·, θ

(j)
−i

)
occur when θ̂i =

∥∥∥θ
(j)
−i

∥∥∥
∞

. Since each vector θ
(j)
−i is a random

draw from the distribution D−i, these functions will not be dispersed if these random draws
are highly-concentrated. For this reason, we focus on type distributions with κ-bounded density
functions. A density function φ : R → R is κ-bounded if max{φ(x)} ≤ κ. For example, the
density function of any normal distribution with standard deviation σ ∈ R is 1

σ
√

2π
-bounded.

The challenge we face in this section is that it is not enough to show that for some θi ∈
[0, 1]m, the functions ui,M

(
θi, ·, θ

(1)
−i

)
, . . . , ui,M

(
θi, ·, θ

(N)
−i

)
are dispersed. Rather, we must prove

that for all type vectors, the dispersion property holds. This facet of our analysis is notably
different from prior work by Balcan et al. [2018b]: in their applications, it is enough to show
that with high probability, a single, finite sequence of functions is dispersed. In contrast, we
show that under mild assumptions, with high probability, each function sequence from an
infinite family is dispersed.

In a bit more detail, there are two types of sequences we must prove are dispersed. The first
are defined by functions over reported types θ̂i, with one sequence for each true type θi; the
second are defined by functions over true types θi with one sequence for each reported type θ̂i.
In other words, sequences of the first type have the form ui,M

(
θi, ·, θ

(1)
−i

)
, . . . , ui,M

(
θi, ·, θ

(N)
−i

)
and sequences of the second type have the form ui,M

(
·, θ̂i, θ

(1)
−i

)
, . . . , ui,M

(
·, θ̂i, θ

(N)
−i

)
. For the

first family of sequences, we show that discontinuities occur only when agent i’s shift in her
reported type causes the allocation to change. These change-points have nothing to do with the
true type θi (which the mechanism does not see), so all the sequences have the same discontinu-
ities (see, for example in Lemma 10.4.12). As a result, it is enough prove dispersion for a single
generic sequence, defined by an arbitrary θi—as we do, for example, in Theorem 10.4.13—in
order to guarantee dispersion for all of the sequences. Throughout our applications, the second
type of sequence is even simpler. These functions have no discontinuities at all, because the
allocation is invariant as we vary the true type θi (because, again, the mechanism does not
see θi). Therefore, these functions are either constant if the player was not allocated anything,
or linear otherwise (see, for example, Theorem 10.4.15). As a result, all sequences from this
second family are immediately dispersed.
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(a) The function u1,M

(
1, ·, θ

(j)
−1

)
. (b) The function u1,M

(
1
2 , ·, θ

(j)
−1

)
.

Figure 10.2: Agent 1’s utility function under a first-price single-item auction when the other
agents’ values and bids are defined by θ

(j)
−1 ∈ [0, 1]n−1. The utility is u1,M

(
θ1, θ̂1, θ

(j)
−1

)
=

1{
θ̂1>

∥∥∥θ
(j)
−1

∥∥∥
∞

} (θ1 − θ̂1
)
.

First-price single-item auction

To develop intuition, we begin by analyzing the first-price auction for a single item. We then
analyze the first-price combinatorial auction in Section 10.4.3. Under this auction, each agent
i ∈ [n] has a value θi ∈ [0, 1] for the item and submits a bid θ̂i ∈ [0, 1]. The agent with the
highest bid wins the item and pays his bid. Therefore, agent i’s utility function is ui,M

(
θ, θ̂
)

=

1{θ̂i>‖θ̂−i‖∞}
(
θi − θ̂i

)
.

To prove our dispersion guarantees, we begin with the following helpful lemma.

Lemma 10.4.12. For any agent i ∈ [n], any set S−i =
{

θ
(1)
−i , . . . , θ

(N)
−i

}
, and any type θi ∈ [0, 1], the

functions ui,M

(
θi, ·, θ

(1)
−i

)
, . . . , ui,M

(
θi, ·, θ

(N)
−i

)
are piecewise 1-Lipschitz and their discontinuities fall

in the set
{∥∥∥θ

(j)
−i

∥∥∥
∞

}
j∈[N]

.

Proof. Suppose i = 1 and choose an arbitrary sample j ∈ [N]. For any value θ1 ∈ [0, 1] and bid
θ̂1 ∈ [0, 1], we know that u1,M

(
θ1, θ̂1, θ

(j)
−1

)
= 1{

θ̂1>
∥∥∥θ

(j)
−1

∥∥∥
∞

} (θ1 − θ̂1
)
, as illustrated in Figure 10.2.

Therefore, no matter the value of θ1, the function u1,M

(
θ1, ·, θ

(j)
−1

)
is piecewise 1-Lipschitz with

a discontinuity at
∥∥∥θ

(j)
−1

∥∥∥
∞

.

We now use Lemma 10.4.12 to prove our first dispersion guarantee.

Theorem 10.4.13. Suppose each agent’s type has a κ-bounded density function. With probability 1− δ

over the draw of the n sets S−i =
{

θ
(1)
−i , . . . , θ

(N)
−i

}
∼ DN

−i, we have that for all agents i ∈ [n] and

types θi ∈ [0, 1], the functions ui,M

(
θi, ·, θ

(1)
−i

)
, . . . , ui,M

(
θi, ·, θ

(N)
−i

)
are piecewise 1-Lipschitz and(

O
(

1/
(

κ
√

N
))

, Õ
(

n
√

N
))

-dispersed.

Proof. Consider an arbitrary bidder, and without loss of generality, suppose that bidder is
bidder 1. Next, choose an arbitrary sample θ

(j)
−1 =

(
θ

(j)
2 , . . . , θ

(j)
n

)
. For any value θ1 ∈ [0, 1]
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and bid θ̂1 ∈ [0, 1], we know that u1,M

(
θ1, θ̂1, θ

(j)
−1

)
= 1{

θ̂1>
∥∥∥θ

(j)
−1

∥∥∥
∞

} (θ1 − θ̂1
)
, as illustrated

in Figure 10.2. Therefore, if θ̂1 ≤
∥∥∥θ

(j)
−1

∥∥∥
∞

, then u1,M

(
θ1, θ̂1, θ

(j)
−1

)
is a constant function of

θ̂1, whereas if θ̂1 >
∥∥∥θ

(j)
−1

∥∥∥
∞

, then u1,M

(
θ1, θ̂1, θ

(j)
−1

)
is a linear function of θ̂1 with a slope of

−1. Therefore, for all θi ∈ [0, 1], the function u1,M

(
θ1, ·, θ

(j)
−1

)
is piecewise 1-Lipschitz with a

discontinuity at
∥∥∥θ

(j)
−1

∥∥∥
∞

.

We now prove that with probability 1− δ
n , for all θ1 ∈ [0, 1], the functions

u1,M

(
θ1, ·, θ

(1)
−1

)
, . . . , u1,M

(
θ1, ·, θ

(N)
−1

)
are (w, k)-dispersed. Since for any θ1 ∈ [0, 1] the function u1,M

(
θ1, θ̂1, θ

(j)
−1

)
will only have a

discontinuity at a point in the set
{

θ
(j)
2 , . . . , θ

(j)
n

}
, it is enough to prove that with probability

1− δ
n , at most k points in the set B =

⋃N
j=1

{
θ

(j)
2 , . . . , θ

(j)
n

}
fall within any interval of width w.

The theorem statement then holds by a union bound over all n bidders.

Claim 10.4.14. With probability 1− δ
n , at most k points in the set

⋃N
j=1

{
θ

(j)
2 , . . . , θ

(j)
n

}
fall within any

interval of width w.

Proof of Claim 10.4.14. For i ∈ {2, . . . , n}, let Bi =
{

θ
(j)
i

}
j∈[N]

. The claim follows from Lemma

10.5.1 in Section 10.5.

Theorem 10.4.15. For all agents i ∈ [n], reported types θ̂i ∈ [0, 1], and type profiles θ−i ∈ [0, 1]n−1,
the function ui,M

(
·, θ̂i, θ−i

)
is 1-Lipschitz.

Proof. Since the reported types
(
θ̂i, θ−i

)
are fixed, the allocation is fixed. Thus, ui,M

(
·, θ̂i, θ−i

)
is either a constant function if θ̂i ≤ ‖θ−i‖∞ or a linear function if θ̂i > ‖θ−i‖∞.

Next, we prove the following pseudo-dimension bound.

Theorem 10.4.16. For any agent i ∈ [n], the pseudo-dimension of the class Fi,M is 2.

Proof. First, we prove that Pdim (Fi,M) ≤ 2.

Claim 10.4.17. The pseudo-dimension of Fi,M is at most 2.

Proof of Claim 10.4.17. For a contradiction, suppose there exists a set S−i =
{

θ
(1)
−i , θ

(2)
−i , θ

(3)
−i

}
that

is shattered by Fi,M. Without loss of generality, assume that
∥∥∥θ

(1)
−i

∥∥∥
∞

<
∥∥∥θ

(2)
−i

∥∥∥
∞

<
∥∥∥θ

(3)
−i

∥∥∥
∞

.

Since S−i is shatterable, there exists three values z(1), z(2), z(3) ∈ R that witness the shattering
of S−i by Fi,M. We split the proof into two cases: one where z(3) > 0 and one where z(3) ≤ 0.
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θi θ̂i ui,M

(
θi, θ̂i, θ

(1)
−i

)
ui,M

(
θi, θ̂i, θ

(2)
−i

)
1 1 0 0

7/8 1/8 1/8

3/4 1/4 1/4

1/2 1/2 0

Table 10.2: Shattering of the example from Claim 10.4.18.

Case 1: z(3) > 0. Since S−i is shatterable, there is a value θi ∈ [0, 1] and bid θ̂i ∈ [0, 1] such
that ui,M

(
θi, θ̂i, θ

(1)
−i

)
≥ z(1), ui,M

(
θi, θ̂i, θ

(2)
−i

)
< z(2), and ui,M

(
θi, θ̂i, θ

(3)
−i

)
≥ z(3). Recall that for

any θ−i ∈ [0, 1]n−1, ui,M
(
θi, θ̂i, θ−i

)
= 1{θ̂i>‖θ−i‖∞}

(
θi − θ̂i

)
. Since ui,M

(
θi, θ̂i, θ

(3)
−i

)
≥ z(3) > 0,

it must be that θ̂i >
∥∥∥θ

(3)
−i

∥∥∥
∞
>
∥∥∥θ

(2)
−i

∥∥∥
∞
>
∥∥∥θ

(1)
−i

∥∥∥
∞

. Therefore, θi − θ̂i ≥ z(1) and θi − θ̂i < z(2),

which means that z(1) < z(2).
Next, there must also be a value θ′i ∈ [0, 1] and bid θ̂′i ∈ [0, 1] such that ui,M

(
θ′i , θ̂′i , θ

(1)
−i

)
<

z(1), ui,M

(
θ′i , θ̂′i , θ

(2)
−i

)
≥ z(2), and ui,M

(
θ′i , θ̂′i , θ

(3)
−i

)
≥ z(3). Again, since ui,M

(
θ′i , θ̂′i , θ

(3)
−i

)
≥ z(3) >

0, it must be that θ̂′i >
∥∥∥θ

(3)
−i

∥∥∥
∞
>
∥∥∥θ

(2)
−i

∥∥∥
∞
>
∥∥∥θ

(1)
−i

∥∥∥
∞

. Therefore, θ′i − θ̂′i < z(1) and θ′i − θ̂′i ≥ z(2),

which means that z(2) > z(1), which is a contradiction.

Case 2: z(3) ≤ 0. Since S−i is shatterable, there is a value θi ∈ [0, 1] and bid θ̂i ∈ [0, 1]

such that ui,M

(
θi, θ̂i, θ

(1)
−i

)
≥ z(1), ui,M

(
θi, θ̂i, θ

(2)
−i

)
< z(2), and ui,M

(
θi, θ̂i, θ

(3)
−i

)
< z(3). Since

ui,M

(
θi, θ̂i, θ

(3)
−i

)
< z(3) ≤ 0, it must be that θ̂i >

∥∥∥θ
(3)
−i

∥∥∥
∞

>
∥∥∥θ

(2)
−i

∥∥∥
∞

>
∥∥∥θ

(1)
−i

∥∥∥
∞

. Therefore,

θi − θ̂i ≥ z(1) and θi − θ̂i < z(2), which means that z(1) < z(2).
Next, there must also be a value θ′i ∈ [0, 1] and bid θ̂′i ∈ [0, 1] such that ui,M

(
θ′i , θ̂′i , θ

(1)
−i

)
<

z(1), ui,M

(
θ′i , θ̂′i , θ

(2)
−i

)
≥ z(2), and ui,M

(
θ′i , θ̂′i , θ

(3)
−i

)
< z(3). Again, since ui,M

(
θ′i , θ̂′i , θ

(3)
−i

)
< z(3) ≤

0, it must be that θ̂′i >
∥∥∥θ

(3)
−i

∥∥∥
∞
>
∥∥∥θ

(2)
−i

∥∥∥
∞
>
∥∥∥θ

(1)
−i

∥∥∥
∞

. Therefore, θ′i − θ̂′i < z(1) and θ′i − θ̂′i ≥ z(2),

which means that z(2) > z(1), which is a contradiction.
Since we arrive at a contradiction in both cases, we conclude that Pdim (Fi,M) ≤ 2.

We now prove that Pdim (Fi,M) ≥ 2.

Claim 10.4.18. The pseudo-dimension of Fi,M is at least 2.

Proof of Claim 10.4.18. To prove this claim, we exhibit a set of size 2 that is shattered by Fi,M.
Let θ

(1)
−i and θ

(2)
−i be two sets of values such that

∥∥∥θ
(1)
−i

∥∥∥
∞

= 1/3 and
∥∥∥θ

(2)
−i

∥∥∥
∞

= 2/3. Table 10.2

illustrates that z(1) = 3/16 and z(2) = 1/16 witness the shattering of
{

θ
(1)
−i , θ

(2)
−i

}
by Fi,M.

Together, Claims 10.4.17 and 10.4.18 prove that Pdim (Fi,M) = 2.
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First-price combinatorial auction

Under this auction, there are ` items for sale and each agent’s type θi ∈ [0, 1]2` indicates his
value for each bundle b ⊆ [`]. We denote his value and bid for bundle b as θi(b) and θ̂i(b),
respectively. The allocation (b∗1 , . . . , b∗n) is the solution to the winner determination problem:

maximize ∑n
i=1 θ̂i (bi)

subject to bi ∩ bi′ = ∅ ∀i, i′ ∈ [n], i 6= i′.

Each agent i ∈ [n] pays θ̂i (b∗i ).
We begin with dispersion guarantees.

Theorem 10.4.19. Suppose that for each pair of agents i, i′ ∈ [n] and each pair of bundles b, b′ ⊆ [`],
the values θi(b) and θi′(b′) have a κ-bounded joint density function. With probability 1 − δ over
the draw of the n sets S−i =

{
θ

(1)
−i , . . . , θ

(N)
−i

}
∼ DN

−i, we have that for all agents i ∈ [n] and

types θi ∈ [0, 1]2` , the functions ui,M

(
θi, ·, θ

(1)
−i

)
, . . . , ui,M

(
θi, ·, θ

(N)
−i

)
are piecewise 1-Lipschitz and(

O
(

1/
(

κ
√

N
))

, Õ
(

(n + 1)2`
√

N`
))

-dispersed.

Proof. Fix an arbitrary agent, and without loss of generality, suppose that agent is agent 1.
Next, fix an arbitrary sample θ

(j)
−1 and pair of allocations (b1, . . . , bn) and (b′1, . . . , b′n). We know

that (b′1, . . . , b′n) will not be the allocation of the first-price combinatorial auction so long as
agent 1’s reported type θ̂1 ∈ [0, 1]2` is chosen such that

θ̂1(b1) +
n

∑
i=2

θ
(j)
i (bi) > θ̂1(b′1) +

n

∑
i=2

θ
(j)
i (b′i).

This means that across all θ1 ∈ [0, 1]2` , there is fixed a set Ψj of ((n+1)`

2 ) hyperplanes (one per
pair of allocations) such that for any connected component C of [0, 1]2` \ Ψj, the allocation of
the first-price combinatorial auction is invariant across all θ̂1 ∈ C. Namely,

Ψj =

{
θ̂1(b1)− θ̂1(b′1) =

n

∑
i=2

θ
(j)
i (b′i)− θ

(j)
i (bi) : (b1, . . . , bn) and

(
b′1, . . . , b′n

)
are allocations

}
.

So long as the allocation is fixed, agent 1’s utility is 1-Lipschitz in θ̂1.
For each pair of allocations b = (b1, . . . , bn) and b′ = (b′1, . . . , b′n), let

Bb,b′ =

{
θ̂1(b1)− θ̂1(b′1) =

n

∑
i=2

θ
(j)
i (b′i)− θ

(j)
i (bi) : j ∈ [N]

}
.

Within each set, the hyperplanes are parallel with probability 1. By Lemmas 10.5.3 and 10.5.4 in
Section 10.5, their offsets are independently drawn from distributions with κ-bounded density
functions. Therefore, by Lemma 10.5.6 in Section 10.5, with probability 1− δ

n , for all θ1 ∈ [0, 1]2` ,

the functions u1,M

(
θ1, ·, θ

(1)
−1

)
, . . . , u1,M

(
θ1, ·, θ

(N)
−1

)
are (w, k)-dispersed with w = O

(
1

κ
√

N

)
and k = O

(
(n + 1)2`

√
N log n(n+1)2`

δ

)
. The theorem statement holds by a union bound over

all n agents.
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Theorem 10.4.20. For all agents i ∈ [n], reported types θ̂i ∈ [0, 1]2` , and type profiles θ−i ∈
[0, 1](n−1)2` , the function ui,M

(
·, θ̂i, θ−i

)
is 1-Lipschitz.

Proof. So long as all bids are fixed, the allocation is fixed, so ui,M
(
·, θ̂i, θ−i

)
is 1-Lipschitz.

Next, we prove the following pseudo-dimension bound.

Theorem 10.4.21. For any agent i ∈ [n], the pseudo-dimension of the class Fi,M is O
(
`2` log n

)
.

Proof. As we saw in the proof of Theorem 10.4.19, for any type profile θ−i ∈ [0, 1](n−1)2` , there
is a set H of (n + 1)2` hyperplanes such that for any connected component C of [0, 1]2` \ H, the
auction’s allocation given bids

(
θ̂i, θ−i

)
is invariant across all θ̂i ∈ C. So long as the allocation

is fixed, ui,M (·, ·, θ−i) is a linear function of
(
θi, θ̂i

)
. Therefore, the pseudo-dimension bound

follows from Theorem 10.4.11, which relates the class’s pseudo-dimension to the number of
hyperplanes splitting the type space into regions where the utility function is linear.

Generalized second-price auction

A generalized second-price auction allocates m advertising slots to a set of n > m agents. Each
slot s has a probability αs,i of being clicked if agent i’s advertisement is in that slot. We assume
αs,i is fixed and known by the mechanism designer. The mechanism designer assigns a weight
ωi ∈ (0, 1] per agent i. Each agent has a value θi ∈ [0, 1] for a click and submits a bid θ̂i ∈ [0, 1].
The mechanism allocates the first slot to the agent with the highest weighted bid ωi θ̂i, the
second slot to the agent with the second highest weighted bid, and so on. Let π(s) be the
agent allocated slot s. If slot s is clicked on, agent π(s) pays the lowest amount that would
have given him slot s, which is ωπ(s+1)θ̂π(s+1)/ωπ(s). Agent π(s)’s expected utility is thus

uπ(s),M
(
θ, θ̂
)

= αs,π(s)

(
θπ(s) −ωπ(s+1)θ̂π(s+1)/ωπ(s)

)
.

For r ∈ Z≥1, letMr be the set of auctions defined by agent weights from the set
{ 1

r , 2
r , . . . , 1

}
.

We begin by proving dispersion guarantees.

Theorem 10.4.22. Suppose each agent’s type has a κ-bounded density function. With probability 1− δ

over the draw of the n sets S−i =
{

θ
(1)
−i , . . . , θ

(N)
−i

}
∼ DN

−i, we have that for all agents i ∈ [n],

types θi ∈ [0, 1], and mechanisms M ∈ Mr, the functions ui,M

(
θi, ·, θ

(1)
−i

)
, . . . , ui,M

(
θi, ·, θ

(N)
−i

)
are

piecewise 0-Lipschitz and
(

O
(

1/
(

rκ
√

N
))

, Õ
(√

n3N
))

-dispersed.

Proof. Let w = O
(

1
rκ
√

N

)
and k = O

(
n3/2√N log nr

δ

)
. Consider an arbitrary agent, and without

loss of generality, suppose that agent is agent 1. Next, choose an arbitrary sample θ
(j)
−1 =(

θ
(j)
2 , . . . , θ

(j)
n

)
and mechanism M ∈ Mr with agent weights ω = (ω1, . . . , ωn) ∈

{ 1
r , 2

r , . . . , 1
}n

.

Let ωi1 θ
(j)
i1
≤ · · · ≤ ωin−1 θ

(j)
in−1

be the weighted types of all agents except agent 1. Consider the

n intervals delineated by these n− 1 weighted values: I1 =
[
0, ωi1 θ

(j)
i1

)
, . . . , In =

[
ωin−1 θ

(j)
in−1

, 1
]

with
Iτ =

[
ωiτ−1 θ

(j)
iτ−1

, ωiτ
θ

(j)
iτ

)
.
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Suppose we vary θ̂1 in such a way that ω1θ̂1 remains within a single interval Iτ. Said another
way, consider varying θ̂1 over the intervalωiτ−1 θ

(j)
iτ−1

ω1
,

ωiτ
θ

(j)
iτ

ω1

 .

The allocation will be constant, which means agent 1’s utility will be a constant function of
θ̂1. Therefore, no matter the value of θ1, u1,M

(
θ1, ·, θ

(1)
−1

)
, . . . , u1,M

(
θ1, ·, θ

(N)
−1

)
are piecewise

constant with discontinuities in the set

B1,ω =

{
ωi′θ

(j)
i′

ω1
: i′ ∈ {2, . . . , n}, j ∈ [N]

}
.

This means that in order to prove the theorem, it is enough to show that with probability 1− δ,
for all ω ∈

{ 1
r , 2

r , . . . , 1
}n

and all agents i ∈ [n], at most k of the values in each set

Bi,ω =

{
ωi′θ

(j)
i′

ωi
: i′ ∈ [n] \ {i}, j ∈ [N]

}
fall within any interval of length w. This follows from the following claim and a union bound.

Claim 10.4.23. For a fixed ω = (ω1, . . . , ωn) ∈
{ 1

r , 2
r , . . . , 1

}n and agent i ∈ [n], with probability
1− δ

nrn , at most k points from Bi,ω fall within any interval of width w.

Proof of Claim 10.4.23. For each i′ ∈ [n] \ {i}, let

Bi,i′,ω =

{
ωi′θ

(j)
i′

ωi
: j ∈ [N]

}
.

Since ωi′
ωi
≥ 1

r , Lemma 10.5.2 in Section 10.5 implies that the points in Bi,i′,ω are independent
draws from a rκ-bounded distribution. The claim then follows from Lemma 10.5.1 in Sec-
tion 10.5.

Theorem 10.4.24. For all agents i ∈ [n], all reported types θ̂i ∈ [0, 1], all type profiles θ−i ∈ [0, 1]n−1,
and all generalized second-price auctions M, the function ui,M

(
·, θ̂i, θ−i

)
is 1-Lipschitz.

Proof. Since the reported types
(
θ̂i, θ−i

)
are fixed, the allocation is fixed. Let π(s) be the agent

who is allocated slot s. The function ui,M
(
θi, θ̂i, θ−i

)
is either a constant function of θi if agent i

is not allocated a slot or a linear function of θi with a slope of απ−1(i),i otherwise.

We will use the following lemma in this section’s pseudo-dimension bound.

Lemma 10.4.25 (Anthony and Bartlett [2009]). Suppose f1, . . . , fp are polynomials of degree at most
d in v ≤ p variables. Then∣∣∣∣∣∣∣


sign ( f1(x))

...
sign

(
fp(x)

)
 : x ∈ Rv


∣∣∣∣∣∣∣ ≤ 2

(
2epd

v

)v

.
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We now provide the following pseudo-dimension guarantee.

Theorem 10.4.26. For any agent i ∈ [n] and r ∈ Z≥1, Pdim (Fi,Mr ) = O (n log n) .

Proof. Fix an arbitrary agent, and without loss of generality, suppose that agent is agent 1. Fix
a vector θ−1 = (θ2, . . . , θn) ∈ [0, 1]n−1. We denote the utility of agent 1 when the agents’ types
are (θ1, θ−1) and reported types are

(
θ̂1, θ−1

)
as uθ−1

(
θ1, θ̂1, ω1, . . . , ωn

)
, which maps Rn+2 to

[−1, 1].
We now show that we can split Rn+2 into regions R where the allocation of the generalized

second-price auction is fixed across all
(
θ1, θ̂1, ω1, . . . , ωn

)
∈ R, given the fixed set of reported

types θ−1 = (θ2, . . . , θn). Let π̄ be a permutation of the n agents, and let Rπ̄ ⊆ [0, 1]n+2 be the
set of all vectors

(
θ1, θ̂1, ω1, . . . , ωn

)
where the ordering of the elements

{
ω1θ̂1, ω2θ2, . . . , ωnθn

}
matches π̄. Specifically, for all

(
θ1, θ̂1, ω1, . . . , ωn

)
∈ Rπ̄, if i′ = argmax

{
ω1θ̂1, ω2θ2, . . . , ωnθn

}
,

then π̄(1) = i′ and if i′′ = argmin
{

ω1θ̂1, ω2θ2, . . . , ωnθn
}

, then π̄(n) = i′′. By definition of the
generalized second-price auction, this means that the agent who receives the first slot is agent
π̄(1) and the agent who receives the mth is agent π̄(m). Therefore, for all

(
θ1, θ̂1, ω1, . . . , ωn

)
∈

Rπ̄, the allocation of the generalized second-price auction given agent weights (ω1, . . . , ωn) and
reported types

(
θ̂1, θ−1

)
is invariant. Next, consider the transformation φ :

(
θ1, θ̂1, ω1, . . . , ωn

)
7→(

θ1, ω2
ω1

, . . . , ωn
ω1

)
. Since the vector θ−1 is fixed, the function uθ−1

(
θ1, θ̂1, ω1, . . . , ωn

)
is a fixed lin-

ear function of φ
(
θ1, θ̂1, ω1, . . . , ωn

)
across all

(
θ1, θ̂1, ω1, . . . , ωn

)
∈ Rπ̄.

Next, let S−1 =
{

θ
(1)
−1, . . . , θ

(N)
−1

}
be a set of vectors that is shatterable by the set of functions

F1,Mr , where θ
(j)
−1 =

(
θ

(j)
2 , . . . , θ

(j)
n

)
. This means there is a set of values z(1), . . . , z(N) ∈ R that

witnesses the shattering of S−1 by F1,Mr . Therefore, for every T ⊆ [N], there exists a pair of
values θT, θ̂T and a mechanism MT ∈ Mr such that u1,MT ,θT ,θ̂T

(
θ

(j)
−1

)
≤ z(j) if and only if j ∈ T.

Let (ω1,T, . . . , ωn,T) be the set of agent weights corresponding to each such mechanism MT. We
define the set R to be the set of 2N vectors R =

{(
θT, θ̂T, ω1,T, . . . , ωn,T

)
: T ⊆ [N]

}
⊂ Rn+2.

For each j ∈ [N], let H(j) be the set of (n
2) + n− 1 hypersurfaces

H(j) =
{

ω1θ̂1 −ωiθ
(j)
i = 0 : i ∈ {2, . . . , n}

}
∪
{

ωiθi −ωi′θ
(j)
i′ = 0 : i, i′ ∈ {2, . . . , n}

}
.

As we saw, as we range
(
θ1, θ̂1, ω1, . . . , ωn

)
over a single connected component of Rn+2 \

H(j), the allocation of the generalized second-price auction with agent weights (ω1, . . . , ωn)

and reported types
(

θ̂1, θ
(j)
−1

)
is invariant. If we define H =

⋃N
j=1H(j), then as we range(

θ1, θ̂1, ω1, . . . , ωn
)

over a single connected component of Rn+2 \ H, the allocations are fixed
across all j ∈ [N]. By Lemma 10.4.25, the number of connected components is at most

2

(
4eN

(
(n

2) + n− 1
)

n + 2

)n+2

= 2 (2eN(n− 1))n+2 .

Next, fix a connected component C of Rn+2 \ H. We know that for each j ∈ [N], there is

a constant αj ∈ [0, 1] and a bidder ij 6= 1 such that u
θ

(j)
−1

(
θ1, θ̂1, ω1, . . . , ωn

)
= αj

(
θ1 −

ωij θij
ω1

)
(where αj = 0 if agent i does not receive any slot). Consider the N hypersurfaces HC ={

αj

(
θ1 −

ωij t
(j)
ij

ω1

)
= z(j) : j ∈ [N]

}
. We know that at most one vector in R can come from each
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connected component of C \ HC, of which there are at most 2
( 4eN

n

)n
. In total, this means that

2N = |R| ≤ 4 (2eN(n− 1))n+2 ( 4eN
n

)n
, so by Lemma 2.1.4, N = O(n log n).

Discriminatory auction

Under the discriminatory auction, there are m identical units of a single item for sale. For each
agent i ∈ [n], his type θi ∈ [0, 1]m indicates how much he is willing to pay for each additional
unit. Thus, θi[1] is the amount he is willing to pay for one unit, θi[1] + θi[2] is the amount he
is willing to pay for two units, and so on. We assume that θi[1] ≥ θi[2] ≥ · · · ≥ θi[m]. The
auctioneer collects nm bids θ̂i[µ] for i ∈ [n] and µ ∈ [m]. If exactly mi of agent i’s bids are
among the m highest of all nm bids, then agent i is awarded mi units and pays ∑mi

µ=1 θ̂i[µ].
We begin with dispersion guarantees.

Theorem 10.4.27. Suppose that each agent’s value for each marginal unit has a κ-bounded density
function. With probability 1− δ over the draw of the n sets S−i =

{
θ

(1)
−i , . . . , θ

(N)
−i

}
∼ DN

−i, for all

agents i ∈ [n] and types θi ∈ [0, 1]m, the functions ui,M

(
θi, ·, θ

(1)
−i

)
, . . . , ui,M

(
θi, ·, θ

(N)
−i

)
are piecewise

1-Lipschitz and
(

O
(

1/
(

κ
√

N
))

, Õ
(

nm2
√

N
))

-dispersed.

Proof. Fix an arbitrary agent, and without loss of generality, suppose that agent is agent 1. Let
θ′1 ≤ θ′2 ≤ · · · ≤ θ′Nm(n−1) be the sorted values of

{
θ

(j)
i [µ] : i ∈ {2, . . . , n}, j ∈ [N], µ ∈ [m]

}
, and

define θ′0 = 0 and θ′Nm(n−1)+1 = 1. So long as agent 1’s bids fall between these sorted bids,
the allocation will be fixed across all samples. More formally, for each µ ∈ [m], so long as
θ′i < θ̂1[µ] < θ′i+1 for some i ∈ {0, . . . , Nm(n− 1)}, the resulting allocation will be fixed across

all N samples. Now, for a given sample θ
(j)
−1, consider a region R ⊆ [0, 1]m where the allocation

of the discriminatory auction given bids
(

θ̂1, θ
(j)
−1

)
is invariant across all θ̂1 ∈ R. In particular,

let mR be the number of units allocated to agent 1. For a fixed θ1 ∈ [0, 1]m, agent 1’s utility will
be linear in θ̂1, because across all θ̂1 ∈ R, ui,M

(
θ1, θ̂1, θ

(j)
−1

)
= ∑mR

µ=1 θ1[µ]− θ̂1[µ]. Therefore, the

functions u1,M

(
θ1, ·, θ

(1)
−1

)
, . . . , u1,M

(
θ1, ·, θ

(N)
−1

)
are piecewise 1-Lipschitz.

Note that across all θ1 ∈ [0, 1]m, the partition Pj splitting u1,M

(
θ1, ·, θ

(j)
−1

)
into Lipschitz

portions is invariant. In particular, no matter the value of θ1, the partition Pj is delineated by

the set of m2(n − 1) hyperplanes Hj =
{

θ
(j)
i [µ]− θ̂1[µ′] = 0 : i ∈ {2, . . . , n}, µ, µ′ ∈ [m]

}
. For

each i ∈ {2, . . . , n} and pair µ, µ′ ∈ [m], let Bi,µ,µ′ be the set of hyperplanes

Bi,µ,µ′ =
{

θ
(j)
i [µ]− θ̂1[µ′] = 0 : j ∈ [N]

}
.

Within each set, the hyperplanes are parallel with probability 1 and their offsets are indepen-
dently drawn from κ-bounded distributions. Therefore, by Lemma 10.5.6 in Section 10.5, with
probability 1− δ

n , for all θ1 ∈ [0, 1]m, the functions u1,M

(
θ1, ·, θ

(1)
−1

)
, . . . , u1,M

(
θ1, ·, θ

(N)
−1

)
are(

O
(

1
κ
√

N

)
, Õ
(

nm2
√

N
))

-dispersed. The theorem holds by a union bound over the agents.

Theorem 10.4.28. For all agents i ∈ [n], reported types θ̂i ∈ [0, 1]m, and type profiles θ−i ∈
[0, 1](n−1)m, the function ui,M

(
·, θ̂i, θ−i

)
is 1-Lipschitz.
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Proof. So long as all bids are fixed, the allocation is fixed, so ui,M
(
·, θ̂i, θ−i

)
is 1-Lipschitz.

Next, we prove the following pseudo-dimension bound.

Theorem 10.4.29. For any agent i ∈ [n], the pseudo-dimension of the class Fi,M is O (m log(nm)).

Proof. As we saw in the proof of Theorem 10.4.27, for any θ−i ∈ [0, 1](n−1)m, there is a set H of
O
(
m2n

)
hyperplanes such that for any connected component C of [0, 1]m \ H, the allocation is

fixed across all θ̂i ∈ C. So long as the allocation is fixed, ui,M (·, ·, θ−i) is a linear function of(
θi, θ̂i

)
. Therefore, the pseudo-dimension bound follows directly from Theorem 10.4.11.

Uniform-price auction

Under the uniform-price auction, the allocation rule is the same as in the discriminatory auction
(Section 10.4.3). However, all m units are sold at a “market-clearing” price, meaning that the to-
tal amount demanded is equal to the total amount supplied. We adopt the convention [Krishna,
2002] that the market-clearing price equals the highest losing bid. Let c−i ∈ Rm be the vector
θ̂−i of competing bids facing agent i, sorted in decreasing order and limited to the top m bids.
This means that c−i[1] =

∥∥θ̂−i
∥∥

∞ is the highest of the other bids, c−i[2] is the second-highest,
and so on. Agent i will win exactly one unit if and only if θ̂i[1] > c−i[m] and θ̂i[2] < c−i[m− 1];
that is, his bid must be higher than the lowest competing bid but not the second-lowest. Simi-
larly, agent i will win exactly two units if and only if θ̂i[2] > c−i[m− 1] and θ̂i[3] < c−i[m− 2].
More generally, agent i will win exactly mi > 0 units if and only if θ̂i [mi] > c−i [m−mi + 1]
and θ̂i [mi + 1] < c−i [m−mi]. The market-clearing price, which equals the highest losing bid,
is p = max

{
θ̂i [mi + 1] , c−i [m−mi + 1]

}
. In a uniform-price auction, agent i pays mi p.

Theorem 10.4.30. Suppose that each agent’s value for each marginal unit has a κ-bounded density
function. With probability 1− δ over the draw of the n sets S−i =

{
θ

(1)
−i , . . . , θ

(N)
−i

}
∼ DN

−i, we have
that for all agents i ∈ [n] and types θi ∈ [0, 1]m, the functions

ui,M

(
θi, ·, θ

(1)
−i

)
, . . . , ui,M

(
θi, ·, θ

(N)
−i

)
are piecewise 1-Lipschitz and

(
O
(

1
κ
√

N

)
, O
(
nm2√N log n

δ

))
-dispersed.

Proof. This theorem follows by the exact same reasoning as Theorem 10.4.27.

Theorem 10.4.31. For all agents i ∈ [n], all θ̂i ∈ [0, 1]m, and all θ−i ∈ [0, 1](n−1)m, the function
ui,M

(
·, θ̂i, θ−i

)
is 1-Lipschitz.

Proof. So long as all bids are fixed, the allocation is fixed, so ui,M
(
·, θ̂i, θ−i

)
is 1-Lipschitz

function as a function of the true type θi ∈ [0, 1]m.

Next, we prove the following pseudo-dimension bound.

Theorem 10.4.32. For any agent i ∈ [n], the pseudo-dimension of the class Fi,M is O (m log(nm)).

Proof. This theorem follows by the exact same reasoning as Theorem 10.4.29.
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Second-price auction with spiteful agents

We conclude by studying spiteful agents [Brandt et al., 2007, Morgan et al., 2003, Sharma and
Sandholm, 2010, Tang and Sandholm, 2012b], where each bidder’s utility not only increases
when his surplus increases, but also decreases when the other bidders’ surpluses increase.
Formally, given a spite parameter αi ∈ [0, 1], agent i’s utility under the second-price auction M is

ui,M
(
θ, θ̂
)

= αi1{θ̂i>‖θ̂−i‖∞}
(
θi −

∥∥θ̂−i
∥∥

∞

)
− (1− αi) ∑

i′ 6=i
1{θ̂i′>‖θ̂−i′‖∞}

(
θi′ −

∥∥θ̂−i′
∥∥

∞

)
,

where 1{θ̂i>‖θ̂−i‖∞}
(
θi −

∥∥θ̂−i
∥∥

∞

)
is the agent’s surplus and ∑i′ 6=i 1{θ̂i′>‖θ̂−i′‖∞}

(
θi′ −

∥∥θ̂−i′
∥∥

∞

)
is the surplus of the other agents. The closer αi is to zero, the more spiteful bidder i is because
his utility depends less on his own surplus and more on the other agents’ surplus.

We begin with the following lemma, which follows from the form of ui,M

(
θi, ·, θ

(j)
−i

)
.

Lemma 10.4.33. For any agent i ∈ [n], any S−i =
{

θ
(1)
−i , . . . , θ

(N)
−i

}
, and any type θi ∈ [0, 1], the

functions ui,M

(
θi, ·, θ

(1)
−i

)
, . . . , ui,M

(
θi, ·, θ

(N)
−i

)
are piecewise 1-Lipschitz and their discontinuities fall

in the set
{∥∥∥θ

(j)
−i

∥∥∥
∞

}
j∈[N]

.

Proof. Consider an arbitrary bidder, and without loss of generality, suppose that bidder is
bidder 1. Next, choose a sample θ

(j)
−1 =

(
θ

(j)
2 , . . . , θ

(j)
n

)
. Letting j∗ = argmax

{
θ

(j)
2 , . . . , θ

(j)
n

}
and

letting s(j) be the second-largest component of θ
(j)
−1, we know that either agent 1 will win and

pay
∥∥∥θ

(j)
−1

∥∥∥
∞

or agent j∗ will win and pay the maximum of θ̂1 and s(j). Therefore, for any value

θ1 ∈ [0, 1] and bid θ̂1 ∈ [0, 1], we know that

u1,M

(
θ1, θ̂1, θ

(j)
−1

)
=


(α1 − 1)

(∥∥∥θ
(j)
−1

∥∥∥
∞
− s(j)

)
if θ̂1 ≤ s(j)

(α1 − 1)
(∥∥∥θ

(j)
−1

∥∥∥
∞
− θ̂1

)
if s(j) < θ̂1 ≤

∥∥∥θ
(j)
−1

∥∥∥
∞

α1

(
θ1 −

∥∥∥θ
(j)
−1

∥∥∥
∞

)
if θ̂1 >

∥∥∥θ
(j)
−1

∥∥∥
∞

.

(10.13)

This means that if θ̂1 >
∥∥∥θ

(j)
−1

∥∥∥
∞

, then u1,M

(
θ1, θ̂1, θ

(j)
−1

)
is a constant function of θ̂1, whereas if

θ̂1 ≤
∥∥∥θ

(j)
−1

∥∥∥
∞

, then u1,M

(
θ1, θ̂1, θ

(j)
−1

)
is a continuous function of θ̂1 with a slope of either 0 (if

θ̂1 < s(j)) or α1 − 1 (if θ̂1 ≥ s(j)). We illustrate this function in Figure 10.3. Since |α1 − 1| ≤ 1,
this means that for all θi ∈ [0, 1], the function u1,M

(
θ1, ·, θ

(j)
−1

)
is piecewise 1-Lipschitz with a

discontinuity at
∥∥∥θ

(j)
−1

∥∥∥
∞

.

Lemma 10.4.33 implies the following dispersion guarantee.

Theorem 10.4.34. Suppose each agent’s type has a κ-bounded density function. With probability 1− δ

over the draw of the n sets S−i =
{

θ
(1)
−i , . . . , θ

(N)
−i

}
∼ DN

−i, we have that for all agents i ∈ [n] and

types θi ∈ [0, 1], the functions ui,M

(
θi, ·, θ

(1)
−i

)
, . . . , ui,M

(
θi, ·, θ

(N)
−i

)
are piecewise 1-Lipschitz and(

O
(

1/
(

κ
√

N
))

, Õ
(

n
√

N
))

-dispersed.
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Figure 10.3: Graph of u1,M

(
θ1, ·, θ

(j)
−1

)
(Equation (10.13) ) for a spiteful agent under a second-

price auction with α1 = θ1 = 1
2 and

∥∥∥θ
(j)
−1

∥∥∥
∞

= 3
4 . We use the notation s(j) to denote the

second-largest component of θ
(j)
−1, and in this figure, s(j) = 1

4 .

Proof. This follows from Lemma 10.4.33 exactly as Theorem 10.4.13 follows from Lemma 10.4.12.

Theorem 10.4.35. For all agents i ∈ [n], reported types θ̂i ∈ [0, 1], and type profiles θ−i ∈ [0, 1]n−1,
the function ui,M

(
·, θ̂i, θ−i

)
is 1-Lipschitz.

Proof. Since the reported types
(
θ̂i, θ−i

)
are fixed, the allocation is fixed. If θ̂i > ‖θ−i‖∞, then

ui,M
(
θi, θ̂i, θ−i

)
= αi (θi − ‖θ−i‖∞), which is an αi-Lipschitz function of θi. Otherwise, it is a

constant function of θi.

We conclude with the following pseudo-dimension bound.

Theorem 10.4.36. For any agent i ∈ [n], the pseudo-dimension of the class Fi,M is O(1).

Proof. For any vector θ−i ∈ [0, 1](n−1), let s be the second-highest component. Letting H =
{θ̂i = ‖θ−i‖∞ , θ̂i = s} we know that for any interval I of [0, 1] \ H, the allocation is fixed
across all θ̂i ∈ C. So long as the allocation is fixed, ui,M (·, ·, θ−i) is a linear function of

(
θi, θ̂i

)
.

Therefore, the pseudo-dimension bound follows directly from Theorem 10.4.11.

10.5 Dispersion lemmas

We include a few lemmas about dispersion (Definition 10.4.5) from work by Balcan et al. [2018b]
as well as a few variations we prove ourselves for our specific applications.

Lemma 10.5.1 (Balcan et al. [2018b]). Let B = {β1, . . . , βr} ⊂ R be a collection of samples where
each βi is drawn from a distribution with a κ-bounded density function. For any δ ≥ 0, the following
statements hold with probability at least 1− δ:

1. If the βi are independent, then every interval of width w contains at most k = O(rwκ +√
r log(1/δ)) samples. In particular, for any α ≥ 1/2 we can take w = 1/(κr1−α) and

k = O(rα
√

log(1/δ)).

2. If the samples can be partitioned into P buckets B1, . . . ,BP such that each Bi contains independent
samples and |Bi| ≤ M, then every interval of width w contains at most k = O(PMwκ +√

M log(P/δ) samples. In particular, for any α ≥ 1/2 we can take w = 1/(κM1−α) and
k = O(PMα

√
log(P/δ)).
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Lemma 10.5.2 (Balcan et al. [2018b]). Suppose X is a random variable with κ-bounded density func-
tion and suppose c 6= 0 is a constant. Then cX has a κ

|c| -bounded density function.

Lemma 10.5.3. Suppose X and Y are random variables taking values in [0, 1] and suppose that their
joint distribution has a κ-bounded density function. Then the distribution of X + Z has a κ-bounded
density function.

Proof. Let Z = X + Y. We will perform change of variables using the function g(x, y) =
(x, x + y). Let g−1(x, z) = h(x, z) = (x, z− x). Then

Jh(x, z) = det
(

1 0
−1 1

)
= 1.

Therefore, fX,Z(x, z) = fX,Y(x, z− x). This means that fZ(z) =
∫ 1

0 fX,Y(x, z− x) dx ≤ κ, so the
theorem statement holds.

Lemma 10.5.4. Suppose X and Y are random variables taking values in [0, 1] and suppose that their
joint distribution has a κ-bounded density function. Then the distribution of X − Z has a κ-bounded
density function.

Proof. Let Z = X − Y. We will perform change of variables using the function g(x, y) =
(x, x− y). Let g−1(x, z) = h(x, z) = (x, x− z). Then

Jh(x, z) = det
(

1 0
1 −1

)
= −1.

Therefore, fX,Z(x, z) = fX,Y(x, x− z). This means that fZ(z) =
∫ 1

0 fX,Z(x, z) dx =
∫ 1

0 fX,Y(x, x−
z) dx ≤ κ, so the theorem statement holds.

Definition 10.5.5 (Hyperplane delineation). Let Ψ be a set of hyperplanes in Rm and let P be
a partition of a set Rm. Let K1, . . . , Kq be the connected components of Rm \Ψ. Suppose every
set in P is the union of some collection of sets Ki1 , . . . , Kij together with their limit points. Then
we say that the set Ψ delineates P .

Lemma 10.5.6 (Balcan et al. [2018b]). Let u1, . . . , uN be a set of piecewise L-Lipschitz functions
mapping Rm to R, drawn i.i.d. from a distribution D. For each j ∈ [N], let Pj be the partition of [0, 1]m

such that over any R ∈ Pj, uj is L-Lipschitz. Suppose the hyperplane sets Ψ1, . . . , ΨN delineate the
partitions P1, . . . ,PN . Moreover, suppose the multi-set union of Ψ1, . . . , ΨN can be partitioned into P
multi-sets B1, . . . ,BP such that for each multi-set Bi:

1. The hyperplanes in Bi are parallel with probability 1 over the draw of u1, . . . , uN .

2. The offsets of the hyperplanes in Bi are independently drawn from κ-bounded distributions.

With probability at least 1− δ over the draw of u1, . . . , uN , the functions are(
1

2κ
√

max |Bi|
, O

(
P

√
max |Bi| ln

P
δ

))
-dispersed.

183



184



Part II

Efficient procedures for algorithm
configuration and beyond
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Chapter 11

Frugal training with generalization
guarantees

Recently, two lines of research have emerged that explore the theoretical underpinnings of
algorithm configuration. One—which we covered extensively in Part I—provides sample com-
plexity guarantees, bounding the number of samples sufficient to ensure that an algorithm’s
performance on average over the samples generalizes to its expected performance on the distri-
bution. These sample complexity bounds apply no matter how the learning algorithm operates,
and these papers do not include learning algorithms that extend beyond exhaustive search.

The second line of research provides algorithms for finding nearly-optimal configurations
from a finite set [Kleinberg et al., 2017, 2019, Weisz et al., 2018, 2019]. These algorithms can
also be used when the parameter space is infinite: for any γ ∈ (0, 1), first sample Ω̃(1/γ)
configurations, and then run the algorithm over this finite set. The authors guarantee that
the output configuration will be within the top γ-quantile. If there is only a small region of
high-performing parameters, however, the uniform sample might completely miss all good
parameters. Algorithm configuration problems with only tiny pockets of high-performing pa-
rameters do indeed exist: in Chapter 4, we presented distributions over integer programs where
the optimal parameters lie within an arbitrarily small region of the parameter space. For any
parameter within that region, branch-and-bound—the most widely-used integer programming
algorithm—terminates instantaneously. Using any other parameter, branch-and-bound takes
an exponential number of steps. This region of optimal parameters can be made so small that
any random sampling technique would require an arbitrarily large sample of parameters to hit
that region. We discuss this example in more detail in Section 11.4.

This chapter marries these two lines of research. We present an algorithm that identifies a
finite set of promising parameters within an infinite set, given sample access to a distribution
over problem instances. We prove that this set contains a nearly optimal parameter with high
probability. The set can serve as the input to a configuration algorithm for finite parameter
spaces [Kleinberg et al., 2017, 2019, Weisz et al., 2018, 2019], which we prove will then return a
nearly optimal parameter from the infinite set. Our approach applies to any configuration prob-
lem where the algorithm’s performance as a function of its parameters—the dual function—is
piecewise constant. We proved that this structure holds in the previous chapters of this thesis
in the contexts of integer programming and computational biology algorithm configuration,
and other papers have shown that it holds in the context of clustering as well [Balcan et al.,
2017, 2018c, 2020a].
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We now describe our algorithm at a high level. Let ` be a loss function where `ρ(z) measures
the computational resources (running time, for example) required to solve problem instance z
using the algorithm parameterized by the vector ρ. Let OPT be the smallest expected loss1

Ez∼D
[
`ρ(z)

]
of any parameter ρ, where D is an unknown distribution over problem instances.

Our algorithm maintains upper confidence bound on OPT, initially set to ∞. On each round
t, the algorithm begins by drawing a set St of sample problem instances. It computes the
partition of the parameter space into regions where for each problem instance in St, the loss
`, capped at 2t, is a constant function of the parameters. On a given region of this partition, if
the average capped loss is sufficiently low, the algorithm chooses an arbitrary parameter from
that region and deems it “good.” Once the cap 2t has grown sufficiently large compared to
the upper confidence bound on OPT, the algorithm returns the set of good parameters. We
summarize our guarantees informally below.

Theorem 11.0.1 (Informal). The following guarantees hold:

1. The set of output parameters contains a nearly-optimal parameter with high probability.

2. Given accuracy parameters ε and δ, the algorithm terminates after O
(
ln
(

4
√

1 + ε ·OPT/δ
))

rounds.

3. On the algorithm’s final round, let P be the size of the partition the algorithm computes. The
number of parameters it outputs is O

(
P · ln

(
4
√

1 + ε ·OPT/δ
))

.

4. The algorithm’s sample complexity on each round t is polynomial in 2t (which scales linearly with
OPT), log P, the parameter space dimension, 1

δ , and 1
ε .

We prove that our sample complexity can be exponentially better than the best-known
uniform convergence bound. Moreover, it can find strong configurations in scenarios where
uniformly sampling configurations will fail.

The results in this section are joint work with Nina Balcan and Tuomas Sandholm [Balcan
et al., 2020e]. Our current results were published in AAAI 2020.

Subsequent research

Subsequent research by Weisz et al. [2020] extends the configuration procedure by Weisz et al.
[2019], enabling it to quickly discard suboptimal configurations without running the risk of
discarding nearly-optimal configurations. It can thus operate with a better choice of γ com-
pared to prior research [Kleinberg et al., 2017, 2019, Weisz et al., 2018, 2019]. As in the previous
approaches, if there is only a small region of high-performing parameters, however, a uniform
sample of configurations will likely miss all good parameter settings.

11.1 Problem definition

The algorithm configuration model we adopt is a generalization of the model from prior re-
search by Kleinberg et al. [2017, 2019] and Weisz et al. [2018, 2019]. There is a set Z of problem
instances and an unknown distribution D over Z . Each algorithm is parameterized by a vector

1As we describe in Section 2, we compete with a slightly more nuanced benchmark than OPT, in line with prior
research.
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ρ ∈ P ⊆ Rd. At a high level, we assume we can set a budget on the computational re-
sources the algorithm consumes, which we quantify using an integer τ ∈ Z≥0. For example, τ
might measure the maximum running time we allow the algorithm. There is a utility function
U : P ×Z ×Z≥0 → {0, 1}, where U(ρ, z, τ) = 1 if and only if the algorithm parameterized by
ρ returns a solution to the instance z given a budget of τ. We make the natural assumption
that the algorithm is more likely to find a solution the higher its budget: U(ρ, z, τ) ≥ U(ρ, z, τ′)
for τ ≥ τ′. Finally, for every parameter vector ρ ∈ P , there is a loss function `ρ : Z → Z≥0
which measures the minimum budget the algorithm requires to find a solution. Specifically,
`ρ(z) = ∞ if U(ρ, z, τ) = 0 for all τ, and otherwise, `ρ(z) = argmin {τ : U(ρ, z, τ) = 1}. In
Section 11.1.1, we provide several examples of this problem definition instantiated for combi-
natorial problems.

The distribution D over problem instances is unknown, so we use samples from D to find
a parameter vector ρ̂ ∈ P with small expected loss. Ideally, we could guarantee that

E
z∼D

[
`ρ̂(z)

]
≤ (1 + ε) inf

ρ∈P

{
E

z∼D

[
`ρ(z)

]}
. (11.1)

Unfortunately, this ideal goal is impossible to achieve with a finite number of samples, even in
the extremely simple case where there are only two configurations, as illustrated below.

Example 11.1.1. [Weisz et al. [2019]] Let P = {1, 2} be a set of two configurations. Suppose
that the loss of the first configuration is 2 for all problem instances: `1(z) = 2 for all z ∈ Z .
Meanwhile, suppose that `2(z) = ∞ with probability δ for some δ ∈ (0, 1) and `2(z) = 1 with
probability 1− δ. In this case, Ez∼D[`1(z)] = 2 and Ez∼D[`2(z)] = ∞. In order for any algorithm
to verify that the first configuration’s expected loss is substantially better than the second’s, it
must sample at least one problem instance z such that `2(z) = ∞. Therefore, it must sample
Ω(1/δ) problem instances, a lower bound that approaches infinity as δ shrinks. As a result, it
is impossible to give a finite bound on the number of samples sufficient to find a parameter ρ̂
that satisfies Equation (11.1).

The obstacle that this example exposes is that some configurations might have an enor-
mous loss on a few rare problem instances. To deal with this impossibility result, Weisz
et al. [2018, 2019], building off of work by Kleinberg et al. [2017, 2019], propose a relaxed
notion of approximate optimality. To describe this relaxation, we introduce the following
notation. Given δ ∈ (0, 1) and a parameter vector ρ ∈ P , let tδ(ρ) be the largest cutoff
τ ∈ Z≥0 such that the probability `ρ(z) is greater than τ is at least δ. Mathematically,
tδ(ρ) = argmaxτ∈Z

{
Prz∼D[`ρ(z) ≥ τ] ≥ δ

}
. The value tδ(ρ) can be thought of as the beginning

of the loss function’s “δ-tail.” We illustrate the definition of tδ(ρ) in Figure 11.1. We now define
the relaxed notion of approximate optimality by Weisz et al. [2018].

Definition 11.1.2 ((ε, δ,P)-optimality). A parameter vector ρ̂ is (ε, δ,P)-optimal if

E
z∼D

[
min

{
`ρ̂(z), tδ (ρ̂)

}]
≤ (1 + ε) inf

ρ∈P

{
E

z∼D

[
min

{
`ρ(z), tδ/2(ρ)

}]}
.

In other words, a parameter vector ρ̂ is (ε, δ,P)-optimal if its δ-capped expected loss is within
a (1 + ε)-factor of the optimal δ/2-capped expected loss.2 To condense notation, we write

2The fraction δ/2 can be replaced with any cδ for c ∈ (0, 1). Ideally, we would replace δ/2 with δ, but the
resulting property would be impossible to verify with high probability [Weisz et al., 2018].
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Figure 11.1: Fix a parameter vector ρ. The figure is a hypothetical illustration of the cumulative
density function of `ρ(z) when z is sampled from D. For each value τ along the x-axis, the
solid line equals Prz∼D

[
`ρ(z) ≤ τ

]
. The dotted line equals the constant function 1− δ. Since

100 is the largest integer such that Prz∼D
[
`ρ(z) ≥ 100

]
≥ δ, we have that tδ(ρ) = 100.

OPTcδ := infρ∈P
{

Ez∼D
[
min

{
`ρ(z), tcδ(ρ)

}]}
. If an algorithm returns an

(
ε, δ, P̄

)
-optimal

parameter from within a finite set P̄ , we call it a configuration algorithm for finite parameter spaces.
Weisz et al. [2019] provide one such algorithm, CapsAndRuns.

11.1.1 Example applications

In this section, we provide several instantiations of our problem definition in combinatorial
domains.

Tree search. Tree search algorithms, which we have studied in Chapters 4, 8, and 9, are the
most widely-used tools for solving combinatorial problems. Given parameters ρ and a problem
instance z, we might define the budget τ to cap the size of the tree the algorithm builds. In
that case, the utility function is defined such that U(ρ, z, τ) = 1 if and only if the algorithm
terminates, having found the optimal solution, after building a tree of size τ. The loss `ρ(z)
equals the size of the entire tree built by the algorithm parameterized by ρ given the instance z
as input.

Clustering. Given a set of datapoints and the distances between each point, the goal in cluster-
ing is to partition the points into subsets so that points within any set are “similar.” Clustering
algorithms are used to group proteins by function, classify images by subject, and myriad other
applications. Typically, the quality of a clustering is measured by an objective function, such as
the classic k-means, k-median, or k-center objectives. Unfortunately, it is NP-hard to determine
the clustering that minimizes any of these objectives. As a result, researchers have developed
a wealth of approximation and heuristic clustering algorithms. However, no one algorithm is
optimal across all applications.

Balcan et al. [2017] provide sample complexity guarantees for clustering algorithm config-
uration. Each problem instance is a set of datapoints and there is a distribution over clustering
problem instances. They analyze several infinite classes of clustering algorithms. Each of these
algorithms begins with a linkage-based step and concludes with a dynamic programming step.
The linkage-based routine constructs a hierarchical tree of clusters. At the beginning of the pro-
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cess, each datapoint is in a cluster of its own. The algorithm sequentially merges the clusters
into larger clusters until all elements are in the same cluster. There are many ways to build this
tree: merge the clusters that are closest in terms of their two closest points (single-linkage), their
two farthest points (complete-linkage), or on average over all pairs of points (average-linkage).
These linkage procedures are commonly used in practice [Awasthi et al., 2017, Saeed et al.,
2003, White et al., 2010] and come with theoretical guarantees. Balcan et al. [2017] study an
infinite parameterization, ρ-linkage, that interpolates between single-, average-, and complete-
linkage. After building the cluster tree, the dynamic programming step returns the pruning of
this tree that minimizes a fixed objective function, such as the k-means, k-median, or k-center
objectives.

Building the full hierarchy is expensive: the best-known algorithm’s runtime is O(n2 log n),
where n is the number of datapoints [Manning et al., 2010]. It is not always necessary, however,
to build the entire tree: the algorithm can preemptively terminate the linkage step after τ
merges, then use dynamic programming to recover the best pruning of the cluster forest. We
refer to this variation as τ-capped ρ-linkage. To evaluate the resulting clustering, we assume there
is a cost function c : P × Z ×Z → R where c(ρ, z, τ) measures the quality of the clustering
τ-capped ρ-linkage returns, given the instance z as input. We assume there is a threshold θz
where the clustering is admissible if and only if c(ρ, z, τ) ≤ θz, which means the utility function
is defined as U(ρ, z, τ) = 1{c(ρ,z,τ)≤θz}. For example, c(ρ, z, τ) might measure the clustering’s
k-means objective value, and θz might equal the optimal k-means objective value (obtained only
for the training instances via an expensive computation) plus an error term.

11.2 Data-dependent discretizations of infinite parameter spaces

We begin this section by proving an intuitive fact: given a finite subset P̄ ⊂ P of parameters
that contains at least one “sufficiently good” parameter, a configuration algorithm for finite
parameter spaces, such as CapsAndRuns [Weisz et al., 2019], returns a parameter that’s nearly
optimal over the infinite set P . Therefore, our goal is to provide an algorithm that takes as
input an infinite parameter space and returns a finite subset that contains at least one good
parameter. A bit more formally, a parameter is “sufficiently good” if its δ/2-capped expected
loss is within a

√
1 + ε-factor of OPTδ/4. We say a finite parameter set P̄ is an (ε, δ)-optimal

subset if it contains a good parameter.

Definition 11.2.1 ((ε, δ)-optimal subset). A finite set P̄ ⊂ P is an (ε, δ)-optimal subset if there is
a vector ρ̂ ∈ P̄ such that Ez∼D

[
min

{
`ρ̂(z), tδ/2 (ρ̂)

}]
≤
√

1 + ε ·OPTδ/4.

We now prove that given an (ε, δ)-optimal subset P̄ ⊂ P , a configuration algorithm for
finite parameter spaces returns a nearly optimal parameter from the infinite space P .

Theorem 11.2.2. Let P̄ ⊂ P be an (ε, δ)-optimal subset and let ε′ =
√

1 + ε− 1. Suppose ρ̂ ∈ P̄ is(
ε′, δ, P̄

)
-optimal. Then Ez∼D

[
min

{
`ρ̂(z), tδ (ρ̂)

}]
≤ (1 + ε) ·OPTδ/4.

Proof. Since the parameter ρ̂ is
(
ε′, δ, P̄

)
-optimal, we know that Ez∼D

[
min

{
`ρ̂(z), tδ (ρ̂)

}]
≤√

1 + ε ·minρ∈P̄ {Ez∼D [min {` (ρ, z) , tδ/2(ρ)}]}. (We use a minimum instead of an infimum be-
cause P̄ is a finite set by Definition 11.2.1.) The set P̄ is an (ε, δ)-optimal subset of the parameter
space P , so there exists a parameter vector ρ′ ∈ P̄ such that Ez∼D [min {` (ρ′, z) , tδ/2 (ρ′)}] ≤
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√
1 + ε ·OPTδ/4. Therefore,

E
z∼D

[
min

{
`ρ̂(z), tδ (ρ̂)

}]
≤
√

1 + ε ·min
ρ∈P̄

{
E

z∼D
[min {` (ρ, z) , tδ/2(ρ)}]

}
≤
√

1 + ε · E
z∼D

[
min

{
`
(
ρ′, z

)
, tδ/2

(
ρ′
)}]

≤ (1 + ε) ·OPTδ/4,

so the theorem statement holds.

11.3 Main result: An algorithm for learning (ε, δ)-optimal subsets

We present an algorithm for learning (ε, δ)-optimal subsets for configuration problems that
satisfy a simple, yet ubiquitous structure: for any problem instance z, the loss function is a
piecewise-constant function of the parameters. This structure has been observed throughout
a diverse array of configuration problems, as we demonstrated in Part I. More formally, this
structure holds if for any problem instance z ∈ Z and cap τ ∈ Z≥0, there is a finite partition of
the parameter space P such that in any one region R of this partition, for all pairs of parameter
vectors ρ, ρ′ ∈ R, min

{
`ρ(z), τ

}
= min

{
`ρ′(z), τ

}
.

To exploit this piecewise-constant structure, we require access to a function Partition that
takes as input a set S of problem instances and an integer τ and returns this partition of the
parameters. Namely, it returns a set of tuples (P1, r1, τ1) , . . . , (Pk, rk, τk) ∈ 2P × [0, 1] ×Z|S|

such that:

1. The sets P1, . . . ,Pk make up a partition of P .

2. For all subsets Pi and vectors ρ, ρ′ ∈ Pi, 1
|S| ∑z∈S 1{`ρ(z)≤τ} = 1

|S| ∑z∈S 1{`ρ′ (z)≤τ} = ri.

3. For all subsets Pi, all ρ, ρ′ ∈ Pi, and all z ∈ S , min
{
`ρ(z), τ

}
= min

{
`ρ′(z), τ

}
= τi[z].

We assume the number of tuples Partition returns is monotone: if τ ≤ τ′, then

|Partition(S , τ)| ≤
∣∣Partition(S , τ′)

∣∣
and if S ⊆ S ′, then |Partition(S , τ)| ≤ |Partition(S ′, τ)|.

Results from prior research imply guidance for implementing Partition in the contexts of
clustering and integer programming. For example, in the clustering application we describe
in Section 11.1.1, the distribution D is over clustering instances. Suppose n is an upper bound
on the number of points in each instance. Balcan et al. [2017] prove that for any set S of
samples and any cap τ, in the worst case, |Partition(S , τ)| = O

(
|S|n8), though empirically,

|Partition(S , τ)| is often several orders of magnitude smaller [Balcan et al., 2020a]. Balcan
et al. [2017, 2020a] provide guidance for implementing Partition.

High-level description of algorithm. We now describe our algorithm for learning (ε, δ)-
optimal subsets. See Algorithm 8 for the pseudocode. The algorithm maintains a variable
T, initially set to ∞, which roughly represents an upper confidence bound on OPTδ/4. It also
maintains a set G of parameters which the algorithm believes might be nearly optimal. The al-
gorithm begins by aggressively capping the maximum loss ` it computes by 1. At the beginning
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Algorithm 8 Algorithm for learning (ε, δ)-optimal subsets

Input: Parameters δ, ζ ∈ (0, 1), ε > 0.
1: Set η ← min

{ 1
8

(
4
√

1 + ε− 1
)

, 1
9

}
, t← 1, T ← ∞, and G ← ∅.

2: while 2t−3δ < T do
3: Set St ← {z}, where z ∼ D.
4: while ηδ is smaller than√

2d ln |Partition (St, 2t)|
|St|

+

√
8
|St|

ln
8 (2t |St| t)2

ζ

do Draw z ∼ D and add z to St.
5: Compute tuples (P1, r1, τ1) , . . . , (Pk, rk, τk)← Partition

(
St, 2t).

6: for i ∈ {1, . . . , k} with ri ≥ 1− 3δ/8 do
7: Set G ← G ∪ {Pi}.
8: Sort the elements of τi: τ1 ≤ · · · ≤ τ|St|.

9: Set T′ ← 1
|St| ∑|

St|
m=1 min

{
τm, τb|St|(1−3δ/8)c

}
.

10: if T′ < T then Set T ← T′.
11: t← t + 1.
12: For each set P ′ ∈ G, select a vector ρP ′ ∈ P ′.
Output: The (ε, δ)-optimal set {ρP ′ | P ′ ∈ G}.

of each round, the algorithm doubles this cap until the cap grows sufficiently large compared
to the upper confidence bound T. At that point, the algorithm terminates. On each round t, the
algorithm draws a set St of samples (Step 4) that is just large enough to estimate the expected
2t-capped loss Ez∼D

[
min

{
`ρ(z), 2t}] for every parameter ρ ∈ P . The number of samples it

draws is a data-dependent quantity that depends on empirical Rademacher complexity [Bartlett
and Mendelson, 2002, Koltchinskii, 2001].

Next, the algorithm evaluates the function Partition

(
St, 2t) to obtain the tuples

(P1, r1, τ1) , . . . , (Pk, rk, τk) ∈ 2P × [0, 1]×Z|St|.

By definition of this function, for all subsets Pi and parameter vector pairs ρ, ρ′ ∈ Pi, the
fraction of instances z ∈ St with `ρ(z) ≤ 2t is equal to the fraction of instances z ∈ St with
`ρ′(z) ≤ 2t. In other words, 1

|St| ∑z∈St
1{`ρ(z)≤2t} = 1

|St| ∑z∈St
1{`ρ′ (z)≤2t} = ri. If this fraction

is sufficiently high (at least 1− 3δ/8), the algorithm adds Pi to the set of good parameters G
(Step 7). The algorithm estimates the δ/4-capped expected loss of the parameters contained Pi,
and if this estimate is smaller than the current upper confidence bound T on OPTδ/4, it updates
T accordingly (Steps 8 through 10). Once the cap 2t has grown sufficiently large compared to
the upper confidence bound T, the algorithm returns an arbitrary parameter from each set in
G.

Algorithm analysis. We now provide guarantees on Algorithm 8’s performance. We denote
the values of t and T at termination by t̄ and T̄, and we denote the state of the set G at
termination by Ḡ. For each set P ′ ∈ Ḡ, we use the notation τP ′ to denote the value τb|St|(1−3δ/8)c
in Step 9 during the iteration t that P ′ is added to G.
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Theorem 11.3.1. With probability 1− ζ, the following conditions hold, with η = min
{

( 4√1+ε−1)
8 , 1

9

}
and c = 16 4√1+ε

δ :

1. Algorithm 8 terminates after t̄ = O (log (c ·OPTδ/4)) iterations.

2. Algorithm 8 returns an (ε, δ)-optimal set of parameters of size at most

t̄

∑
t=1
|Partition (St, c ·OPTδ/4)| .

3. The sample complexity on round t ∈ [t̄], |St|, is

Õ
(

d ln |Partition (St, c ·OPTδ/4)|+ c ·OPTδ/4

η2δ2

)
.

Proof. We split the proof into separate lemmas. Lemma 11.3.4 proves Part 1. Lemma 11.3.6 as
well as Lemma B.0.10 in Appendix B prove Part 2. Finally, Part 3 follows from classic results
in learning theory on Rademacher complexity. In particular, it follows from an inversion of the
inequality in Step 4 and the fact that 2t ≤ 2t̄ ≤ c ·OPTδ/4, as we prove in Lemma 11.3.4.

Theorem 7.2.3 hinges on the assumption that the samples S1, . . . ,St̄ Algorithm 8 draws in
Step 4 are sufficiently representative of the distribution D, formalized as follows:

Definition 11.3.2 (ζ-representative run). For each round t ∈ [t̄], denote the samples in St as
St =

{
z(t)

i : i ∈ [|St|]
}

. We say that Algorithm 8 has a ζ-representative run if for all rounds
t ∈ [t̄], all integers b ∈ [|St|], all caps τ ∈ Z≥0, and all parameters ρ ∈ P , the following
conditions hold:

1. The average number of instances z(t)
i ∈

{
z(t)

1 , . . . , z(t)
b

}
with loss smaller than τ nearly

matches the probability that `ρ(z) ≤ τ:∣∣∣∣∣1b b

∑
i=1

1{
`
(

ρ,z(t)
i

)
≤τ
} − Pr

z∼D

[
`ρ(z) ≤ τ

]∣∣∣∣∣ ≤ γ(t, b, τ),

and

2. The average τ-capped loss of the instances z(t)
1 , . . . , z(t)

b nearly matches the expected τ-
capped loss:∣∣∣∣∣1b b

∑
i=1

min
{
`
(

ρ, z(t)
i

)
, τ
}
− E

z∼D

[
min

{
`ρ(z), τ

}]∣∣∣∣∣ ≤ τ · γ(t, b, τ),

where

γ(t, b, τ) =

√√√√2d ln
∣∣∣Partition

({
z(t)

1 , . . . , z(t)
b

}
, τ
)∣∣∣

b
+ 2

√
2
b

ln
8 (τbt)2

ζ
.

In Step 4, we ensure St is large enough that Algorithm 8 has a ζ-representative run with
probability 1− ζ.
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Lemma 11.3.3. With probability 1− ζ, Algorithm 8 has a ζ-representative run.

Proof. Intuitively, there are only |Partition(S , τ)| algorithms with varying τ-capped losses
over any set of samples S . We can therefore invoke Massart’s finite lemma [Massart, 2000],
which guarantees that each set St is sufficiently large to ensure that Algorithm 8 indeed has
a ζ-representative run. More formally, for any τ ∈ Z≥0, define the function classes Fτ =

{z 7→ min{`(ρ, z), τ} | ρ ∈ P} and Hτ =
{

z 7→ 1{`(ρ,z)≤τ} | ρ ∈ P
}

. Let S ⊆ Π be a set of

problem instances. By Massart’s lemma (Lemma 2.1.8 in Chapter 2) we know that R̂S (Fτ) ≤
τ
√

2d ln|Partition(S ,τ)|
|S| and R̂S (Hτ) ≤

√
2d ln|Partition(S ,τ)|

|S| . Therefore, the lemma holds.

The remainder of our analysis will assume that Algorithm 8 has a ζ-representative run.

Number of iterations until termination. We begin with a proof sketch of the first part of
Theorem 7.2.3.

Lemma 11.3.4. Suppose Algorithm 8 has a ζ-representative run. Then 2t̄ ≤ 16
δ

4
√

1 + ε ·OPTδ/4.

Proof. For each set P ′ ∈ Ḡ, let tP ′ be the round where P ′ is added to the set G, let SP ′ = StP′ ,
and let ρP ′ be an arbitrary parameter vector in P ′. Since no set is added to G when t = t̄, it
must be that for all sets P ′ ∈ Ḡ, tP ′ ≤ t̄− 1. Moreover, since

OPTδ/4 := inf
ρ∈P

{
E

z∼D
[min {` (ρ, z) , tδ/4(ρ)}]

}
,

we know that for every γ > 0, there exists a parameter vector ρ∗ such that

E
z∼D

[min {` (ρ∗, z) , tδ/4 (ρ∗)}] ≤ OPTδ/4 + γ.

Below, we prove that 2t̄ ≤ 16 4√1+ε
δ · Ez∼D [min {` (ρ∗, z) , tδ/4 (ρ∗)}] and thus the lemma state-

ment holds (see Lemma B.0.9).

Case 1: ρ∗ 6∈ ⋃P ′∈Ḡ P ′. By Lemma 11.3.5, we know that

2t̄−3δ ≤ E
z∼D

[min {` (ρ∗, z) , tδ/4 (ρ∗)}] .

Therefore, 2t̄ ≤ 8
δ ·Ez∼D [min {` (ρ∗, z) , tδ/4 (ρ∗)}] ≤ 16 4√1+ε

δ ·Ez∼D [min {` (ρ∗, z) , tδ/4 (ρ∗)}].

Case 2: ρ∗ is an element of a set P ′ ∈ Ḡ and tP ′ ≤ t̄ − 2. Let T′ be the value of T at the
beginning of round t̄− 1. Since the algorithm does not terminate on round t̄− 1, it must be
that 2t̄−4δ < T′. By definition of T′,

2t̄−4δ < T′ = min
P̄ :tP̄≤t̄−2

1
|SP̄ |

∑
z∈SP̄

min {` (ρP̄ , z) , τP̄} ≤
1
|SP ′ | ∑

z∈SP′
min {` (ρ∗, z) , τP ′} .

Since Algorithm 8 had a ζ-representative run, 2t̄−4δ is upper-bounded by

E
z∼D

[min {` (ρ∗, z) , τP ′}] + τP ′

√2d ln |Partition (SP ′ , τP ′)|
|SP ′ |

+ 2

√
2
|SP ′ |

ln
8 (τP ′ |SP ′ | tP ′)2

ζ

 .
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Since τP ′ ≤ 2tP′ and Partition is monotone, 2t̄−4δ is at most

E
z∼D

[min {` (ρ∗, z) , τP ′}] + τP ′

√2d ln |Partition (SP ′ , 2tP′ )|
|SP ′ |

+

√
8
|SP ′ |

ln
8 (2tP′ |SP ′ | tP ′)2

ζ

 .

By Step 4 of Algorithm 8, 2t̄−4δ ≤ Ez∼D [min {` (ρ∗, z) , τP ′}] + τP ′ηδ. Finally, by Corollary B.0.4,
2t̄−4δ ≤ (1 + 4η) Ez∼D [min {` (ρ∗, z) , τP ′}] . Since η <

(
4
√

1 + ε− 1
)

/4,

2t̄−4δ < 4
√

1 + ε · E
z∼D

[min {` (ρ∗, z) , τP ′}] .

Recalling that τP ′ ≤ tδ/4 (ρ∗) by Lemma B.0.1, we conclude that

2t̄ ≤ 16 4
√

1 + ε

δ
· E

z∼D
[min {` (ρ∗, z) , tδ/4 (ρ∗)}] .

Case 3: ρ∗ is not an element of any set P̄ ∈ Ḡ with tP̄ ≤ t̄− 2, but ρ∗ is an element of a set
P ′ ∈ Ḡ with tP ′ = t̄− 1. Let S ′ = St̄−2 and let P̄ be the set containing ρ∗ in Step 5 on round
t̄− 2. Since P̄ was not added to G on round t̄− 2, we know that fewer than a

(
1− 3δ

8

)
-fraction

of the instances in S ′ have a loss of at most 2t̄−2 when run with any parameter vector ρ ∈ P̄
(including ρ∗). In other words,

1
|S ′| ∑

z∈S ′
1{`(ρ∗,z)≤2t̄−2} < 1− 3δ

8
.

Since Algorithm 8 had a ζ-representative run,

Pr
z∼D

[
` (ρ∗, z) ≤ 2t̄−2

]
≤ 1
|S ′| ∑

z∈S ′
1{`(ρ∗,z)≤2t̄−2} +

√
2d ln

∣∣Partition

(
S ′, 2t̄−2

)∣∣
|S ′| + 2

√
2
|S ′| ln

8
(
2t̄−2 |S ′| (t̄− 2)

)2

ζ

< 1− 3δ

8
+

√
2d ln

∣∣Partition

(
S ′, 2t̄−2

)∣∣
|S ′| + 2

√
2
|S ′| ln

8
(
2t̄−2 |S ′| (t̄− 2)

)2

ζ
.

Based on Step 4 of Algorithm 8, Prz∼D
[
` (ρ∗, z) ≤ 2t̄−2

]
< 1 − (3/8 − η)δ. Since η ≤ 1/9,

Prz∼D
[
` (ρ∗, z) ≤ 2t̄−2

]
< 1− δ/4. Therefore,

Pr
z∼D

[
` (ρ∗, z) ≥ 2t̄−2

]
≥ Pr

z∼D

[
` (ρ∗, z) > 2t̄−2

]
≥ δ/4.

Since tδ/4(ρ∗) = argmaxτ∈Z {Prz∼D [`(ρ∗, z) ≥ τ] ≥ δ/4}, we have that 2t̄−2 ≤ tδ/4 (ρ∗). There-
fore,

E
z∼D

[min {` (ρ∗, z) , tδ/4 (ρ∗)}] ≥ tδ/4 (ρ∗) Pr [` (ρ∗, z) ≥ tδ/4 (ρ∗)]

≥ 2t̄−2 Pr [` (ρ∗, z) ≥ tδ/4 (ρ∗)]

≥ δ2t̄−4,

which means that 2t̄ ≤ 16
δ ·Ez∼D [min {` (ρ∗, z) , tδ/4 (ρ∗)}].
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In the next lemma, we prove the upper bound on 2t̄ that we use in Lemma 11.3.4.

Lemma 11.3.5. Suppose Algorithm 8 has a ζ-representative run. For any parameter vector ρ 6∈⋃
P ′∈Ḡ P ′, 2t̄ ≤ 8

δ ·Ez∼D
[
min

{
`ρ(z), tδ/4(ρ)

}]
.

Proof. The last round that Algorithm 8 adds any subset to the set G is round t̄− 1. For ease
of notation, let S̄ = St̄−1. Since ρ is not an element of any set in G, the cap 2t̄−1 must
be too small compared to the average loss of the parameter ρ. Specifically, it must be that

1
|S̄| ∑z∈S̄ 1{`(ρ,z)≤2t̄−1} < 1− 3δ

8 . Otherwise, the algorithm would have added a parameter set

containing ρ to the set G on round t̄ − 1 (Step 6). Since Algorithm 8 had a ζ-representative
run, we know that the probability the loss of ρ is smaller than 2t̄−1 converges to the fraction of
samples with loss smaller than 2t̄−1. Specifically,

Pr
z∼D

[
`(ρ, z) ≤ 2t̄−1

]
≤ 1∣∣S̄ ∣∣ ∑

z∈S̄
1{`(ρ,z)≤2t̄−1} +

√
2d ln

∣∣Partition

(
S̄ , 2t̄−1

)∣∣∣∣S̄ ∣∣ + 2

√√√√ 2∣∣S̄ ∣∣ ln
8
(
2t̄−1

∣∣S̄ ∣∣ (t̄− 1)
)2

ζ

≤ 1∣∣S̄ ∣∣ ∑
z∈S̄

1{`(ρ,z)≤2t̄−1} + ηδ,

where the second inequality follows from Step 4 of Algorithm 8. Using our bound of 1− 3δ/8
on the fraction of samples with loss smaller than 2t̄−1, we have that Prz∼D

[
`(ρ, z) ≤ 2t̄−1

]
<

1− (3/8− η)δ. Since η ≤ 1/9, it must be that Prz∼D
[
`(ρ, z) ≤ 2t̄−1

]
< 1− δ/4, or conversely,

Prz∼D
[
`(ρ, z) ≥ 2t̄−1

]
≥ Prz∼D

[
`(ρ, z) > 2t̄−1

]
> δ/4. Since

tδ/4(ρ) = argmaxτ∈Z

{
Pr

z∼D
[`(ρ, z) ≥ τ] ≥ δ/4

}
,

we have that 2t̄−1 ≤ tδ/4(ρ). Therefore,

E
z∼D

[min {`(ρ, z), tδ/4(ρ)}] ≥ tδ/4(ρ) Pr
z∼D

[`(ρ, z) ≥ tδ/4(ρ)]

≥ δ

4
· tδ/4(ρ)

≥ 2t̄−3δ.

Optimality of Algorithm 8’s output. Next, we provide a proof sketch of the second part of
Theorem 7.2.3, which guarantees that Algorithm 8 returns an (ε, δ)-optimal subset. For each
set P ′ ∈ Ḡ, τP ′ denotes the value of τb|St|(1−3δ/8)c in Step 9 of Algorithm 8 during the iteration
t that P ′ is added to G.

Lemma 11.3.6. If Algorithm 8 has a ζ-representative run, it returns an (ε, δ)-optimal subset.
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Proof. Since OPTδ/4 := infρ∈P {Ez∼D [min {` (ρ, z) , tδ/4(ρ)}]}, we know that for any γ > 0,
there exists a parameter vector ρ ∈ P such that Ez∼D [min {`(ρ, z), tδ/4(ρ)}] ≤ OPTδ/4 + γ. We
claim there exists a parameter ρ′ ∈ P∗ such that

E
z∼D

[
min

{
`
(
ρ′, z

)
, tδ/2

(
ρ′
)}]
≤
√

1 + ε · E
z∼D

[min {`(ρ, z), tδ/4(ρ)}] , (11.2)

and thus the lemma statement holds (see Lemma B.0.8).
First, suppose ρ is contained in a set P ′ ∈ Ḡ. By Lemmas B.0.1 and B.0.7, there exists a

parameter ρ′ ∈ P ′ ∩ P∗ such that

E
z∼D

[
min

{
`
(
ρ′, z

)
, tδ/2

(
ρ′
)}]
≤ E

z∼D

[
min

{
`
(
ρ′, z

)
, τP ′

}]
≤ 4
√

1 + ε · E
z∼D

[min {` (ρ, z) , τP ′}]

≤ 4
√

1 + ε · E
z∼D

[min {` (ρ, z) , tδ/4(ρ)}] .

Since 4
√

1 + ε ≤
√

1 + ε, Equation (11.2) holds in this case.
Otherwise, suppose ρ 6∈ ⋃P ′∈Ḡ P ′. By Lemma B.0.5, we know Ez∼D [min {`(ρ, z), tδ/4(ρ)}] ≥

T̄. Moreover, by Lemma B.0.6, there exists a set P ′ ∈ Ḡ and parameter vector ρ∗ ∈ P ′ such that
4
√

1 + ε · T̄ ≥ Ez∼D [min {` (ρ∗, z) , τP ′}]. Finally, by Lemma B.0.7, there exists a parameter
vector ρ′ ∈ P ′ ∩ P∗ such that

E
z∼D

[
min

{
`
(
ρ′, z

)
, tδ/2

(
ρ′
)}]
≤ E

z∼D

[
min

{
`
(
ρ′, z

)
, τP ′

}]
≤ 4
√

1 + ε · E
z∼D

[min {` (ρ∗, z) , τP ′}]

≤
√

1 + ε · T̄
<
√

1 + ε · E
z∼D

[min {`(ρ, z), tδ/4(ρ)}] .

Therefore, Equation (11.2) holds in this case as well.

The second part of Theorem 7.2.3 also guarantees that the size of the set Algorithm 8 returns
is bounded (see Lemma B.0.10 in Appendix B). Together, Lemmas 11.3.4 and 11.3.6, as well as
Lemma B.0.10 in Appendix B, bound the number of iterations Algorithm 8 makes until it
returns an (ε, δ)-optimal subset.

11.4 Comparison to prior research

We now provide comparisons to prior research on algorithm configuration with provable guar-
antees. Both comparisons revolve around branch-and-bound (B&B) configuration for integer
programming (IP), overviewed in Section 11.1.1.

Uniformly sampling configurations. Prior research provides algorithms for finding nearly-
optimal configurations from a finite set [Kleinberg et al., 2017, 2019, Weisz et al., 2018, 2019].
If the parameter space is infinite and their algorithms optimize over a uniformly-sampled set
of Ω̃(1/γ) configurations, then the output configuration will be within the top γ-quantile,
with high probability. If the set of good parameters is small, however, the uniform sample
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might not include any of them. Algorithm configuration problems where the high-performing
parameters lie within a small region do exist, as we illustrate in the following theorem. (This
is Theorem 4.3.1 from Chapter 4, restated here for convenience.)

Theorem 11.4.1. For any 1
3 < a < b < 1

2 and n ≥ 6, there are infinitely-many distributions D over
IPs with n variables and a B&B parameter with range [0, 1] such that:

1. If ρ ≤ a, then `ρ(z) = 2(n−5)/4 with probability 1
2 and `ρ(z) = 8 with probability 1

2 .

2. If ρ ∈ (a, b), then `ρ(z) = 8 with probability 1.

3. If ρ ≥ b, then `ρ(z) = 2(n−4)/2 with probability 1
2 and `ρ(z) = 8 with probability 1

2 .

Here, `ρ(z) measures the size of the tree B&B builds using the parameter ρ on the input IP z.

In the above configuration problem, any parameter in the range (a, b) has a loss of 8 with
probability 1, which is the minimum possible loss. Any parameter outside of this range has an
abysmal expected loss of at least 2(n−6)/2. In fact, for any δ ≤ 1/2, the δ-capped expected loss of
any parameter in the range [0, a] ∪ [b, 1] is at least 2(n−6)/2. Therefore, if we uniformly sample
a finite set of parameters and optimize over this set using an algorithm for finite parameter
spaces [Kleinberg et al., 2017, 2019, Weisz et al., 2018, 2019], we must ensure that we sample
at least one parameter within (a, b). As a and b converge, however, the required number of
samples shoots to infinity, as we formalize below.

Theorem 11.4.2. For the B&B configuration problem in Theorem 11.4.1, with constant probability over
the draw of m = b1/(b− a)c parameters ρ1, . . . , ρm ∼ Uniform[0, 1], {ρ1, . . . , ρm} ∩ (a, b) = ∅.

Proof. We know that the probability {ρ1, . . . , ρm} ∩ (a, b) = ∅ is (1 − (b − a))m ≥ (1 − (b −
a))1/(b−a) ≥ 1

3 since b− a ≤ 1
6 .

Meanwhile, Algorithm 8 quickly terminates, having found an optimal parameter, as we
describe below.

Theorem 11.4.3. For the configuration problem in Theorem 11.4.1, Algorithm 8 ends after Õ
(
log 1

δ

)
iterations, having drawn Õ((δη)−2) samples (where η = min

{ 1
8

(
4
√

1 + ε− 1
)

, 1
9

}
), and returns a set

containing an optimal parameter in (a, b).

Proof. In the proof of Theorem 11.4.1 (Theorem 4.3.1 from Chapter 4), we showed that for any
distribution D in this family and any subset S from the support of D, |Partition(S , τ)| = 3,
and the partition Partition returns is [0, a], (a, b), and [b, 1]. Therefore, for the first three
iterations, our algorithm will use Õ

(
(δη)−2

)
samples. At that point, t = 3, and the tree-size

cap is 8. Algorithm 8 will discover that for all of the samples z ∈ S3, when ρ ∈ (a, b), `(ρ, z) = 8.
Therefore, it add (a, b) to G and it will set T = 8. It will continue drawing Õ

(
(δη)−2

)
samples

at each round until 2t−3δ ≥ T = 8, or in other words, until t = O(log(1/δ)). Therefore, the total
number of samples it draws is Õ

(
(δη)−2

)
. The set it returns will contain a point ρ ∈ (a, b),

which is optimal.

Similarly, Balcan et al. [2018d] exemplify clustering configuration problems—which we
overview in Section 11.1.1—where the optimal parameters lie within an arbitrarily small re-
gion, and any other parameter leads to significantly worse performance. As in Theorem 11.4.2,
this means a uniform sampling of the parameters will fail to find optimal parameters.

199



200



Chapter 12

Learning to prune: Speeding up
repeated computations

Throughout this thesis, we have studied algorithm configuration in the classic batch learning
model: there is a distribution over problem instances, and the learning algorithm uses a training
set sampled from this distribution to learn a high-performing parameter setting. In this chapter,
we study an online approach to algorithm design, where there is no distribution over problem
instances. Rather, problem instances arrive one-by-one, and the goal is to use structure shared
across instances to gradually speed up the time it takes to find an optimal solution.

Our model is motivated by the following scenario. Consider computing the shortest path
from home to work every morning. The shortest path may vary from day to day—sometimes
side roads beat the highway; sometimes the bridge is closed due to construction. However,
although San Francisco and New York are contained in the same road network, it is unlikely
that a San Francisco-area commuter would ever find New York along her shortest path—the
edge times in the graph do not change that dramatically from day to day.

With this motivation in mind, we study a learning problem where the goal is to speed up
repeated computations when the sequence of instances share common substructure. Examples
include repeatedly computing the shortest path between the same two nodes on a graph with
varying edge weights, repeatedly computing string matchings, and repeatedly solving linear
programs with mildly varying objectives. Our work is in the spirit of recent work in batch
learning for algorithm configuration (discussed in Part I) and online learning [Cesa-Bianchi
and Lugosi, 2006], although with some key differences, which we discuss below.

The basis of this work is the observation that for many realistic instances of repeated prob-
lems, vast swaths of the search space may never contain an optimal solution—perhaps the
shortest path is always contained in a specific region of the road network; large portions of
a DNA string may never contain the patterns of interest; a few key linear programming con-
straints may be the only ones that bind. Algorithms designed to satisfy worst-case guarantees
may thus waste substantial computation time on futile searching. For example, even if a single,
fixed path from home to work were best every day, Dijkstra’s algorithm would consider all
nodes within distance di from home on day i, where di is the length of the optimal path on day
i, as illustrated in Figure 12.1.

We develop a simple solution, inspired by online learning, that leverages this observation to
the maximal extent possible. On each problem, our algorithm typically searches over a small,
pruned subset of the solution space, which it learns over time. This pruning is the minimal
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Figure 12.1: A standard algorithm computing the shortest path from the upper to the lower star
will explore many nodes (grey), even nodes in the opposite direction. Our algorithm learns to
prune to a subgraph (black) of nodes that have been included in prior shortest paths.

subset containing all previously returned solutions. These rounds are analogous to “exploit”
rounds in online learning. To learn a good subset, our algorithm occasionally deploys a worst-
case-style algorithm, which explores a large part of the solution space and guarantees correct-
ness on any instance. These rounds are analogous to “explore” rounds in online learning. If, for
example, a single fixed path were always optimal, our algorithm would almost always imme-
diately output that path, as it would be the only one in its pruned search space. Occasionally, it
would run a full Dijkstra’s computation to check if it should expand the pruned set. Roughly
speaking, we prove that our algorithm’s solution is almost always correct, but its cumulative
runtime is not much larger than that of running an optimal algorithm on the maximally-pruned
search space in hindsight. Our results hold for worst-case sequences of problem instances, and
we do not make any distributional assumptions.

In a bit more detail, let f : Z → Y be a function that takes as input a problem instance
z ∈ Z and returns a solution y ∈ Y. Our algorithm receives a sequence of inputs from Z . Our
high-level goal is to correctly compute f on almost every round while minimizing runtime. For
example, each z ∈ Z might be a set of graph edge weights for some fixed graph G = (V, E) and
f (z) might be the shortest s-t path for some vertices s and t. Given a sequence z1, . . . , zT ∈ Z , a
worst-case algorithm would simply compute and return f (zi) for every instance zi. However, in
many application domains, we have access to other functions mapping Z to Y, which are faster
to compute. These simpler functions are defined by subsets S of a universe U that represents
the entire search space. We call each subset a “pruning” of the search space. For example, in
the shortest paths problem, U equals the set E of edges and a pruning S ⊂ E is a subset of
the edges. The function corresponding to S, which we denote fS : Z → Y, also takes as input
edge weights z, but returns the shortest path from s to t using only edges from the set S. By
definition, the function that is correct on every input is f = fU . We assume that for every z,
there is a set S∗(z) ⊆ U such that fS(z) = f (z) if and only if S ⊇ S∗(z) – a mild assumption
we discuss in more detail later on.

Given a sequence of inputs z1, . . . , zT, our algorithm returns the value fSi (zi) on round i,
where Si is chosen based on the first i inputs z1, . . . , zi. Our goal is two fold: first, we hope
to minimize the size of each Si (and thereby maximally prune the search space), since |Si|
is often monotonically related to the runtime of computing fSi (zi). For example, a shortest
path computation will typically run faster if we consider only paths that use a small subset of
edges. To this end, we prove that if S∗ is the smallest set such that fS∗(zi) = f (zi) for all i (or
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equivalently, S∗ =
⋃T

i=1 S∗(zi)), then

E

[
1
T

T

∑
i=1
|Si|
]
≤ |S∗|+ |U | − |S

∗|√
T

,

where the expectation is over the algorithm’s randomness. At the same time, we seek to
minimize the the number of mistakes the our algorithm makes (i.e., rounds i where f (zi) 6=
fSi (zi)). We prove that the expected fraction of rounds i where fSi (zi) 6= f (zi) is O(|S∗|/

√
T).

Finally, the expected runtime1 of the algorithm is the expected time required to compute fSi (zi)

for i ∈ [T], plus O(|S∗|
√

T) expected time to determine the subsets S1, . . . , ST.
We instantiate our algorithm and corresponding theorem in three diverse settings—shortest-

path routing, linear programming, and string matching—to illustrate the flexibility of our
approach. We present experiments on real-world maps and economically-motivated linear
programs. In the case of shortest-path routing, our algorithm’s performance is illustrated in
Figure 12.1. Our algorithm explores up to five times fewer nodes on average than Dijkstra’s
algorithm, while sacrificing accuracy on only a small number of rounds. In the case of linear
programming, when the objective function is perturbed on each round but the constraints re-
main invariant, we show that it is possible to significantly prune the constraint matrix, allowing
our algorithm to make fewer simplex iterations to find solutions that are nearly always optimal.

The results in this section are joint work with Daniel Alabi, Adam Tauman Kalai, Katrina
Ligett, Cameron Musco, and Christos Tzamos [Alabi et al., 2019]. Our current results were
published in COLT 2019.

12.1 Related work

The results in this chapter advance a recent line of research studying the foundations of algo-
rithm configuration. Many of these works study a distributional setting, as in Part I: there is a
distribution over problem instances and the goal is to use a set of samples from this distribution
to determine an algorithm from some fixed class with the best expected performance. In our
setting, there is no distribution over instances: they may be adversarially selected.

As we described in Section 2.2, several papers provide guarantees for online algorithm
configuration without distributional assumptions from a theoretical perspective [Balcan et al.,
2018b, 2020b,c, Cohen-Addad and Kanade, 2017, Gupta and Roughgarden, 2017]. Before the
arrival of any problem instance, the learning algorithm fixes a class of algorithms to learn over.
The classes of algorithms that Gupta and Roughgarden [2017], Cohen-Addad and Kanade
[2017], and Balcan et al. [2018b, 2020b,c] study are infinite, defined by real-valued parameters.
The goal is to select parameters at each timestep while minimizing regret. These papers provide
conditions under which it is possible to design algorithms achieving sublinear regret. These
are conditions on the cost functions mapping the real-valued parameters to the algorithm’s
performance on any input (the “dual functions,” as formalized in Chapter 7). In our setting,
the choice of a pruning S can be viewed as a parameter, but this parameter is combinatorial,
not real-valued, so the prior analyses do not apply.

Several works have studied how to take advantage of structure shared over a sequence of
repeated computations for specific applications, including linear programming [Banerjee and

1As we will formalize, when determining S1, . . . , ST , our algorithm must compute the smallest set S such that
fS(zi) = f (zi) on some of the inputs zi. In all of the applications we discuss, the total runtime required for these
computations is upper bounded by the total time required to compute fSi (zi) for i ∈ [T].
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Roy, 2015] and matching [Deb et al., 2006]. As in our work, these algorithms have full access to
the problem instances they are attempting to solve. These approaches are quite different (e.g.,
using machine classifiers) and highly tailored to the application domain, whereas we provide
a general algorithmic framework and instantiate it in several different settings.

Since our algorithm receives input instances in an online fashion and makes no distribu-
tional assumptions on these instances, our setting is reminiscent of online optimization. How-
ever, unlike the typical online setting, we observe each input xi before choosing an output yi.
Thus, if runtime costs were not a concern, we could always return the best output for each
input. We seek to trade off correctness for lower runtime costs. In contrast, in online optimiza-
tion, one must commit to an output yi before seeing each input xi, in both the full information
and bandit settings [see, e.g., Awerbuch and Kleinberg, 2008, Kalai and Vempala, 2005]. In such
a setting, one cannot hope to return the best yi for each xi with significant probability. Instead,
the typical goal is that the performance over all inputs should compete with the performance
of the best fixed output in hindsight.

12.2 Model

We start by defining our model of repeated computation. Let Z be an abstract set of problem
instances and let Y be a set of possible solutions. We design an algorithm that operates over T
rounds: on round i, it receives an instance zi ∈ Z and returns some element of Y.

Definition 12.2.1 (Repeated algorithm). Over T rounds, a repeated algorithm A encounters a
sequence of inputs z1, z2, . . . , zT ∈ Z . On round i, after receiving input zi, it outputsA(z1:i) ∈ Y,
where z1:i denotes the sequence z1, . . . , zi. A repeated algorithm may maintain a state from
period to period, and thus A (z1:i) may potentially depend on all of z1, ..., zi.

We assume each problem instance z ∈ Z has a unique correct solution (invoking tie-
breaking assumptions as necessary; in Section 12.5, we discuss how to handle problems that
admit multiple solutions). We denote the mapping from instances to correct solutions as
f : Z → Y. For example, in the case of shortest paths, we fix a graph G and a pair (s, t)
of source and terminal nodes. Each instance z ∈ Z represents a weighting of the graph’s
edges. The set Y consists of all paths from s to t in G. Then f (z) returns the shortest path from
s to t in G, given the edge weights z (breaking ties according to some canonical ordering of the
elements of Y, as discussed in Section 12.5). To measure correctness, we use a mistake bound
model [see, e.g., Littlestone, 1987].

Definition 12.2.2 (Repeated algorithm mistake bound). The mistake bound of the repeated
algorithm A given inputs z1, . . . , zT is

MT(A, z1:T) = E

[
T

∑
i=1

I{A(z1:i) 6= f (zi)}

]
,

where the expectation is over the algorithm’s random choices.

To minimize the number of mistakes, the naı̈ve algorithm would simply compute the func-
tion f (zi) at every round i. However, in our applications, we will have the option of computing
other functions mapping the set Z of inputs to the set Y of outputs that are faster to compute
than f . Broadly speaking, these simpler functions are defined by subsets S of a universe U , or
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Figure 12.2: Repeated shortest paths and optimal pruning of a graph G. If the shortest path was
always s-b-e-t or s-b-d-t, it would be unnecessary to search the entire graph for each instance.

“prunings” of U . For example, in the shortest paths problem, given a fixed graph G = (V, E)
as well as source and terminal nodes s, t ∈ V, the universe is the set of edges, i.e., U = E. Each
input z is a set of edge weights and f (z) computes the shortest s-t path in G under the input
weights. The simpler function corresponding to a subset S ⊂ E of edges also takes as input
weights z, but it returns the shortest path from s to t using only edges from the set S (with
fS(z) = ⊥ if no such path exists). Intuitively, the universe U contains all the information nec-
essary to compute the correct solution f (z) to any input z, whereas the function corresponding
to a subset S ⊂ U can only compute a subproblem using information restricted to S.

Let fS : Z → Y denote the function corresponding to the set S ⊆ U . We make two natural
assumptions on these functions. First, we assume the function corresponding to the universe
U is always correct. Second, we assume there is a unique smallest set S∗(z) ⊆ U that any
pruning must contain in order to correctly compute f (z). These assumptions are summarized
below.

Assumption 12.2.3. For all x ∈ Z , fU (z) = f (z). Also, there exists a unique smallest set S∗(z) ⊆ U
such that fU (z) = fS(z) if and only if S∗(z) ⊆ S.

Given a sequence of inputs z1, . . . , zT, our algorithm returns the value fSi (zi) on round i,
where the choice of Si depends on the first i inputs z1, . . . , zi. In our applications, it is typically
faster to compute fS over fS′ if |S| < |S′|. Thus, our goal is to minimize the number of mistakes
the algorithm makes while simultaneously minimizing E [∑ |Si|]. Though we are agnostic to
the specific runtime of computing each function fSi , minimizing E [∑ |Si|] roughly amounts to
minimizing the search space size and our algorithm’s runtime in the applications we consider.

We now describe how this model can be instantiated in three classic settings: shortest-path
routing, string search, and linear programming.

Shortest-path routing. In the repeated shortest paths problem, we are given a graph G =
(V, E) (with static structure) and a fixed pair s, t ∈ V of source and terminal nodes. In period
i ∈ [T], the algorithm receives a nonnegative weight assignment zi : E → R≥0. Figure 12.2
illustrates the pruning model applied to the repeated shortest paths problem.

For this problem, the universe is the edge set (i.e., U = E) and S is a subset of edges in
the graph. The set Z consists of all possible weight assignments to edges in the graph G and
Y ⊆ 2E ∪ {⊥} is the set of all paths in the graph, with ⊥ indicating that no path exists. The
function f (z) returns the shortest s-t path in G given edge weights z. For any S ⊆ U , the
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function fS : Z → Y computes the shortest s-t path on the subgraph induced by the edges in
S (breaking ties by a canonical edge ordering). If S does not include any s-t path, we define
fS(z) = ⊥. Part 1 of Assumption 12.2.3 holds because U = E, so fU computes the shortest path
on the entire graph. Part 2 of Assumption 12.2.3 also holds: since fS : Z → Y computes the
shortest s-t path on the subgraph induced by the edges in S (breaking ties by some canonical
edge ordering), we can see that fS(zi) = S∗(zi) if and only if S∗(zi) ⊆ S. To “canonicalize” the
algorithm so there is always a unique solution, we assume there is a given ordering on edges
and that ties are broken lexicographically according to the path description. This is easily
achieved by keeping the heap maintained by Dijkstra’s algorithm sorted not only by distances
but also lexicographically.

Linear programming. We consider computing argmaxy∈Rn

{
zTy : Ay ≤ b

}
, where we as-

sume that (A, b) ∈ Rm×n × Rm is fixed across all times steps but the vector zi ∈ Z ⊆ Rn

defining the objective function zT
i y may differ for each i ∈ [T]. To instantiate our pruning

model, the universe U = [m] is the set of all constraint indices and each S ⊆ U indicates a
subset of those constraints. The set Y equals Rn ∪ {⊥}. For simplicity, we assume that the set
Z ⊆ Rn of objectives contains only directions z such that there is a unique solution y ∈ Rn that
is the intersection of exactly n constraints in A. This avoids both dealing with solutions that
are the intersection of more than n constraints and directions that are under-determined and
have infinitely-many solutions forming a facet. See Section 12.5 for a discussion of this issue in
general.

Given z ∈ Rn, the function f computes the linear program’s optimal solution, i.e., f (z) =
argmaxy∈Rn

{
zTy : Ay ≤ b

}
. For a subset of constraints S ⊆ U , the function fS computes the

optimal solution restricted to those constraints, i.e., fS(z) = argmaxy∈Rn{zTy : ASy ≤ bS},
where AS ∈ R|S|×n is the submatrix of A consisting of the rows indexed by elements of S and
bS ∈ R|S| is the vector b with indices restricted to elements of S. We further write fS(z) = ⊥
if there is no unique solution to the linear program (which may happen for small sets S even if
the whole LP does have a unique solution). Part 1 of Assumption 12.2.3 holds because AU = A
and bU = b, so it is indeed the case that fU = f . To see why part 2 of Assumption 12.2.3 also
holds, suppose that fS(z) = f (z). If f (z) 6= ⊥, the vector fS(z) must be the intersection of
exactly n constraints in AS, which by definition are indexed by elements of S. This means that
S∗(z) ⊆ S.

String search. In string search, the goal is to find the location of a short pattern in a long
string. At timestep i, the algorithm receives a long string qi of some fixed length n and a
pattern pi of some fixed length m ≤ n. We denote the long string as qi =

(
q(1)

i , . . . , q(n)
i

)
and the pattern as pi =

(
p(1)

i , . . . , p(m)
i

)
. The goal is to find an index j ∈ [n − m + 1] such

that pi =
(

q(j)
i , q(j+1)

i , . . . , q(j+m−1)
i

)
. The function f returns the smallest such index j, or ⊥

if there is no match. In this setting, the set Z of inputs consists of all string pairs of length
n and m (e.g., {A, T, G, C}n×m for DNA sequences) and the set Y = [n − m + 1] is the set of
all possible match indices. The universe U = [n− m + 1] also consists of all possible match
indices. For any S ⊆ U , the function fS(qi, pi) returns the smallest index j ∈ S such that
pi =

(
q(j)

i , q(j+1)
i , . . . , q(j+m−1)

i

)
, which we denote j∗i . It returns ⊥ if there is no match. We can

see that part 1 of Assumption 12.2.3 holds: fU (q, p) = f (q, p) for all (q, p) ∈ Z , since fU checks

206



every index in [n− m + 1] for a match. Moreover, part 2 of Assumption 12.2.3 holds because
fU (zi) = fS(zi) if and only if S∗(zi) = {j∗i } ⊆ S.

12.3 The algorithm

We now present an algorithm (Algorithm 9), denoted A∗, that encounters a sequence of inputs
z1, . . . , zT one-by-one. At timestep i, it computes the value fSi (zi), where the choice of Si ⊆ U
depends on the first i inputs z1, . . . , zi. We prove that, in expectation, the number of mistakes it
makes (i.e., rounds where fSi (zi) 6= f (zi)) is small, as is ∑T

i=1 |Si|.
Our algorithm keeps track of a pruning of U , which we call S̄i at timestep i. In the first

round, the pruned set is empty (S̄1 = ∅). On round i, with some probability pi, the algorithm
computes the function fU (zi) and then computes S∗(zi), the unique smallest set that any prun-
ing must contain in order to correctly compute fU (zi). (As we discuss in Section 12.3.1, in all of
the applications we consider, computing S∗(zi) amounts to evaluating fU (zi).) The algorithm
unions S∗(zi) with S̄i to create the set S̄i+1. Otherwise, with probability 1− pi, it outputs fS̄i

(zi),
and does not update the set S̄i (i.e., S̄i+1 = S̄i). It repeats in this fashion for all T rounds.

Algorithm 9 Our repeated algorithm A∗

1: S̄1 ← ∅
2: for i ∈ {1, . . . , T} do
3: Receive input zi ∈ Z .
4: With probability pi, output fU (zi). Compute S∗(zi) and set S̄i+1 ← S̄i ∪ S∗(zi).
5: Otherwise (with probability 1− pi), output fS̄i

(zi) and set S̄i+1 ← S̄i.

In the remainder of this section, we use the notation S∗ to denote the smallest set such that
fS∗(zi) = f (zi) for all i ∈ [T]. To prove our guarantees, we use the following helpful lemma:

Lemma 12.3.1. For any z1, . . . , zT ∈ Z , S∗ =
⋃T

i=1 S∗(zi).

Proof. First, we prove that S∗ ⊇ ∪T
i=1S∗(zi). For a contradiction, suppose that for some i ∈ [T],

there exists an element j ∈ S∗(zi) such that j 6∈ S∗. This means that fS∗(zi) = f (zi), but
S∗ 6⊇ S∗(zi), which contradicts Assumption 12.2.3: S∗(zi) is the unique smallest subset of U
such that for any set S ⊆ U , f (zi) = fS(zi) if and only if S∗(zi) ⊆ S. Therefore, S∗ ⊇ ∪T

i=1S∗(zi).
Next, let C = ∪T

i=1S∗(zi). Since S∗(zi) ⊆ C, Assumption 12.2.3 implies that f (zi) = fC(zi)
for all i ∈ [T]. Based on the definition of S∗ and the fact that S∗ ⊇ C, we conclude that
S∗ = C = ∪T

i=1S∗(zi).

We now provide a mistake bound for Algorithm 9.

Theorem 12.3.2. For any p ∈ (0, 1] such that pi ≥ p for all i ∈ [T] and any inputs z1, . . . , zT,
Algorithm 9 has a mistake bound of

MT(A∗, z1:T) ≤ |S
∗|(1− p)(1− (1− p)T)

p
≤ |S

∗|
p

.
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Proof. Let S1, . . . , ST be the sets such that on round i, Algorithm 9 computes the function fSi .
Consider any element e ∈ S∗. Let NT(e) be the number of times e 6∈ Si but e ∈ S∗(zi) for some
i ∈ [T]. In other words, NT(e) = |{i : e 6∈ Si, e ∈ S∗(zi)}|. Every time the algorithm makes a
mistake, the current set Si must not contain some e ∈ S∗(zi) (otherwise, Si ⊇ S∗(zi), so the
algorithm would not have made a mistake by Assumption 12.2.3). This means that every time
the algorithm makes a mistake, NT(e) is incremented by 1 for at least one e ∈ S∗ = ∪T

i=1S∗(zi).
Therefore,

MT(A∗, z1:T) ≤ ∑
e∈S∗

E[NT(e)], (12.1)

where the expectation is over the random choices of Algorithm 9.
For any element e ∈ S∗, let i1, . . . , it be the iterations where for all ` ∈ [t], e ∈ S∗ (zi`). By

definition, NT(e) will only be incremented on some subset of these rounds. Suppose NT(e) is
incremented by 1 on round ir. It must be that e 6∈ Sir , which means Sir 6= U , and thus Sir = S̄ir .
Since e 6∈ S̄ir , it must be that e 6∈ S̄i` for ` ≤ r since S̄ir ⊇ S̄ir−1 ⊇ · · · ⊇ S̄i1 . Therefore, in each
round i` with ` < r, Algorithm 9 must not have computed S∗ (zi`), because otherwise e would
have been added to the set S̄i`+1. We can bound the probability of these bad events as

P [Sir = S̄ir and Algorithm 9 does not compute S∗ (zi`) for ` < r] =
r

∏
`=1

(1− pi`) ≤ (1− p)r.

As a result,

E[NT(e)] ≤
t

∑
r=1

(1− p)r ≤
T

∑
r=1

(1− p)r =
(1− p)(1− (1− p)T)

p
. (12.2)

The theorem statement follows by combining Equations (12.1) and (12.2).

Corollary 12.3.3. Algorithm 9 with pi = 1√
i

has a mistake bound of MT(A∗, z1:T) ≤ |S∗|
√

T.

In Theorem 12.3.2, we bounded the expected number of mistakes Algorithm 9 makes. Next,
we bound E

[ 1
T ∑ |Si|

]
, where Si is the set such that Algorithm 9 outputs fSi (zi) in round i (so

either Si = S̄i or Si = U , depending on the algorithm’s random choice). In our applications,
minimizing E

[ 1
T ∑ |Si|

]
means minimizing the search space size, which roughly amounts to

minimizing the average expected runtime of Algorithm 9.

Theorem 12.3.4. For any inputs z1, . . . , zT, let S1, . . . , ST be the sets such that on round i, Algorithm 9
computes the function fSi . Then

E

[
1
T

T

∑
i=1
|Si|
]
≤ |S∗|+ 1

T

T

∑
i=1

pi(|U | − |S∗|),

where the randomness is over the coin tosses of Algorithm 9.

Proof. We know that for all i, Si = U with probability pi and Si = S̄i with probability 1− pi.
Therefore,

E

[
T

∑
i=1
|Si|
]

=
T

∑
i=1

E[|Si|] =
T

∑
i=1

pi|U |+ (1− pi) E[|S̄i|] ≤
T

∑
i=1

pi|U |+ (1− pi)|S∗|,

where the final inequality holds because S̄i ⊆ S∗ for all i ∈ [T].
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If we set pi = 1/
√

i for all i, we have the following corollary, since ∑T
i=1 pi ≤ 2

√
T.

Corollary 12.3.5. Given a set of inputs z1, . . . , zT, let S1, ..., ST be the sets such that on round i,
Algorithm 9 computes the function fSi . If pi = 1√

i
for all i ∈ [T], then

E

[
1
T

T

∑
i=1
|Si|
]
≤ |S∗|+ 2(|U | − |S∗|)√

T
,

where the expectation is over the random choices of Algorithm 9.

12.3.1 Instantiations of Algorithm 9

We now revisit and discuss instantiations of Algorithm 9 for the three applications outlined in
Section 12.2: shortest-path routing, linear programming, and string search. For each problem,
we describe how one might compute the sets S∗(zi) for all i ∈ [T].

Shortest-path routing. In this setting, the algorithm computes the true shortest path f (z)
using, say, Dijkstra’s shortest-path algorithm, and the set S∗(z) is simply the union of edges
in that path. Since S∗ = ∪T

i=1S∗(zi), the mistake bound of |S∗|
√

T given by Corollary 12.3.3 is
particularly strong when the shortest path does not vary much from day to day. Corollary 12.3.5
guarantees that the average edge set size run through Dijkstra’s algorithm is at most |S∗| +
2(|E|−|S∗|)√

T
. Since the worst-case running time of Dijkstra’s algorithm on a graph G′ = (V ′, E′) is

Õ(|V ′|+ |E′|), minimizing the average edge set size is a good proxy for minimizing runtime.

Linear programming. In the context of linear programming, computing the set S∗(zi) is
equivalent to computing f (z) and returning the set of tight constraints. Since S∗ = ∪T

i=1S∗(zi),
the mistake bound of |S∗|

√
T given by Corollary 12.3.3 is strongest when the same constraints

are tight across most timesteps. Corollary 12.3.5 guarantees that the average constraint set
size considered in each round is at most |S∗|+ 2(m−|S∗|)√

T
, where m is the total number of con-

straints. Since many well-known solvers take time polynomial in |Si| to compute fSi , minimiz-
ing E [∑ |Si|] is a close proxy for minimizing runtime.

String search. In this setting, the set S∗(qi, pi) consists of the smallest index j such that
pi =

(
q(j)

i , q(j+1)
i , . . . , q(j+m−1)

i

)
, which we denote j∗i . This means that computing S∗(qi, pi)

is equivalent to computing f (qi, pi). The mistake bound of |S∗|
√

T =
∣∣∪T

i=1 {j∗i }
∣∣√T given

by Corollary 12.3.3 is particularly strong when the matching indices are similar across string
pairs. Corollary 12.3.5 guarantees that the average size of the searched index set in each round
is at most |S∗|+ 2(n−|S∗|)√

T
. Since the expected average running time of our algorithm using the

naı̈ve string-matching algorithm to compute fSi is E

[
m
T ∑T

i=1 |Si|
]
, minimizing E

[
1
T ∑T

i=1 |Si|
]

amounts to minimizing runtime.

12.4 Experiments

In this section, we present experimental results for shortest-path routing and linear program-
ming.
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(a) Grey nodes: the nodes vis-
ited by Dijkstra’s algorithm.
Black nodes: the nodes in our
algorithm’s pruned subgraph.

(b) Top line: average number of
nodes Dijkstra’s algorithm ex-
plores. Bottom line: average
number of nodes Algorithm 9

explores.

(c) Top line: average number of
simplex iterations the simplex
algorithm makes. Bottom line:
average number of simplex it-
erations Algorithm 9 makes.

Figure 12.3: Empirical evaluation of Algorithm 9 applied to shortest-path routing in Pittsburgh
(Figures 12.3a and 12.3b) and linear programming (Figure 12.3c).

Shortest-path routing. We test Algorithm 9’s performance on real-world street maps, which
we access via Python’s OSMnx package [Boeing, 2017]. Each street is an edge in the graph and
each intersection is a node. The edge’s weight is the street’s distance. We run our algorithm for
30 rounds (i.e., T = 30) with pi = 1/

√
i for all i ∈ [T]. On each round, we randomly perturb

each edge’s weight via the following procedure. Let G = (V, E) be the original graph we
access via Python’s OSMnx package. Let z ∈ R|E| be a vector representing all edges’ weights.
On the ith round, we select a vector ri ∈ R|E| such that each component is drawn i.i.d. from
the normal distribution with a mean of 0 and a standard deviation of 1. We then define a new
edge-weight vector zi such that zi[j] = 1{z[j]+ri [j]>0} (z[j] + ri[j]) . In Appendix C, we experiment
with alternative perturbation methods.

In Figures 12.3a and 12.3b, we illustrate our algorithm’s performance in Pittsburgh. Fig-
ure 12.3a illustrates the nodes explored by our algorithm over T = 30 rounds. The goal is to
get from the upper to the lower star. The nodes colored grey are the nodes Dijkstra’s algorithm
would have visited if we had run Dijkstra’s algorithm on all T rounds. The nodes colored black
are the nodes in the pruned subgraph after the T rounds. Figure 12.3b illustrates the results
of running our algorithm a total of 5000 times (T = 30 rounds each run). The top (orange)
line shows the number of nodes Dijkstra’s algorithm explored averaged over all 5000 runs. The
bottom (blue) line shows the average number of nodes our algorithm explored. Our algorithm
returned the incorrect path on a 0.068 fraction of the 5000 · T = 150, 000 rounds. In Appendix C,
we show a plot of the average pruned set size as a function of the number of rounds.

Linear programming. We generate linear programming instances representing the linear re-
laxation of the combinatorial auction winner determination problem (Example 4.2.1 from Sec-
tion 4.2 in Chapter 4). We use the Combinatorial Auction Test Suite (CATS) [Leyton-Brown
et al., 2000] to generate these instances. This test suite is meant to generate instances that are
realistic and economically well-motivated. We use the CATS generator to create an initial in-
stance with an objective function defined by a vector z and constraints defined by a matrix A
and a vector b. On the ith round, we select a new objective vector zi such that each component
zi[j] is drawn independently from the normal distribution with a mean of z[j] and a standard
deviation of 1.
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From the CATS “Arbitrary” generator, we create an instance with 204 bids and 538 goods
which has 204 variables and 946 constraints. We run Algorithm 9 for 30 rounds (T = 30) with
pi = 1/

√
i for all i ∈ [T], and we repeat this 5000 times. In Figure 12.3c, the top (orange)

line shows the number of simplex iterations the full simplex algorithm makes averaged over
all 5000 runs. The bottom (blue) line shows the number of simplex iterations our algorithm
makes averaged over all 5000 runs. We solve the linear program on each round using the
SciPy default linear programming solver [Jones et al., 2001–], which implements the simplex
algorithm [Dantzig, 2016]. Our algorithm returned the incorrect solution on a 0.018 fraction of
the 5000 · T = 150, 000 rounds. In Appendix C, we show a plot of the average pruned set size
as a function of the number of rounds.

12.5 Multiple solutions and approximations

In this work, we have assumed that each problem has a unique solution, which we can en-
force by defining a canonical ordering on solutions. For string matching, this could be the first
match in a string as opposed to any match. For shortest-path routing, it is not difficult to mod-
ify shortest-path algorithms to find, among the shortest paths, the one with lexicographically
“smallest” description given some ordering of edges. Alternatively, one might simply assume
that there is exactly one solution, e.g., no ties in a shortest-path problem with real-valued edge
weights. This latter solution is what we have chosen for the linear programming model, for
simplicity.

It would be natural to try to extend our work to problems that have multiple solutions, or
even to approximate solutions. However, addressing multiple solutions in repeated computa-
tion rapidly raises NP-hard challenges. To see this, consider a graph with two nodes, s and t,
connected by m parallel edges. Suppose the goal is to find any shortest path and suppose that
in each period, the edge weights are all 0 or 1, with at least one edge having weight 0. If Zi
is the set of edges with 0 weight on period i, finding the smallest pruning which includes a
shortest path on each period is trivially equivalent to set cover on the sets Zi. Hence, any re-
peated algorithm handling problems with multiple solutions must address this computational
hardness.
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Part III

Conclusions and future directions
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Machine learning and optimization have the potential to transform the way we design algo-
rithms, allowing us to fine-tune their performance to the specific application domain at hand.
One powerful way of doing so is automated algorithm configuration and selection, where machine
learning is used to tune algorithm parameters. These parameters may be made available ex-
plicitly for the user to tune, as is often the case in applied disciplines. For example, integer
programming solvers expose over one hundred parameters for the user to tune. There may
not be parameter settings that admit meaningful worst-case bounds, but with a deft configu-
ration, these algorithms can quickly find solutions to computationally challenging problems.
However, applied approaches to parameter tuning have rarely come with provable guarantees.
Alternatively, an algorithm’s parameters may be set implicitly, as is often the case in theoretical
computer science: a proof may implicitly optimize over a parameterized family of algorithms
in order to guarantee a worst-case approximation factor or runtime bound. Worst-case bounds,
however, can be overly pessimistic in practice. This thesis helped develop the theoretical un-
derpinnings of automated algorithm configuration and selection, placing these approaches on
firm foundations.

We focused on a batch learning approach to automated algorithm configuration, where
the configuration procedure’s input is a training set (or “batch”) of typical problem instances
from the particular application domain at hand. The configuration procedure then returns
a parameter configuration with strong average empirical performance over the training set,
where performance is measured, for example, in terms of runtime, solution quality, or memory
usage.

This batch learning approach to algorithm configuration raises two fundamental questions.
First, how do we find a parameter setting with provably strong average empirical performance
over the training set? Second, no matter what configuration we come up with—regardless of
the specific procedure we use to optimize the parameters—can we guarantee that its average
empirical performance is indicative of its future performance on problems from the same ap-
plication but which are not already in our training set? This latter category of sample complexity
guarantees apply no matter how the parameters are optimized, via an algorithmic search as in
automated algorithm configuration [e.g., DeBlasio and Kececioglu, 2018, Sandholm, 2013, Xu
et al., 2008, 2011], or manually as in experimental algorithmics [e.g., Bentley et al., 1984, Iyer et al.,
2002, McGeoch, 2012].

In the first part of this thesis, we focused on providing sample complexity guarantees for
a variety of algorithms from different settings: integer programming, computational biology,
and economics (namely, selling and voting mechanisms). We analyzed polynomial-time ap-
proximation algorithms for integer quadratic programming in Chapter 3, where the goal is
to optimize the quality of the solution that the algorithm returns. In Chapter 4, we studied
branch-and-bound, the most widely-used algorithm for solving integer programs. We pro-
vided the first sample complexity guarantees for automated algorithm configuration in this
setting and proved that a deft configuration of branch-and-bound’s parameters can lead to an
exponential improvement in the size of the tree that branch-and-bound builds. We then pro-
vided guarantees for automated mechanism configuration in Chapter 5, where the goal was to
tune the parameters of economic mechanisms in order to maximize revenue and social welfare.
In Chapter 6, we studied algorithms from computational biology for sequence alignment, RNA
folding, and predicting topologically associated domains in DNA.

The next three chapters in Part I (Chapters 7-9) provided broadly-applicable sample com-
plexity guarantees that apply to all of the above problems: integer programming, computa-
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tional biology, and mechanism design. In Chapter 7, we formalized a unifying structure that
links these disparate configuration problems: for any fixed problem instance, the algorithm’s
performance is a piecewise-structured function of its parameters. We proved that this structure
implies extremely general guarantees for all of these problems simultaneously. We provided
data-dependent sample complexity bounds in Chapter 8, whereas the guarantees in Chapters 3-
7 are worst case: they hold for any worst-case distribution over problem instances, no matter
how gnarly. With experiments, we showed that these data-dependent guarantees can provide
significant improvements in the number of samples needed to obtain small generalization error.
Chapters 3-8 focused on learning a single high-performing configuration, so in Chapter 9, we
generalized our analysis to handle the problem of learning portfolios of multiple configurations.
At runtime, a learned algorithm selector is used to choose a configuration from the portfolio to
use. We provided guarantees for the problem of learning the portfolio in conjunction with an
algorithm selector.

We concluded Part I with Chapter 10, where we studied the problem of estimating the extent
to which a manipulable mechanism is approximately incentive compatible. We showed how this
estimation can be done using samples from the distribution over agents’ values. Increasingly,
automated mechanism configuration and deep learning are being used to design manipulable
mechanisms [Dütting et al., 2019, Feng et al., 2018, Golowich et al., 2018, Shen et al., 2019]. The
tools from this chapter can be used to understand the extent to which agents can improve their
utilities by behaving strategically under these machine-learned mechanisms.

Part I provided sample complexity bounds that apply to any procedure for optimizing over
the parameters. In Part II, we focused on the question of how to optimize over the parame-
ters, as well as other techniques for integrating machine learning into algorithm design. In
Chapter 11, we provided a learning algorithm that finds provably optimal configurations from
within a infinite set. This learning algorithm applies whenever the parameterized algorithm’s
performance is a piecewise-constant function of its parameters, a structure we observed holds
across a diverse array of configuration problems in Chapter 7. Finally, in Chapter 12, we ana-
lyzed another means of using machine learning in the context of algorithm design, beyond the
context of parameter configuration. We showed how to learn to prune irrelevant regions of the
search space which never contain optimal solutions for the application domain at hand.

Research at the intersection of machine learning and algorithm design has the potential for
both significant practical impact—for example, integration into large-scale algorithms such as
commercial integer programming solvers—as well as deep theoretical analysis. Research on
this topic from a theoretical perspective has only just begun, so there are many directions yet
to be explored that can have a tangible, marked impact on algorithms used in practice. Below,
we highlight some of the high-level future directions that the research in this thesis leaves
unanswered.

Dual function structure for faster configuration procedures. This thesis deeply investigated
statistical guarantees for automated algorithm configuration, which apply to any procedure for
optimizing over the parameters. We and others have begun to answer the question of how to
learn provably high-performing parameters (for example, the research in Chapter 11), but many
open questions still remain. This thesis made a strong case for how understanding structure
exhibited by the dual functions—measuring an algorithm’s performance as a function of its
parameters—can imply sample complexity guarantees for automated algorithm configuration.
However, we are still only at the beginning of understanding how this dual function structure
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can imply fast algorithms for learning provably high-performing configurations.
We saw that across many different domains, the dual functions are piecewise-structured—

for example, they are piecewise-constant or -linear. This suggests a natural “empirical risk
minimization” algorithm: uncover the analytical form of the dual functions across all of the
problem instances in the training set and return the parameter setting that has optimal aver-
age empirical performance. Unfortunately, this “brute-force” approach can be computationally
prohibitive, especially as the number of tunable parameters grows. It also does not take ad-
vantage of any additional structure exhibited by the dual functions, beyond their piecewise
structure. What additional structure is there which we could use to devise faster learning
algorithms? For example, each dual function may be volatile, but on average over samples,
structure often emerges (for example, in Section 4.4 of Chapter 4, the average dual functions
were often unimodal, though interestingly, not always Lipschitz continuous). Moreover, in
Chapter 8, we saw that the dual functions can often be well-approximated by simple functions.
Could these structures, or any others, be useful for designing configuration procedures with
provable guarantees?

Data-dependent guarantees. Another direction which will help answer both statistical and
algorithmic questions are data-dependent bounds. The majority of the guarantees in this the-
sis are worst case, in the sense that they hold for any distribution over problem instances, no
matter how gnarly. In Chapter 8, we saw data-dependent guarantees based on the observation
that dual functions can often be approximated by simple functions, but this is only one par-
ticular type of structure. How else can we get better data-dependent bounds? These bounds
will also help us answer the algorithmic question of how to learn provably high-performing
configurations since we will need fewer samples to verify the optimality or suboptimality of
any configuration.

Learning with limited data. The batch learning model that we focused on in this thesis has
been used to great success in practice when the learner has access to a training set of problem
instances encountered in the past [e.g., Sandholm, 2013, Xu et al., 2008]. However, there may
be scenarios where this batch learning approach is not the right model—for example, when
a company is just starting out and they have only a single large problem instance to solve,
rather than a training set. Is it possible to use a training set from a related domain to learn
a good configuration? Mathematically, what does it mean for one domain of, say, integer
programs to be related to another? How can we use ideas from the literature on domain
adaptation, transfer learning, and transductive learning to help answer these questions in the
context of combinatorial algorithm configuration? Another option is to learn on-the-fly, within
the instance, which has been explored in prior research from an applied perspective [e.g.,
Khalil et al., 2016, Tang et al., 2020]. However, as-of-yet, we have limited understanding from a
theoretical perspective of how to learn within an instance.

Algorithm configuration meets learning-augmented algorithms. Theoretical research on data-
driven algorithm design has developed in parallel with research on learning-augmented algo-
rithms, where worst-case algorithms are endowed with machine-learned predictors about the
input distribution [e.g., Hsu et al., 2019, Lykouris and Vassilvitskii, 2018, Mitzenmacher, 2018,
Purohit et al., 2018]. For example, a caching algorithm may be endowed with a machine-learned
function that predicts the next time a particular element is going to appear, as in research by
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Lykouris and Vassilvitskii [2018]. The goal is then to design an algorithm that improves over the
worst case when the predictions are accurate, but never performs worse than the best-known
worst-case algorithm, even when the predictions are terrible. What are the formal, higher-level
connections between these two lines of research? Can these learning-augmented algorithm de-
sign problems ever be reframed as parameter configuration problems? Is there a general theory
that connects these two domains?

Configuration beyond algorithms and mechanisms. This thesis focused on configuring the
parameters of algorithms, the fundamental tool of computer science. However, tunable param-
eters abound beyond the context of algorithm design. We saw this in the realm of economic
mechanism design, but it true also in other areas of engineering, in experimental design, and
beyond. At their core, the ideas from this thesis are not bound to algorithm parameter opti-
mization, so to what extent can they provide guidance in other domains? What breakthroughs
can we achieve by taking a data-driven approach to optimizing other non-algorithmic parame-
ters?
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Appendix A

Omitted details about mechanism
configuration (Chapter 5)

In this section, we connect the hyperplane structure we investigate in Section 5.1 to the struc-
tured prediction literature in machine learning [e.g., Collins, 2000], thus proving even stronger
generalization bounds for item-pricing mechanisms under buyers with unit-demand and gen-
eral valuations and answering an open question by Morgenstern and Roughgarden [2016].
Balcan et al. [2014] were the first to explore the connection between structured prediction and
mechanism design, though in a different setting from us: they provided algorithms that make
use of past data describing the purchases of a utility-maximizing agent to produce a hypothesis
function that can accurately forecast the future behavior of the agent.

Morgenstern and Roughgarden [2016] used structured prediction to provide sample com-
plexity guarantees for several “simple” mechanism classes. They observed that these classes
have profit functions uρ(v) which are the composition of two simpler functions: A generalized

allocation function f (1)
ρ : X → Z and a simplified profit function f (2)

ρ : X × Z → R such

that uρ (v) = f (2)
ρ

(
v, f (1)

ρ (v)
)

. For example, Z might be the set of allocations. In this case,

we say that the set of profit functions U =
{

uρ : ρ ∈ Rd} is
(
F (1),F (2)

)
-decomposable, where

F (1) =
{

f (1)
ρ : ρ ∈ Rd

}
and F (2) =

{
f (2)
ρ : ρ ∈ Rd

}
. See Example A.0.1 for an example of this

decomposition.

Example A.0.1 (Item-pricing mechanisms [Morgenstern and Roughgarden, 2016]). Let U be
the set of profit functions corresponding to the class of anonymous item-pricing mechanisms
over a single additive buyer and let ρ = (ρ1, . . . , ρm) be a vector of prices. In this case, we
can define f (1)

ρ : X → {0, 1}m where the ith component of f (1)
ρ (v) is 1 if and only if the buyer

buys item i. Define ψ(v, α) = (v(α),−α) and define wρ = (1, ρ). Then the α that maximizes
〈wρ, ψ(v, α)〉 is the α that maximizes the buyer’s utility, i.e., f (1)

ρ (v), as desired. Finally, we

define f (2)
ρ (v, α) = 〈α, ρ〉, and we have that uρ(v) = f (2)

ρ

(
v, f (1)

ρ (v)
)

, as desired.

Morgenstern and Roughgarden [2016] bound Pdim (U ) using the intrinsic complexity of
F (1), which they quantified using tools from structured prediction, namely, generalized linear
functions.
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Definition A.0.2 (a-dimensional linear class). A set of functions F =
{

fρ : X → Z | ρ ∈ Rd}
is an a-dimensional linear class if there is a function ψ : X × Z → Ra and a vector wρ ∈ Ra for
each ρ ∈ Rd such that fρ (v) ∈ argmaxα∈Z 〈wρ, ψ (v, α)〉 and |argmaxα∈Z 〈wρ, ψ (v, α)〉| = 1.

If U is
(
F (1),F (2)

)
-decomposable and F (1) is an a-dimensional linear class over Z , we say

that U is an a-dimensional linear class over Z .
The bounds Morgenstern and Roughgarden [2016] provided using linear separability are

loose in several settings: for anonymous and non-anonymous item-pricing mechanisms un-
der additive buyers, their structured prediction approach gives a pseudo-dimension bound of
O
(
m2) and O

(
nm2 log m

)
, respectively. They left as an open question whether linear sepa-

rability can be used to prove tighter guarantees. Using the hyperplane structures we study
in Section 5.1, we prove that the answer is “yes.” We require the following refined notion of
(d, t)-delineable classes.

Definition A.0.3. Suppose that U =
{

uρ : ρ ∈ Rd} is
(
F (1),F (2)

)
-decomposable. We say that

U is (d, τ1, τ2)-divisible if:

1. For any v ∈ X , there is a set H of τ1 hyperplanes such that for any connected component
P ′ of Rd \ H, the function f (1)

v (ρ) is constant over all ρ ∈ P ′.

2. For any v ∈ X and any α ∈ Z , there is a set H2 of τ2 hyperplanes such that for any
connected component P ′ of Rd \ H2, the function f (2)

v,α (ρ) is linear over all ρ ∈ P ′.
Note that (d, τ1, τ2)-divisibility implies (d, τ1 + τ2)-delineability. Theorem A.0.4 connects

linear separability and divisibility with pseudo-dimension.

Theorem A.0.4. Suppose U =
{

uρ : ρ ∈ Rd} is (d, τ1, τ2)-divisible with τ1, τ2 ≥ 1 and an a-

dimensional linear class over Z . Let ω = min
{
|Z|a, d (aτ1)d

}
. Then

Pdim (U ) = O ((d + a) log (d + a) + d log τ2 + log ω) .

Proof. To prove this theorem, we will use the following standard notation. For a class F of
real-valued functions mapping X to R, let S =

{
v(1), . . . , v(N)

}
be a subset of X . We define

ΠF (S) = max
t(1),...,t(N)∈R

∣∣∣∣∣∣∣∣



1{ f (v(1))≥t(1)}
...

1{ f (v(N))≥t(N)}

 : f ∈ F


∣∣∣∣∣∣∣∣ .

The pseudo-dimension of F is the size of the largest set S such that ΠF (S) = 2|S|. Given a set
S =

{
v(1), . . . , v(N)

}
, we also use the notation f (S) to denote the vector

(
f (v(1)), . . . , f (v(N))

)
.

Morgenstern and Roughgarden [2016] proved the following lemma.

Lemma A.0.5 (Morgenstern and Roughgarden [2016]). Suppose U is
(
F (1),F (2)

)
-decomposable

and an a-dimensional linear class. Let S =
{

v(1), . . . , v(N)
}

be a subset of X . Then

ΠU (S) ≤
∣∣∣{(S ′, f (1)

ρ (S ′)
)

: S ′ ⊆ S , |S ′| = a, ρ ∈ Rd
}∣∣∣

· max
α(1),...,α(N)∈Z

{
ΠF (2)

({(
v(1), α(1)

)
, . . . ,

(
v(N), α(N)

)})}
.
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Suppose Pdim(U ) = N. By definition, there exists a set S =
{

v(1), . . . , v(N)
}

that is shat-
tered by U . By Lemmas A.0.5 and A.0.6, this means that

2N = ΠU (S) ≤ Naω max
α(1),...,α(N)∈Z

{
ΠF (2)

({(
v(1), α(1)

)
, . . . ,

(
v(N), α(N)

)})}
.

To prove this theorem, we will show that

max
α(1),...,α(N)∈Z

{
ΠF (2)

({(
v(1), α(1)

)
, . . . ,

(
v(N), α(N)

)})}
< d2 (N2τ2

)d
, (A.1)

which means that 2N < N2d+ad2τd
2 ω, and thus N = O ((d + a) log(d + a) + d log τ2 + log ω).

To this end, let α(1), . . . , α(N) be N arbitrary elements of Z and let t(1), . . . , t(N) be N arbitrary
elements of R. Since U is (d, τ1, τ2)-divisible, we know that for each i ∈ [N], there is a set H(i)

2

of τ2 hyperplanes such that for any connected component P ′ of Rd \ H(i)
2 , f (2)

v(i),α(i) (ρ) is linear

over all ρ ∈ P ′. We now consider the overlay of all N partitions Rd \ H(1)
2 , . . . , Rd \ H(N)

2 .
Formally, this overlay is made up of the sets P1, . . . ,Pτ, which are the connected components
of Rd \

(⋃N
i=1H

(i)
2

)
. For each set Pj and each i ∈ [N], Pj is completely contained in a single

connected component of Rd \H(i)
2 , which means that f (2)

v(i),α(i) (ρ) is linear over Pj. Since
∣∣∣H(i)

2

∣∣∣ ≤
τ2 for all i ∈ [N], τ < d(Nτ2)d [Buck, 1943].

Now, consider a single connected component Pj of Rd \
(⋃N

i=1H
(i)
2

)
. For any sample

v(i) ∈ S , we know that f (2)

v(i),α(i) (ρ) is linear over Pj. Let a(i)
j ∈ Rd and b(i)

j ∈ R be the weight

vector and offset such that f (2)

v(i),α(i) (ρ) = a(i)
j · ρ + b(i)

j for all ρ ∈ Pj. We know that there is

a hyperplane a(i)
j · ρ + b(i)

j = t(i) where on one side of the hyperplane, f (2)

v(i),α(i) (ρ) ≤ t(i) and

on the other side, f (2)

v(i),α(i) (ρ) > t(i). Let HPj be all N hyperplanes for all N samples, i.e.,

HPj =
{

a(i)
j · ρ + b(i)

j = t(i) : i ∈ [N]
}

. Notice that in any connected component P ′ of Pj \ HPj ,

for all i ∈ [N], f (2)

v(i),α(i) (ρ) is either greater than t(i) or less than t(i) (but not both) for all ρ ∈ P ′.
In total, the number of connected components of Pj \ HPj is smaller than dNd. The same

holds for every partition Pj. Thus, the total number of regions where for all i ∈ [N], f (2)

v(i),α(i) (ρ)

is either greater than t(i) or less than t(i) (but not both) is smaller than dNd · d(Nτ2)d. In other
words, ∣∣∣∣∣∣∣∣∣




1
(

f (2)
ρ

(
v(1), α(1)

)
≥ t(1)

)
...

1
(

f (2)
ρ

(
v(N), α(N)

)
≥ t(N)

)
 : ρ ∈ Rd


∣∣∣∣∣∣∣∣∣ ≤ dNd · d(Nτ2)d.

Since we chose α(1), . . . , α(N) and t(1), . . . , t(N) arbitrarily, we may conclude that Inequality (A.1)
holds.

Lemma A.0.6. Suppose U is an a-dimensional linear class over Z and (d, τ1, τ2)-divisible. Then for
any set S ⊆ X of size N,∣∣∣{(S ′, f (1)

ρ (S ′)) : S ′ ⊆ S , |S ′| = a, ρ ∈ Rd
}∣∣∣ ≤ Na min

{
|Z|a, d(aτ1)d

}
.
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Proof. To begin with, there are of course at most Na ways to choose a set S ′ ⊆ S of size a. How
many ways are there to label a fixed set S ′ =

{
v(i1), . . . , v(ia)

}
of size a using functions from

F (1)? An easy upper bound is |Z|a. Alternatively, we can use the structure of U to prove that
there are d(aτ1)d ways to label S ′. Since U is (d, τ1, τ2)-divisible, we know that for any v(ij) ∈ S ′,
there is a set H(ij)

1 of τ1 hyperplanes such that for any connected component P ′ of Rd \ H(ij)

1 ,

f (1)

v(ij)
(ρ) is constant over all ρ ∈ P ′. We now consider the overlay of all a partitions Rd \H(ij)

1 for

all v(ij) ∈ S ′. Formally, this overlay is made up of the sets P1, . . . ,Pτ, which are the connected

components of Rd \
(⋃

v(ij)∈S ′ H
(ij)

1

)
. For each set Pt and each v(ij) ∈ S ′, Pt is completely

contained in a single connected component of Rd \ H(ij)

1 , which means that f (1)

v(ij)
(ρ) is constant

over Pt. This means that the number of ways to label S ′ is at most τ. Since
∣∣∣H(ij)

1

∣∣∣ ≤ τ1 for all

v(ij) ∈ S ′, τ < d(aτ1)d [Buck, 1943]. Therefore,
∣∣∣{(S ′, f (1)

ρ (S ′)
)

: S ′ ⊆ S , |S ′| = a, ρ ∈ Rd
}∣∣∣ ≤

Na min
{
|Z|a, d(aτt)d}, so the lemma statement holds.

Divisible mechanism classes

We now instantiate Theorem A.0.4.

Lemma A.0.7. Let U and U ′ be sets of profit functions corresponding to the classes of item-pricing
mechanisms with anonymous prices and non-anonymous prices. If the buyers are unit-demand, then U
is
(
m, nm2, 1

)
-divisible and U ′ is

(
nm, nm2, 1

)
-divisible. Also, U and U ′ are (m + 1)- and (nm + 1)-

dimensionally linearly separable over {0, 1}m and [n]m. Therefore,

Pdim (U ) = O
(
min

{
m2, m log (nm)

})
and Pdim

(
U ′
)

= O (nm log(nm)) .

Proof. We begin with anonymous reserves. Let f (1)
p : X → {0, 1}m be defined so that the ith

component is 1 if and only if item i is sold. For each buyer j, there are (m
2 ) hyperplanes defining

their preference ordering on the items: vj(ei)− p(ei) = vj(ek)− p(ek) for all i 6= k. This gives

a total of at most τ1 = nm2 hyperplanes splitting Rm into regions where f (1)
v (p) is constant.

Next, we can write f (2)
p (v, α) = α · p, which is always linear, so we may set τ2 = 1.

Under non-anonymous reserve prices, let f (1)
p : X → {0, 1}nm be defined so that for every

buyer j and every item i, there is a component of f (1)
p (v) that is 1 if and only if buyer j receives

item i. As with anonymous prices, there are τ1 = nm2 hyperplanes splitting Rnm into regions
where f (1)

v (p) is constant. Next, we can write f (2)
p (v, α) = α · p, which is always linear, so we

may set τ2 = 1.
Morgenstern and Roughgarden [2016] proved that U and U ′ are (m + 1)- and (nm + 1)-

dimensionally linearly separable over {0, 1}m and [n]m, respectively.

When prices are anonymous, if n < 2m, Lemma A.0.7 improves on the pseudo-dimension
bound of O

(
m2) Morgenstern and Roughgarden [2016] gave for this class, and otherwise it

matches their bound. When the prices are non-anonymous our bound improves on their bound
of O

(
nm2 log n

)
.
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Lemma A.0.8. Let U and U ′ be the sets of profit functions corresponding to the classes of item-pricing
mechanisms with anonymous prices and non-anonymous prices, respectively. If the buyers have gen-
eral values, then U is

(
m, n22m, 1

)
-divisible and U ′ is

(
nm, n22m, 1

)
-divisible. Also, U is (m + 1)-

dimensionally linearly separable over {0, 1}m and U ′ is (nm + 1)-dimensionally linearly separable over
[n]m. Thus, Pdim (U ) = O

(
m2) and Pdim (U ′) = O (nm (m + log n)).

Proof. We begin with anonymous reserves. Let f (1)
p : X → {0, 1}m be defined so that the ith

component is 1 if and only if item i is sold. For each buyer j, there are (2m

2 ) hyperplanes defining
their preference ordering on the bundles: vj(q)−∑i:q[i]=1 p(ei) = vj(q′)−∑i:q′[i]=1 p(ei) for all
q, q′ ∈ {0, 1}m. This gives a total of at most τ1 = n22m hyperplanes splitting Rm into regions
where f (1)

v (p) is constant. Next, we can write f (2)
p (v, α) = α · p, which is always linear, so we

may set τ2 = 1.
Under non-anonymous reserve prices, let f (1)

p : X → {0, 1}nm be defined so that for every

buyer j and every item i, there is a component of f (1)
p (v) that is 1 if and only if buyer j receives

item i. As with anonymous prices, there are τ1 = n22m hyperplanes splitting Rnm into regions
where f (1)

v (p) is constant. Next, we can write f (2)
p (v, α) = α · p, which is always linear, so we

may set τ2 = 1.
Morgenstern and Roughgarden [2016] proved that U and U ′ are (m + 1)- and (nm + 1)-

dimensionally linearly separable over {0, 1}m and [n]m, respectively.

When there are anonymous prices, the number of hyperplanes in the partition is large, so
considering the hyperplane partition does not help us. As a result, Lemma A.0.8 implies the
same bound Morgenstern and Roughgarden [2016] gave. In the case of non-anonymous prices,
analyzing the hyperplane partition gives a better bound than their bound of O

(
nm2 log n

)
.

In Lemma A.0.9, we use Theorem A.0.4 to prove pseudo-dimension bounds of O (m log m)
and O (nm log nm) for the classes of second price auctions for additive buyers with anonymous
and non-anonymous reserves, respectively. In Lemma A.0.10, we prove the same for item-
pricing mechanisms. We thus answer the open question by Morgenstern and Roughgarden
[2016]. These bounds match those implied by Lemmas 5.1.16 and 5.1.17.

Lemma A.0.9. Let U and U ′ be the sets of profit functions corresponding to the classes of anonymous
and non-anonymous second price item auctions. Then U is (m, m, m)-divisible and U ′ is (nm, m, m)-
divisible. Also, U and U ′ are (m + 1)- and (nm + 1)-dimensionally linearly separable over {0, 1}m and
[n]m. Therefore, Pdim(U ) = O(m log m) and Pdim(U ′) = O(nm log(nm)).

Proof. We begin with anonymous reserves. For a given valuation vector v, let ji be the highest
buyer for item i and let j′i be the second highest buyer. Let f (1)

p : X → {0, 1}m be defined
so that the ith component is 1 if and only if item i is sold. There are τ1 = m hyperplanes
splitting Rm into regions where f (1)

v (p) is constant: the ith component of f (1)
v (p) is 1 if and only

if vji (ei) ≥ p(ei). Next, we can write f (2)
p (v, α) = ∑i:α[i]=1 max

{
vj′i

(ei), p(ei)
}
− c(α), which is

linear so long as either vj′i
(ei) < p(ei) or vj′i

(ei) ≥ p(ei) for all i ∈ [m]. Therefore, there are

τ2 = m hyperplanes H2 such that for any connected component P ′ of P \H2, f (2)
v,α (p) is linear

over all p ∈ P ′.
Under non-anonymous reserve prices, let f (1)

p : X → {0, 1}nm be defined so that for every

buyer j and every item i, there is a component of f (1)
p (v) that is 1 if and only if buyer j receives
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item i. There are τ1 = m hyperplanes splitting Rnm into regions where f (1)
v (p) is constant: for

every item i, the component corresponding to buyer ji is 1 if and only if vji (ei) ≥ pj(ei). Next,

we can write f (2)
p (v, α) = ∑i:α[i]=1 max

{
vj′i

(ei), pji (ei)
}
− c(α), which is linear so long as either

vj′i
(ei) < pji (ei) or vj′i

(ei) ≥ pji (ei) for all i ∈ [m]. Therefore, there are τ2 = m hyperplanes H2

such that for any connected component P ′ of P \H2, f (2)
v,α (p) is linear over all p ∈ P ′.

Morgenstern and Roughgarden [2016] proved that U and U ′ are (m + 1)- and (nm + 1)-
dimensionally linearly separable over {0, 1}m and [n]m, respectively.

Lemma A.0.10. Let U and U ′ be the sets of profit functions corresponding to the classes of item-
pricing mechanisms with anonymous prices and non-anonymous prices, respectively. If the buyers are
additive, then U is (m, m, 1)-divisible and U ′ is (nm, nm, 1)-divisible. Also, U and U ′ are (m + 1)- and
(nm + 1)-dimensionally linearly separable over {0, 1}m and [n]m. Therefore, Pdim(U ) = O(m log m)
and Pdim(U ′) = O(nm log(nm)).

Proof. We begin with anonymous reserves. For a given valuation vector v, let ji be the buyer
with the highest valuation for item i. Let f (1)

p : X → {0, 1}m be defined so that the ith compo-
nent is 1 if and only if item i is sold. There are τ1 = m hyperplanes splitting Rm into regions
where f (1)

v (p) is constant: the ith component of f (1)
v (p) is 1 if and only if vji (ei) ≥ p(ei). Next,

we can write f (2)
p (v, α) = α · p, which is always linear, so we may set τ2 = 1.

Under non-anonymous reserve prices, let f (1)
p : X → {0, 1}nm be defined so that for every

buyer j and every item i, there is a component of f (1)
p (v) that is 1 if and only if buyer j receives

item i. There are τ1 = nm hyperplanes splitting Rnm into regions where f (1)
v (p) is constant:

vj(ei) = pj(ei) for all i and all j. Next, we can write f (2)
p (v, α) = α · p, which is always linear, so

we may set τ2 = 1.
Morgenstern and Roughgarden [2016] proved that U and U ′ are (m + 1)- and (nm + 1)-

dimensionally linearly separable over {0, 1}m and [n]m, respectively.
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Appendix B

Omitted details about frugal training
with generalization guarantees
(Chapter 11)

Lemma B.0.1. Suppose Algorithm 8 has a ζ-representative run. For any set P ′ ∈ Ḡ and all parameters
ρ ∈ P ′, tδ/2(ρ) ≤ τP ′ ≤ tδ/4(ρ).

Proof. We begin by proving that tδ/2(ρ) ≤ τP ′ .

Claim B.0.2. Suppose Algorithm 8 has a ζ-representative run. For any set P ′ ∈ G and all parameters
ρ ∈ P ′, tδ/2(ρ) ≤ τP ′ .

Proof of Claim B.0.2. Let t be the round that P ′ is added to G. We know that for all parameter
vectors ρ ∈ P ′,

1
|St| ∑

z∈St

1{`(ρ,z)≤τP′} ≥
b|St| (1− 3δ/8)c

|St|
≥ 1− 3δ

8
− 1
|St|

. (B.1)

Since Algorithm 8 had a ζ-representative run, we know that

Pr
z∼D

[`(ρ, z) ≤ τP ′ ]

≥ 1
|St| ∑

z∈St

1{`(ρ,z)≤τP′} −

√
2d ln |Partition (St, τP ′)|

|St|
−

√
8
|St|

ln
8 (τP ′ |St| t)2

ζ

≥ 1
|St| ∑

z∈St

1{`(ρ,z)≤τP′} −

√
2d ln |Partition (St, 2t)|

|St|
−

√
8
|St|

ln
8 (2t |St| t)2

ζ
,

where the second inequality follows from the fact that τP ′ ≤ 2t and monotonicity. Based on
Step 4 of Algorithm 8, we know that

Pr
z∼D

[`(ρ, z) ≤ τP ′ ] ≥
1
|St| ∑

z∈St

1{`(ρ,z)≤τP′} − ηδ.
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Moreover, by Equation (B.1), Prz∼D [`(ρ, z) ≤ τP ′ ] ≥ 1− 3δ
8 −

1
|St| − ηδ. Based on Step 4 of Al-

gorithm 8, we also know that 1√
|St|
≤ ηδ. Therefore, Prz∼D [`(ρ, z) ≤ τP ′ ] ≥ 1−

( 3
8 + η2 + η

)
δ.

Finally, since η ≤ 1
9 , we have that Prz∼D [`(ρ, z) ≤ τP ′ ] > 1− δ/2, which means that

Pr
z∼D

[`(ρ, z) > τP ′ ] = Pr
z∼D

[`(ρ, z) ≥ τP ′ + 1] <
δ

2
. (B.2)

We claim that Equation (B.2) implies that tδ/2(ρ) ≤ τP ′ . For a contradiction, suppose
tδ/2(ρ) > τP ′ , or in other words, tδ/2(ρ) ≥ τP ′ + 1. Since

tδ/2(ρ) = argmaxτ∈Z

{
Pr

z∼D
[`(ρ, z) ≥ τ] ≥ δ/2

}
,

this would mean that δ/2 ≤ Prz∼D [`(ρ, z) ≥ tδ/2(ρ)] ≤ Prz∼D [`(ρ, z) ≥ τP ′ + 1] < δ/2, which
is a contradiction. Therefore, the claim holds.

Next, we prove that τP ′ ≤ tδ/4(ρ).

Claim B.0.3. Suppose Algorithm 8 has a ζ-representative run. For any set P ′ ∈ G and all parameters
ρ ∈ P ′, τP ′ ≤ tδ/4(ρ).

Proof of Claim B.0.3. Let t be the round that P ′ is added to G. We know that for all parameter
vectors ρ ∈ P ′,

1− 1
|St| ∑

z∈St

1{`(ρ,z)≤τP′−1} = 1− 1
|St| ∑

z∈St

1{`(ρ,z)<τP′}

=
1
|St| ∑

z∈St

(
1− 1{`(ρ,z)<τP′}

)
=

1
|St| ∑

z∈St

1{`(ρ,z)≥τP′}

≥ |St| − b|St| (1− 3δ/8)c
|St|

≥ 3δ

8
.

Therefore, 1
|St| ∑z∈St

1{`(ρ,z)≤τP′−1} ≤ 1− 3δ
8 . Since Algorithm 8 had a ζ-representative run, we

know that

Pr
z∼D

[`(ρ, z) ≤ τP ′ − 1]

≤ 1
|St| ∑

z∈St

1{`(ρ,z)≤τP′−1} +

√
2d ln |Partition (St, τP ′ − 1)|

|St|
+ 2

√
2
|St|

ln
8 ((τP ′ − 1) |St| t)2

ζ

≤ 1− 3δ

8
+

√
2d ln |Partition (St, τP ′ − 1)|

|St|
+ 2

√
2
|St|

ln
8 ((τP ′ − 1) |St| t)2

ζ

< 1− 3δ

8
+

√
2d ln |Partition (St, 2t)|

|St|
+ 2

√
2
|St|

ln
8 (2t |St| t)2

ζ
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because τP ′ − 1 < τP ′ ≤ 2t and monotonicity. Based on Step 4 of Algorithm 8,

Pr
z∼D

[`(ρ, z) ≤ τP ′ − 1] < 1− 3δ

8
+ ηδ.

Since η ≤ 1/9, we have that Prz∼D [`(ρ, z) ≤ τP ′ − 1] < 1− δ/4. Thus, Prz∼D [`(ρ, z) ≥ τP ′ ] =
Prz∼D [`(ρ, z) > τP ′ − 1] > δ/4. Since tδ/4(ρ) = argmaxτ∈Z {Prz∼D [`(ρ, z) ≥ τ] ≥ δ/4} , we
have that τP ′ ≤ tδ/4(ρ).

The lemma statement follows from Claims B.0.2 and B.0.3.

Corollary B.0.4. Suppose Algorithm 8 has a ζ-representative run. For every set P ′ ∈ Ḡ and any
parameter vector ρ ∈ P ′, τP ′δ/4 ≤ Ez∼D [min {`(ρ, z), τP ′}] .

Proof. By Lemma B.0.1, we know that τP ′ ≤ tδ/4(ρ), so Prz∼D [`(ρ, z) ≥ τP ′ ] ≥ δ
4 . Therefore,

Ez∼D [min {`(ρ, z), τP ′}] ≥ τP ′ Prz∼D [`(ρ, z) ≥ τP ′ ] ≥
τP′ δ

4 .

Lemma B.0.5. Suppose Algorithm 8 has a ζ-representative run. For any parameter vector ρ 6∈⋃
P ′∈Ḡ P ′, Ez∼D [min {`(ρ, z), tδ/4(ρ)}] ≥ T̄.

Proof. From Lemma 11.3.5, we know that Ez∼D [min {`(ρ, z), tδ/4(ρ)}] ≥ 2t̄−3δ. Moreover, from
Step 2 of Algorithm 8, T̄ ≤ 2t̄−3δ, so Ez∼D [min {`(ρ, z), tδ/4(ρ)}] ≥ T̄.

Lemma B.0.6. Suppose Algorithm 8 has a ζ-representative run. There exists a set P ′ ∈ Ḡ and a
parameter vector ρ ∈ P ′ such that T̄ ≥ 1

4√1+ε
·Ez∼D [min {`(ρ, z), τP ′}].

Proof. By definition of the upper confidence bound T̄ (Steps 8 through 10 of Algorithm 8),
there is some round t, some set P ′ ∈ Ḡ, and some parameter vector ρ ∈ P ′ such that T̄ =

1
|St| ∑z∈St

min {` (ρ, z) , τP ′}. Since Algorithm 8 had a ζ-representative run,

T̄ =
1
|St| ∑

z∈St

min {` (ρ, z) , τP ′}

≥ E
z∼D

[min {` (ρ, z) , τP ′}]− τP ′

√2d ln |Partition (St, τP ′)|
|St|

+ 2

√
2
|St|

ln
8 (τP ′ |St| t)2

ζ

 .

By Step 6, we know that at least a (1− 3δ/8)-fraction of the problem instances z ∈ St have a
loss `(ρ, z) that is at most 2t. Therefore, by definition of τP ′ = τb|St|(1−3δ/8)c, it must be that
τP ′ ≤ 2t. By monotonicity, this means that

T̄ ≥ E
z∼D

[min {` (ρ, z) , τP ′}]− τP ′

√2d ln |Partition (St, 2t)|
|St|

+ 2

√
2
|St|

ln
8 (2t |St| t)2

ζ

 .

Based on Step 4 of Algorithm 8,

T̄ ≥ E
z∼D

[min {` (ρ, z) , τP ′}]− τP ′ηδ.

From Corollary B.0.4, τP ′δ/4 ≤ Ez∼D [min {`(ρ, z), τP ′}], which means that

T̄ ≥ (1− 4η) E
z∼D

[min {`(ρ, z), τP ′}] .
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Finally, the lemma statement follows from the fact that

η = min
{

1
8

(
4
√

1 + ε− 1
)

,
1
9

}
≤ 1

4

(
1− 1

4
√

1 + ε

)
.

Lemma B.0.7. Suppose Algorithm 8 has a ζ-representative run. For every set P ′ ∈ Ḡ and every pair of
parameter vectors ρ1, ρ2 ∈ P ′, Ez∼D [min {` (ρ1, z) , τP ′}] ≤ 4

√
1 + ε ·Ez∼D [min {` (ρ2, z) , τP ′}].

Proof. Let t be the round that the interval P ′ was added to G. Since Algorithm 8 had a ζ-
representative run,

E
z∼D

[min {` (ρ1, z) , τP ′}]

≤ 1
|St| ∑

z∈St

min {` (ρ1, z) , τP ′}+ τP ′

√2d ln |Partition (St, τP ′)|
|St|

+ 2

√
2
|St|

ln
8 (τP ′ |St| t)2

ζ

 .

By definition of the set P ′, for all instances z ∈ St, min {` (ρ1, z) , τP ′} = min {` (ρ2, z) , τP ′} .
Therefore,

E
z∼D

[min {` (ρ1, z) , τP ′}]

≤ 1
|St| ∑

z∈St

min {` (ρ2, z) , τP ′}+ τP ′

√2d ln |Partition (St, τP ′)|
|St|

+ 2

√
2
|St|

ln
8 (τP ′ |St| t)2

ζ

 .

Again, since Algorithm 8 had a ζ-representative run,

E
z∼D

[min {` (ρ1, z) , τP ′}]

≤ E
z∼D

[min {` (ρ2, z) , τP ′}] + 2τP ′

√2d ln |Partition (St, τP ′)|
|St|

+ 2

√
2
|St|

ln
8 (τP ′ |St| t)2

ζ

 .

Since τP ′ ≤ 2t,

E
z∼D

[min {` (ρ1, z) , τP ′}]

≤ E
z∼D

[min {` (ρ2, z) , τP ′}] + 2τP ′

√2d ln |Partition (St, 2t)|
|St|

+ 2

√
2
|St|

ln
8 (2t |St| t)2

ζ

 .

Based on Step 4 of Algorithm 8, this means that

E
z∼D

[min {` (ρ1, z) , τP ′}] ≤ E
z∼D

[min {` (ρ2, z) , τP ′}] + 2τP ′ηδ.

By Corollary B.0.4, Ez∼D [min {` (ρ1, z) , τP ′}] ≤ (1 + 8η) Ez∼D [min {` (ρ2, z) , τP ′}]. The lemma
statement follows from the fact that η ≤

(
4
√

1 + ε− 1
)

/8.
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Lemma B.0.8. Let P∗ be the set of parameters output by Algorithm 8. Suppose that for every γ > 0,
there exists a parameter vector ρ′ ∈ P∗ such that

E
z∼D

[
min

{
`(ρ′, z), tδ/2(ρ′)

}]
≤
√

1 + ε (OPTδ/4 + γ) .

Then minρ∈P∗ {Ez∼D [min {`(ρ, z), tδ/2(ρ)}]} ≤
√

1 + ε ·OPTδ/4.

Proof. For a contradiction, suppose that minρ∈P∗ {Ez∼D [min {`(ρ, z), tδ/2(ρ)}]} >
√

1 + ε ·
OPTδ/4 and let γ′ = minρ∈P∗ {Ez∼D [min {`(ρ, z), tδ/2(ρ)}]} −

√
1 + ε · OPTδ/4. Setting γ =

γ′

2
√

1+ε
, we know there exists a parameter vector ρ′ ∈ P∗ such that

E
z∼D

[
min

{
`(ρ′, z), tδ/2(ρ′)

}]
≤
√

1 + ε

(
OPTδ/4 +

γ′

2
√

1 + ε

)
=
√

1 + ε ·OPTδ/4 +
γ′

2

= min
ρ∈P∗

{
E

z∼D
[min {`(ρ, z), tδ/2(ρ)}]

}
− γ′

2

< min
ρ∈P∗

{
E

z∼D
[min {`(ρ, z), tδ/2(ρ)}]

}
,

which is a contradiction.

Lemma B.0.9. Suppose that for all γ > 0, there exists a parameter vector ρ∗ ∈ P such that 2t̄ ≤
16 4√1+ε

δ ·Ez∼D [min {` (ρ∗, z) , tδ/4 (ρ∗)}] ≤ 16 4√1+ε
δ (OPTδ/4 + γ). Then 2t̄ ≤ 16 4√1+ε

δ ·OPTδ/4.

Proof. For a contradiction, suppose 2t̄ > 16 4√1+ε
δ ·OPTδ/4 and let γ′ = 2t̄ − 16 4√1+ε

δ ·OPTδ/4.
Letting γ = γ′δ

32 4√1+ε
, we know there exists a parameter vector ρ∗ ∈ P such that

2t̄ ≤ 16 4
√

1 + ε

δ
· E

z∼D
[min {` (ρ∗, z) , tδ/4 (ρ∗)}]

≤ 16 4
√

1 + ε

δ

(
OPTδ/4 +

γ′δ

32 4
√

1 + ε

)
=

16 4
√

1 + ε

δ
·OPTδ/4 +

γ′

2

= 2t̄ − γ′

2
< 2t̄,

which is a contradiction. Therefore, the lemma statement holds.

Lemma B.0.10. Suppose Algorithm 8 has a ζ-representative run. The size of the set P∗ ⊂ P that
Algorithm 8 returns is bounded by ∑t̄

t=1
∣∣Partition

(
St, 16

δ
4
√

1 + ε ·OPTδ/4
)∣∣.

Proof. Based on Step 12 of Algorithm 8, the size of P∗ equals the size of the set Ḡ. Algo-
rithm 8 only adds sets to G on Step 7, and on each round t, the number of sets it adds
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is bounded by
∣∣Partition

(
St, 2t)∣∣. By monotonicity, we know that

∣∣Partition

(
St, 2t)∣∣ ≤∣∣∣Partition

(
St, 2t̄

)∣∣∣ ≤ ∣∣Partition

(
St, 16

δ
4
√

1 + ε ·OPTδ/4
)∣∣. Therefore,

∣∣Ḡ∣∣ = |P∗| ≤
t̄

∑
t=1

∣∣∣∣Partition

(
St,

16
δ

4
√

1 + ε ·OPTδ/4

)∣∣∣∣ .
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Appendix C

Omitted details about learning to prune
(Chapter 12)

Figure C.1 illustrates the average size of the pruned set S̄i in Algorithm 9, which we ran a
total of 5000 times, with T = 30 rounds each run. Figure C.1a corresponds to shortest-path
routing and Figure C.1b corresponds to linear programming, with the same setup as described
in Section 12.4.

In Figure C.2, we present experiments using different perturbation methods. Figures C.2a
and C.2b have the same experimental setup as in Section 12.4 except we employ a Gaussian
distribution with smaller variance. We run our algorithm for thirty rounds (T = 30) with
pi = 1/

√
i. Each round, we randomly perturb each edge’s weight via the following procedure.

Let G = (V, E) be the original graph we access via Python’s OSMnx package. Let x ∈ R|E|

be a vector representing all edges’ weights. On the ith round, we select a vector ri ∈ R|E|

such that each component is drawn i.i.d. from the normal distribution with a mean of 0
and a standard deviation of 1/2. We define a new edge-weight vector xi such that xi[j] =
I{x[j]+ri [j]>0} (x[j] + ri[j]) . Our algorithm returned the incorrect path on a 0.034 fraction of the
rounds.

In the remaining panels of Figure C.2, we use the uniform distribution rather than the Gaus-
sian distribution. In Figures C.2c and C.2d, we run our algorithm for thirty rounds (i.e., T = 30)
with pi = 1/

√
i for all i ∈ [T]. On each round, we randomly perturb each edge’s weight via the

following procedure. Let G = (V, E) be the original graph we access via Python’s OSMnx pack-
age. Let x ∈ R|E| be a vector representing all edges’ weights. Let wi = min{x[i], 1/2}. On the ith

round, we select a vector ri ∈ R|E| such that each component is drawn from the uniform distri-
bution over [−wi, wi]. We then define a new edge-weight vector xi such that xi[j] = x[j] + ri[j].
Our algorithm returned the incorrect path on a 0.003 fraction of the 5000 · T = 150, 000 rounds.

In Figures C.2e and C.2f, we use the same procedure except wi = min{x[i], 1}. In that
setting, our algorithm returned the incorrect path on a 0.001 fraction of the 5000 · T = 150, 000
rounds.
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(a) Average pruned set size for shortest-path
routing.

(b) Average pruned set size for linear program-
ming.

Figure C.1: Average size of the pruned set S̄i in Algorithm 9.
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(a) Gaussian perturbation with a standard devi-
ation of 1/2. Top line: average number of nodes
Dijkstra’s algorithm explores. Bottom line: aver-
age number of nodes Algorithm 9 explores.

(b) Gaussian perturbation with a standard devia-
tion of 1/2. Average pruned set size for shortest
path routing.

(c) Uniform perturbation with support
[−1/2, 1/2]. Top line: average number of
nodes Dijkstra’s algorithm explores. Bottom
line: average number of nodes Algorithm 9

explores.

(d) Uniform perturbation with support
[−1/2, 1/2]. Average pruned set size for
shortest path routing.

(e) Uniform perturbation with support [−1, 1].
Top line: average number of nodes Dijkstra’s al-
gorithm explores. Bottom line: average number
of nodes Algorithm 9 explores.

(f) Uniform perturbation with support
[−1/2, 1/2]. Average pruned set size for
shortest path routing.

Figure C.2: Shortest path routing experiments using varying perturbation methods.
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Christian Bessiere and Jean-Charles Régin. Mac and combined heuristics: Two reasons to
forsake FC (and CBJ?) on hard problems. In International Conference on Principles and Practice
of Constraint Programming, pages 61–75. Springer, 1996.

Avrim Blum, Chen Dan, and Saeed Seddighin. Learning complexity of simulated annealing.
In International Conference on Artificial Intelligence and Statistics (AISTATS), pages 1540–1548.
PMLR, 2021.

238



Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Occam’s
razor. Information processing letters, 24(6):377–380, 1987.

Geoff Boeing. OSMnx: New methods for acquiring, constructing, analyzing, and visualizing
complex street networks. Computers, Environment and Urban Systems, 65:126–139, 2017.

Felix Brandt, Tuomas Sandholm, and Yoav Shoham. Spiteful bidding in sealed-bid auctions.
In Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI), Hy-
derabad, India, 2007. Early version in GTDT-05.

William Brendel and Sinisa Todorovic. Segmentation as maximum-weight independent set. In
Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS), pages
307–315, 2010.

Josef Broder and Paat Rusmevichientong. Dynamic pricing under a general parametric choice
model. Operations Research, 60(4):965–980, 2012.
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Édouard Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

David Pollard. Convergence of Stochastic Processes. Springer, 1984.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML pre-
dictions. In Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS), pages 9661–9670, 2018.

J. R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976.

Andrej Risteski and Yuanzhi Li. Approximate maximum entropy principles via Goemans-
Williamson with applications to provable variational methods. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NeurIPS), pages 4628–4636, 2016.

Kevin Roberts. The characterization of implementable social choice rules. In J-J Laffont, editor,
Aggregation and Revelation of Preferences. North-Holland Publishing Company, 1979.

Michael Rothkopf, Thomas Teisberg, and Edward Kahn. Why are Vickrey auctions rare? Journal
of Political Economy, 98(1):94–109, 1990.

Tim Roughgarden and Okke Schrijvers. Ironing in the dark. In Proceedings of the ACM Conference
on Economics and Computation (EC), 2016.

Aviad Rubinstein and S Matthew Weinberg. Simple mechanisms for a subadditive buyer and
applications to revenue monotonicity. In Proceedings of the ACM Conference on Economics and
Computation (EC), 2015.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3rd
edition, 2010.

249

https://adexchanger.com/the-sell-sider/a-year-in-first-price/
https://adexchanger.com/the-sell-sider/a-year-in-first-price/


Ashish Sabharwal, Horst Samulowitz, and Chandra Reddy. Guiding combinatorial optimiza-
tion with UCT. In International Conference on AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems. Springer, 2012.

Mehreen Saeed, Onaiza Maqbool, Haroon Atique Babri, Syed Zahoor Hassan, and S Mansoor
Sarwar. Software clustering techniques and the use of combined algorithm. In Proceedings of
the European Conference on Software Maintenance and Reengineering, pages 301–306. IEEE, 2003.

Tuomas Sandholm. An implementation of the contract net protocol based on marginal cost
calculations. In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages
256–262, Washington, D.C., July 1993.

Tuomas Sandholm. Issues in computational Vickrey auctions. International Journal of Electronic
Commerce, 4(3):107–129, 2000. Early version in ICMAS-96.

Tuomas Sandholm. Algorithm for optimal winner determination in combinatorial auctions.
Artificial Intelligence, 135:1–54, January 2002.

Tuomas Sandholm. Automated mechanism design: A new application area for search algo-
rithms. In International Conference on Principles and Practice of Constraint Programming, pages
19–36, Cork, Ireland, 2003.

Tuomas Sandholm. Very-large-scale generalized combinatorial multi-attribute auctions:
Lessons from conducting $60 billion of sourcing. In Zvika Neeman, Alvin Roth, and Nir
Vulkan, editors, Handbook of Market Design. Oxford University Press, 2013.

Tuomas Sandholm and Craig Boutilier. Preference elicitation in combinatorial auctions. In
Peter Cramton, Yoav Shoham, and Richard Steinberg, editors, Combinatorial Auctions, pages
233–263. MIT Press, 2006. Chapter 10.

Tuomas Sandholm and Anton Likhodedov. Automated design of revenue-maximizing combi-
natorial auctions. Operations Research, 63(5):1000–1025, 2015. Special issue on Computational
Economics. Subsumes and extends over a AAAI-05 paper and a AAAI-04 paper.

J. Michael Sauder, Jonathan W. Arthur, and Roland L. Dunbrack Jr. Large-scale comparison
of protein sequence alignment algorithms with structure alignments. Proteins: Structure,
Function, and Bioinformatics, 40(1):6–22, 2000.

Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A, 13(1):
145–147, 1972.

Tzur Sayag, Shai Fine, and Yishay Mansour. Combining multiple heuristics. In Annual Sympo-
sium on Theoretical Aspects of Computer Science, pages 242–253. Springer, 2006.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge University Press, 2014.

Ankit Sharma and Tuomas Sandholm. Asymmetric spite in auctions. In AAAI Conference on
Artificial Intelligence, 2010.

Weiran Shen, Pingzhong Tang, and Song Zuo. Automated mechanism design via neural net-
works. In Autonomous Agents and Multi-Agent Systems, pages 215–223, 2019.

250



Sarah Sluis. Google switches to first-price auction. Ad Exchanger, 2019. URL https://www.
adexchanger.com/online-advertising/google-switches-to-first-price-auction/.

Sagi Snir and Satish Rao. Using max cut to enhance rooted trees consistency. IEEE/ACM
Transactions on Computational Biology and Bioinformatics (TCBB), 3(4):323–333, 2006.

Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM (JACM), 51(3):385–463, 2004.

Matthew Streeter and Daniel Golovin. An online algorithm for maximizing submodular
functions. In Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS), pages 1577–1584, 2009.

Matthew Streeter, Daniel Golovin, and Stephen F. Smith. Combining multiple heuristics online.
In AAAI Conference on Artificial Intelligence, 2007.

Vasilis Syrgkanis. A sample complexity measure with applications to learning optimal auctions.
Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS), 2017.

Pingzhong Tang. Reinforcement mechanism design. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2017.

Pingzhong Tang and Tuomas Sandholm. Mixed-bundling auctions with reserve prices. In
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2012a.

Pingzhong Tang and Tuomas Sandholm. Optimal auctions for spiteful bidders. In AAAI Con-
ference on Artificial Intelligence, 2012b.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer program-
ming: Learning to cut. International Conference on Machine Learning (ICML), 2020.

John Thanassoulis. Haggling over substitutes. Journal of Economic theory, 117(2):217–245, 2004.

Timo Tossavainen. On the zeros of finite sums of exponential functions. Australian Mathematical
Society Gazette, 33(1):47–50, 2006.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media,
2013.

Vladimir Vapnik and Alexey Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.

Vladimir Vapnik and Alexey Chervonenkis. Theory of pattern recognition, 1974.

Hal R. Varian. Position auctions. International Journal of Industrial Organization, pages 1163–1178,
2007.

Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of Fi-
nance, 16:8–37, 1961.

251

https://www.adexchanger.com/online-advertising/google-switches-to-first-price-auction/
https://www.adexchanger.com/online-advertising/google-switches-to-first-price-auction/


William Walsh, David Parkes, Tuomas Sandholm, and Craig Boutilier. Computing reserve
prices and identifying the value distribution in real-world auctions with market disruptions.
In AAAI Conference on Artificial Intelligence, 2008. Short paper.

Jun Wang, Tony Jebara, and Shih-Fu Chang. Semi-supervised learning using greedy max-cut.
Journal of Machine Learning Research, 14(Mar):771–800, 2013.

Michael S Waterman, Temple F Smith, and William A Beyer. Some biological sequence metrics.
Advances in Mathematics, 20(3):367–387, 1976.
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